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222 G. VAN DIJK AND A. PASQUALE

In Section 6 we prove that the r-Abel transform is an isomorphism of
£>(G; Xr) onto the convolution algebra D+(R) of the even C°° compactly
supported functions on R. The inversion formula is explicitly written.
The Paley-Wiener Theorem for the r -spherical transform is an immediate

consequence. The final Section 7 contains the inversion formula and the

Plancherel Theorem for the r-spherical transform.

Similar results for SU(n, 1) have been obtained as a specialization of the

Hermitian symmetric case by Shimeno [Shi] and Heckman [HS, Part 1].

Acknowledgment. During the preparation of this paper, the second

author has been financially supported by the Dutch Organization for Scientific
Research (N.W.O.).

1. The fine structure of Sp(l,n)

Let H be the skew-field of the quaternions. Consider on the right H-vector

space Hn+1 the Hermitian form

(1.1) I]x,y] yo*o - yi*i %xn

the bar sign denoting quaternionic conjugation: if 1, ij,k are the quaternionic
units and q a + ib + j c + kd G H (with a,b,c,d G R), then q
a — ib—jc — kd. Let G Sp(l,n) be the group U(l,n;H) of (n + 1) x (n+ 1)

matrices with coefficients in H which preserve this form. For n 1, G
is called the De Sitter group. Let Sp(ra) indicate the group U(m;H) of
m x m matrices with coefficients in H which preserve the inner product
(x, y) y\X\ + - • '+ymXm of Hm. In particular, Sp(l) consists of the quaternions

q cL-\-i b+j c + k d with norm \q\ va2 -j- b2 + c2 + d2 equal to 1. Sp(l)
is canonically isomorphic to SU(2). The group G acts on the projective space

Fn(H). Let Q denote the image of the open set {x G Hn+1 : [x,x] > 0} under

the canonical map H"+1 \ {0} —> Pn(H). Then G acts transitively on Q, and

the stabilizer of the quaternionic line generated by the vector (1,0,... ,0) is

the group

K
u 0

0 U
: u G Sp(l), U G Sp(n) 1> Sp(l) x Sp(n).

The homogeneous space G/K is called the hyperbolic quaternionic space.

K is a maximally compact subgroup of G. G is connected and simply
connected.
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To study the fine structure of G, we consider its Lie algebra g sp{\,ri).
Let J be the (n + 1) x (n + 1) matrix diag(-l, 1,..., 1). For any matrix X

of type (n + l,n + 1) with coefficients in H we set X* JX J, the symbol
f denoting transposition.

The Lie algebra g consists of the matrices X which verify the relation

X + X* 0.

These are the matrices of the form

Zi
Zo

Z2

Z3

with Zi and Z3 anti-Hermitian of type (1,1) and (n,ri), respectively, and Z2

arbitrary. Let 9 be the anti-involutive automorphism of g defined by

ex jxj
Then 9 is a Cartan involution with the usual decomposition g ï + p. Here

Ï is the Lie algebra of K. Let L be the following element of g :

L

Then L G p and a RL is a maximal Abelian subspace of p. We are going
to diagonalize adL. The centralizer of L in Ï is the subalgebra m of g of
the matrices

u 0 0

OVO
0 0 u

with u G H, u + ü 0 and V a matrix of type (n — 1, n — 1) satisfying
L + V =0. The non-zero eigenvalues of adL are am 19 -a, ±2a. The

space ga consists of the matrices

X
0 z* 0

z 0 —z

0 z* 0

where z is a matrix of type (n — 1,1) with coefficients in H, and z* := zL
The real dimension of ga is ma 4(n - 1). The space g2a consists of the
matrices of the form

w 0 —w

X= 0 0 0

w 0 —w
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with W G H, w + w 0. The dimension of $2a is equal to rri2a 3. We

have g 0_2a + 0-a + tri + a + ga + 02a •

Let A be the subgroup exp a. This is the subgroup of the matrices
" cosh t 0 sinh t

~

at 0 I 0

sinh t 0 cosh t
_

where t is a real number. The centralizer of A in K is the subgroup M of
the matrices

u 0 0

m(u, V) 0 L 0

0 0 u
_

with u G Sp(l) and V G Sp(n— 1). The Lie algebra of M is m. The subspace

ft 0a + 02a is a (real) nilpotent subalgebra. Set N expn. This is the

subgroup of the matrices

"1 +W-j[z,z\ Z* -w+\\z,z\
n(w,z) z I -z

tu —|[z,z] z* 1 —w + \[z,z]_

where w G H satisfies w + w 0 and z [zi,. •. ,zn-\f is a matrix
of type (n — 1,1) with coefficients in H. We have set z* z! and

[z, z] Z\Z\ • Zn— iZn— 1 •

The composition law in N is the following:

n(w, z) • n(w\ z) n(w + w' + Afz, z'], z + z),
where ^sq \= for q G H. The subgroups A and M normalize N :

atn(w, z)cL-t - n(e2tw, elz)

m(w, V)n(u;, z)m(w, L)_1 n(uwü, Lzfi).

Let 2p be the trace of the restriction of adL to ri :

(1.2)

We have the Iwasawa decomposition G ÄAAf Ä7VA and the

corresponding integral formulas :

+00

(1.3) Jf(g)dg J J Jf(katn)e2pt dkdtdn

G K —00 N

+00

(1.4) —JJ J f(knat) dkdndt

K N -00

P ^(rna + 2m2a) 2n + I
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for / G Cc(G). We adopt the usual notation Cc(G) for the space of continuous

functions on G with compact support. In the above formulas, dn — dw dz

(n n(w,z)) and dk is the normalized Haar measure on K.

Let
1 0

K i
u 0

0 I
: u G Sp(l) *2 0 u

: G G SpO)

Then every g G G can be written as g kxk2atk!2 for uniquely determined

&i G TCi, f > 0 and for some k2, k'2 G K2. Writing g [<7#J"J=0 > we have

%
(1.5) k\

lf?0(
and coshf=|#0(

If ^ ^ jK", then I > 0 and k2,k2 are uniquely determined modulo the subgroup

1 0 0'
{ OVO

0 0 1

: VG Sp(n - 1)} •

After dg is normalized according to (1.3), the corresponding integral formula

is
oo

(1.6) Jf(g) dg — ^
TX2n) JJJ

Ki K2 o K2

where

(1.7) A(t) := 22p(sinh t)4n
1

(cosh t)3

2. The convolution algebra D(G; xi)

Let N/2 be the set of nonnegative half-integers (0,1/2,1, 3/2,... }. Since

K\ Sp(l) is isomorphic to SU(2), N/2 parametrizes the set of equivalence
classes of unitary irreducible representations of K\. We denote with the same

symbol 77 either the equivalence class corresponding to the parameter I or
a fixed representative for it. Thus 77 is a unitary irreducible representation
of Kx in a Hilbert space V/ of dimension di 21 + 1. We extend 77 to

a representation of K by setting 77 1 on K2. Each 77 is self-dual, i.e.

unitarily equivalent to its contragredient representation. It follows in particular
that the character xi trT7 °f ri satisfies X/(^_1) — X/W* k e K.

We denote by T)(G; 77) the convolution algebra of the compactly supported
C°° maps F: G —» End(V/) satisfying
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