

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. [Siehe Rechtliche Hinweise.](https://www.e-periodica.ch/digbib/about3?lang=de)

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. [Voir Informations légales.](https://www.e-periodica.ch/digbib/about3?lang=fr)

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. [See Legal notice.](https://www.e-periodica.ch/digbib/about3?lang=en)

Download PDF: 07.10.2024

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

immersions. Given $v \in V'$, we need to show there exists $x \in V'$ such that (x, v) and (v, x) are in Z'. This is true if $v \in V$ by the property of Z. If $v \in V_s$, then $v = a_s$ for some $a \in V$. We leave it to the reader to show that $(x, a_s) \in Z_1$ and $(a_s, x) \in Z_2$ for generic x in V. This completes the proof of the lemma.

The above lemma allows us to replace V by V' , hence to expand V whenever there exists a point s in V such that vs is not defined for all $v \in V$, and we can expand V' if there exists a point $s' \in V'$ such that $v's'$ is not defined for all $v' \in V'$. Denote the result of finitely many such expansions also by V', and let $U \subset V \times V \times V'$ be the closure of Γ . By Lemma 4.3 applied to V', the projection $p_{12}: U \to V \times V$ is an open immersion. Its image is the set of points (a, b) such that $m: V \times V \rightarrow V'$ is defined at (a, b) . If $V \times s \not\subset p_{12}(U)$ for some point s in V, then replacing V' by $V' \cup V'_{s}$ increases both V' and $p_{12}(U)$. Using noetherian induction on open subschemes of $V \times V$, we may assume that after finitely many expansions, $V \times s \subset p_{12}(U)$ for all points $s \in V$. Then we have $p_{12}(U) = V \times V$.

PROPOSITION 4.5. Let V, V', and U be as above. If $p_{12}(U) = V \times V$, then the operation $m: V' \times V' \rightarrow V'$ is everywhere defined on V' and makes V' an algebraic group.

Proof. Take (a', b') in $V' \times V'$. Choose a point x so that $a'x$ and $x^{-1}b'$ are both defined and lie in V. Then we can define $m(a', b') = (a'x)(x^{-1}b')$. Similarly one can define $a^{(-1}b'$ and $b'a^{(-)}$. In this way we extend m, Φ , Ψ , Φ^{-1} and Ψ^{-1} to $V' \times V'$. The verification of the group axioms is routine and is omitted.

5. Fundamental properties of generalized jacobians

Keep the notations in §3. We have proved that there is ^a birational group structure on $(X - S)^{(\pi)}$. The algebraic group associated to this birational group is called the *generalized jacobian* of X_m and is denoted by J_m . It is a commutative algebraic group.

Let D_0 be a divisor on X prime to S of degree 0. By Lemma 3.3, the set

$$
V_{D_0} = \{ D \in (X - S)^{(\pi)} \mid l_m(D + D_0) = 1, \quad l(D + D_0 - m) = 0 \}
$$

is a non-empty open subset of $(X - S)^{(\pi)}$. We have the following

LEMMA 5.1. There exists a unique morphism of varieties

$$
\alpha_{D_0}\colon V_{D_0}\to (X-S)^{(\pi)}
$$

such that $\alpha_{D_0}(D)$ is the unique effective divisor m-equivalent to $D + D_0$ for any $D \in V_{D_0}$. Moreover α_{D_0} is birational.

Proof. Consider the Cartesian squares

$$
X_{\mathfrak{m}} \times V_{D_0} \quad \subset \quad X_{\mathfrak{m}} \times (X - S)^{(\pi)} \xrightarrow{p} \quad X_{\mathfrak{m}}
$$
\n
$$
q \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow
$$
\n
$$
V_{D_0} \qquad \subset \quad (X - S)^{(\pi)} \qquad \longrightarrow \text{spec}(k) \ .
$$

Let L be the restriction to $X_m \times V_{D_0}$ of the invertible sheaf on $X_m \times (X - S)^{(\pi)}$ that corresponds to the divisor $\mathcal{D} + p^*(D_0)$, where \mathcal{D} is the universal relative effective Cartier divisor. By Theorem 1.1(c) the sheaf $q_*\mathcal{L}$ is invertible. The canonical map $q^*q_*\mathcal{L} \rightarrow \mathcal{L}$ induces a homorphism $s: \mathcal{O}_{X_{m} \times V_{D_{0}}} \to \mathcal{L} \otimes (q^{*}q_{*}\mathcal{L})^{-1}$. Using Remark 2.1, one can show that the pair $(L \otimes (q^*q_*L)^{-1}, s)$ induces a relative effective Cartier divisor on $(X_{m} \times V_{D_0})/V_{D_0}$. Applying Proposition 3.1 to this divisor, one gets the existence of α_{D_0} . For any $D \in V_{D_0}$, we have $l_{\mathfrak{m}}(D + D_0) = 1$ and $l(D + D_0 - \mathfrak{m}) = 0$. So there is one and only one effective divisor m-equivalent to $D + D_0$, and this effective divisor is simply $\alpha_{D_0}(D)$.

We claim that
$$
\alpha_{-D_0}
$$
 is the birational inverse of α_{D_0} . We have
\n
$$
\alpha_{D_0}^{-1}(V_{-D_0}) = \{D \mid D \in V_{D_0}, \ \alpha_{D_0}(D) \in V_{-D_0}\}
$$
\n
$$
= \{D \mid D \in V_{D_0}, \ l_m(\alpha_{D_0}(D) - D_0) = 1, \ l(\alpha_{D_0}(D) - D_0 - m) = 0\}
$$
\n
$$
= V_{D_0} \cap \{D \mid l_m(D) = 1, \ l(D - m) = 0\}
$$
\n
$$
= V_{D_0} \cap V_0.
$$

By Lemma 3.3 both V_{D_0} and V_0 are open and non-empty. Since $(X - S)^{(\pi)}$ is irreducible, the set $V_{D_0} \cap V_0$ is also open and non-empty, that is, $\alpha_{D_0}^{-1}(V_{-D_0})$ is open and non-empty. One can easily show that on this open set $\alpha_{-D_0} \circ \alpha_{D_0}$ is defined and is the identity. Similarly one can show $\alpha_{-D_0}^{-1}(V_{D_0})$ is open and non-empty, and on it $\alpha_{D_0} \circ \alpha_{-D_0}$ is defined and is the identity. So α_{D_0} is birational.

We have a birational map $\varphi: (X - S)^{(\pi)} \to J_{\mathfrak{m}}$ by the construction of $J_{\mathfrak{m}}$. Let dom(φ) be an open subset of $(X - S)^{(\pi)}$ such that $\varphi|_{dom(\varphi)}$ is an open immersion, Moreover we may assume that for any $a \in \text{dom}(\varphi)$, both (a, x) and (x, a) lie in the set U defined in Lemma 3.4(a) if x is generic, i.e., lies in some open set. In particular, $m(a, x)$ and $m(x, a)$ are defined for generic x.

Let

 $U_{D_0} = V_{D_0} \cap \text{dom}(\varphi) \cap \alpha_{D_0}^{-1}(\text{dom}(\varphi)).$

Note that U_{D_0} is open and non-empty since $(X - S)^{(\pi)}$ is irreducible and α_{D_0} is birational. Moreover $\varphi(D)$ and $\varphi(\alpha_{D_0}(D))$ are defined for any $D \in U_{D_0}$. Define

$$
\theta_0(D_0)=\varphi(\alpha_{D_0}(D))-\varphi(D).
$$

LEMMA 5.2.
$$
\theta_0(D_0)
$$
 does not depend on the choice of D.

Proof. Let D_1 and D_2 be two elements in U_{D_0} . We need to show that $\varphi(\alpha_{D_0}(D_1)) - \varphi(D_1) = \varphi(\alpha_{D_0}(D_2)) - \varphi(D_2).$

Choose $D_3 \in U_{D_0}$ so that $(\alpha_{D_0}(D_1), D_3)$, $(D_1, \alpha_{D_0}(D_3))$, $(\alpha_{D_0}(D_2), D_3)$ and $(D_2, \alpha_{D_0}(D_3))$ all lie in the set U defined in Lemma 3.4(a). Such a D_3 exists. Indeed, if $(\alpha_{D_0}(D_1),x)$, (D_1,x) , $(\alpha_{D_0}(D_2),x)$ and (D_2,x) all lie in U for x lying in an open set O, then we may choose D_3 to be any element in $U_{D_0} \cap O \cap \alpha_{D_0}^{-1}(O)$. Note that $U_{D_0} \cap O \cap \alpha_{D_0}^{-1}(O)$ is not empty since α_{D_0} is birational and $(X - S)^{(\pi)}$ is irreducible.

We have

$$
\varphi(\alpha_{D_0}(D_1)) + \varphi(D_3) = \varphi(m(\alpha_{D_0}(D_1), D_3)),
$$

$$
\varphi(D_1) + \varphi(\alpha_{D_0}(D_3)) = \varphi(m(D_1, \alpha_{D_0}(D_3)).
$$

Since

$$
m(\alpha_{D_0}(D_1), D_3) \sim_m \alpha_{D_0}(D_1) + D_3 - \pi P_0 \sim_m D_1 + D_0 + D_3 - \pi P_0,
$$

$$
m(D_1, \alpha_{D_0}(D_3)) \sim_m D_1 + \alpha_{D_0}(D_3) - \pi P_0 \sim_m D_1 + D_3 + D_0 - \pi P_0,
$$

we have

$$
m(\alpha_{D_0}(D_1), D_3) = m(D_1, \alpha_{D_0}(D_3))\,.
$$

Hence

$$
\varphi(\alpha_{D_0}(D_1))+\varphi(D_3)=\varphi(D_1)+\varphi(\alpha_{D_0}(D_3)),
$$

that is,

$$
\varphi(\alpha_{D_0}(D_1))-\varphi(D_1)=\varphi(\alpha_{D_0}(D_3))-\varphi(D_3).
$$

Similarly we have

$$
\varphi(\alpha_{D_0}(D_2))-\varphi(D_2)=\varphi(\alpha_{D_0}(D_3))-\varphi(D_3).
$$

Therefore

$$
\varphi(\alpha_{D_0}(D_1)) - \varphi(D_1) = \varphi(\alpha_{D_0}(D_2)) - \varphi(D_2).
$$

This proves the lemma.

Thus we have a well-defined map θ_0 : Div⁽⁰⁾ \rightarrow J_m from the set of divisors of degree 0 on X prime to S to J_m .

LEMMA 5.3. θ_0 is a homomorphism.

Proof. Let $D_0, E_0 \in Div^{(0)}$ and let $F_0 = D_0 + E_0$. Choose $D \in U_{D_0}$, $E \in U_{E_0}$ and $F \in U_{F_0}$ so that

$$
(\alpha_{D_0}(D), \alpha_{E_0}(E)), (D, E), (m(\alpha_{D_0}(D), \alpha_{E_0}(E)), F)
$$
 and $(m(D, E), \alpha_{F_0}(F))$

all lie in the set U defined in Lemma 3.4(a). We have

$$
\alpha_{D_0}(D) + \alpha_{E_0}(E) + F \sim_{\mathfrak{m}} D + D_0 + E + E_0 + F = D + E + F + D_0 + E_0,
$$

$$
D + E + \alpha_{F_0}(F) \sim_{\mathfrak{m}} D + E + F + F_0 = D + E + F + D_0 + E_0.
$$

So

$$
m(m(\alpha_{D_0}(D), \alpha_{E_0}(E)), F) = m(m(D, E), \alpha_{F_0}(F)).
$$

Hence

$$
\varphi(m(m(\alpha_{D_0}(D), \alpha_{E_0}(E)), F)) = \varphi(m(m(D, E), \alpha_{F_0}(F)).
$$

Therefore

Iter-..--

$$
\varphi(\alpha_{D_0}(D)) + \varphi(\alpha_{E_0}(E)) + \varphi(F) = \varphi(D) + \varphi(E) + \varphi(\alpha_{F_0}(F)),
$$

or equivalently,

$$
(\varphi(\alpha_{D_0}(D))-\varphi(D))+(\varphi(\alpha_{E_0}(E))-\varphi(E))=\varphi(\alpha_{F_0}(F))-\varphi(F).
$$

This last equality is exactly

$$
\theta_0(D_0) + \theta_0(E_0) = \theta_0(D_0 + E_0).
$$

So θ_0 is a homomorphism.

We define $\theta: Div \to J_m$ from the group of divisors on X prime to S to J_{m} by

$$
\theta(D) = \theta_0(D - \deg(D)P_0).
$$

Obviously θ is a homomorphism.

PROPOSITION 5.4. The homomorphism θ is surjective and ker(θ) consists of divisors m-equivalent to integral multiples of P_0 .

Proof. Assume $\sum_{i=1}^{\pi} P_i$ is in dom(φ). We have

$$
\theta\bigl(\sum_{i=1}^{\pi}P_i\bigr)=\theta_0\bigl(\sum_{i=1}^{\pi}P_i-\pi P_0\bigr)=\varphi(\alpha_{D_0}(D))-\varphi(D),
$$

where $D_0 = \sum_{i=1}^{\pi} P_i - \pi P_0$ and $D \in U_{D_0}$. We may choose D so that $m(\sum_{i=1}^{\pi} P_i, D)$ is defined and is the unique effective divisor m-equivalent to $\sum_{i=1}^{\pi} P_i + D - \pi P_0$. Since $\alpha_{D_0}(D)$ is the unique effective divisor mequivalent to $D + D_0 = D + \sum_{i=1}^{\pi} P_i - \pi P_0$, we have $m(\sum_{i=1}^{\pi} P_i, D) = \alpha_{D_0}(D)$. Hence $\varphi(m(\sum_{i=1}^{\pi} P_i, D)) = \varphi(\alpha_{D_0}(D))$. So $\varphi(\sum_{i=1}^{\pi} P_i) + \varphi(D) = \varphi(\alpha_{D_0}(D))$. Therefore $\varphi(\alpha_{D_0}(D)) - \varphi(D) = \varphi(\sum_{i=1}^{\pi} P_i)$, that is,

$$
\theta\big(\sum_{i=1}^{\pi} P_i\big) = \varphi\big(\sum_{i=1}^{\pi} P_i\big) \, .
$$

This is true whenever $\sum_{i=1}^{\pi} P_i$ is in dom(φ).

Since $\varphi|_{dom(\varphi)}$ is an open immersion, $\varphi dom(\varphi)$ is an open subset of J_m . The image of θ contains this open subset. But J_m is generated by any open subset. So we must have $\text{Im}(\theta) = J_{m}$ and θ is surjective.

Assume $E \in \text{ker}(\theta)$. Then $\theta_0(E - \text{deg}(E)P_0) = 0$. Put $E_0 = E - \text{deg}(E)P_0$. Then for any $F \in U_{E_0}$, we have

$$
\varphi(\alpha_{E_0}(F)) - \varphi(F) = \theta_0(E - \deg(E)P_0) = 0.
$$

Hence $\varphi(\alpha_{E_0}(F)) = \varphi(F)$. But φ is an open immersion on dom(φ). So we have $\alpha_{E_0}(F) = F$. Since $\alpha_{E_0}(F) \sim_m F + E_0$, we have $F \sim_m F + E_0$. Hence $E_0 \sim_m 0$, that is, $E \sim_m \deg(E)P_0$. So E is m-equivalent to an integral multiple of P_0 .

Conversely assume E is m-equivalent to an integral multiple of P_0 and let us prove that $\theta(E) = 0$. Again let $E_0 = E - \deg(E)P_0$. Then $E_0 \sim_{\mathfrak{m}} 0$. Choose $F \in U_{E_0} \cap U_0$, where U_0 is the set U_{D_0} defined before by taking $D_0 = 0$. We have

$$
\theta(E) = \theta_0(E_0) = \varphi(\alpha_{E_0}(F)) - \varphi(F),
$$

$$
\theta(0) = \varphi(\alpha_0(F)) - \varphi(F).
$$

Note that $F + E_0 \sim_m F$ since $E_0 \sim_m 0$. But $\alpha_{E_0}(F)$ is the unique effective divisor m-equivalent to $F + E_0$, and $\alpha_0(F)$ is the unique effective divisor mequivalent to F. So we must have $\alpha_{E_0}(F) = \alpha_0(F)$. Therefore $\theta(E) = \theta(0) = 0$.

PROPOSITION 5.5. The map $\theta: X - S \to J_{\mathfrak{m}}$ is a morphism of algebraic varieties.

Proof. Let $P \in X - S$ and let $D_0 = P - P_0$. Fix a $D \in U_{D_0}$. Consider the set $W_1 = \{R \in X - S \mid l_m(D + R - P_0) = 1\}$. By the Riemann-Roch theorem, for any R in $X - S$, we have $l_m(D + R - P_0) \geq 1$. Applying Theorem 1.1 (b) to the projection $q: X_m \times (X - S) \rightarrow X - S$ and the invertible sheaf corresponding to the divisor $D + p^*(D - P_0)$, where D is the universal relative effective Cartier divisor on $X_m \times (X - S)$ and $p: X_m \times (X - S) \rightarrow X_m$ is another projection, we see that W_1 is open in $X - S$. Similarly one can show $W_2 = \{ R \in X - S \mid l(D + R - P_0 - m) = 0 \}$ is also open in $X - S$. So $W = W_1 \cap W_2 = \{R \in X - S \mid l_{\mathfrak{m}}(D + R - P_0) = 1, \quad l(D + R - P_0 - \mathfrak{m}) = 0\}$ is open in $X - S$. It is non-empty since $P \in W$ by our choice of D. By Proposition 3.1 we have a morphism $\gamma: W \to (X - S)^{(\pi)}$ of algebraic varieties such that for every $R \in W$, $\gamma(R)$ is the unique effective divisor that is mequivalent to $D + R - P_0$. Since $\alpha_{R-P_0}(D)$ is the unique effective divisor that is m-equivalent to $D + R - P_0$, we have $\gamma(R) = \alpha_{R-P_0}(D)$. Replacing W by an open subset containing P, we may assume $\text{Im}(\gamma) \subset \text{dom}(\varphi)$. Note that for any $R \in W$, we have $D \in U_{R-P_0}$, and

$$
\theta(R) = \theta_0(R - P_0) = \varphi((\alpha_{R - P_0}(D)) - \varphi(D) = \varphi(\gamma(R)) - \varphi(D),
$$

that is, $\theta(R) = \varphi(\gamma(R)) - \varphi(D)$. So $\theta = \varphi \circ \gamma - \varphi(D)$ on W. This proves θ is ^a morphism of algebraic varieties in an open subset containing P. Since $P \in X - S$ is arbitrary, θ is a morphism of algebraic varieties.

The morphism $\theta: X - S \rightarrow J_{m}$ induces a morphism of algebraic varieties $\theta\colon (X-S)^{(\pi)}\to J_{\mathfrak{m}}.$

PROPOSITION 5.6. $\theta: (X - S)^{(\pi)} \to J_{\mathfrak{m}}$ coincides with the birational map $\varphi \colon (X-S)^{(\pi)} \to J_{\mathfrak{m}}$. In particular φ is everywhere defined.

Proof. Let $\sum_{i=1}^{\pi} P_i \in \text{dom}(\varphi)$. By the proof of Proposition 5.4, we have $\varphi(\sum_{i=1}^{\pi} P_i) = \theta(\sum_{i=1}^{\pi} P_i)$. So $\varphi = \theta$ as rational maps.

Thus there is no difference between φ and θ . From now on we denote the map φ also by θ . We summarize what we have so far in the following theorem.

THEOREM 1. There is a morphism of algebraic varieties $\theta: X - S \to J_{\mathfrak{m}}$ satisfying the following properties :

(a) The extension of θ to the group of divisors on X prime to S induces, by passing to quotient, an isomorphism between the group C_m^0 of classes of divisors of degree zero with respect to m -equivalence and the group J_m .

(b) The extension of θ to $(X - S)^{(\pi)}$ induces a birational map from $X^{(\pi)}$ to $J_{\mathfrak{m}}$.

The following theorem characterizes J_m by a universal property:

THEOREM 2. Let $f: X \to G$ be a rational map from X to a commutative algebraic group G and assume m is a modulus for f. Then there is a unique homomorphism $F: J_{\mathfrak{m}} \to G$ of algebraic groups such that $f = F \circ \theta + f(P_0)$.

Proof. Replacing f by $f - f(P_0)$, we may assume $f(P_0) = 0$. Since m is a modulus for f, the extension of f to the group of divisors of X prime to S induces a homomorphism $C_m^0 \to G$ by passing to quotient. By Theorem 1(a) we have $J_m \cong C_m^0$ as groups. So we have a homomorphism of groups $F: J_m \to G$ such that $f = F\theta$. It remains to prove F is a morphism of algebraic varieties. By Theorem ¹ (b) we have ^a birational map $\theta: (X-S)^{(\pi)} \to J_{\mathfrak{m}}$. Denote the extension of f to $(X-S)^{(\pi)}$ by f'. Then $F\theta = f'$. Since θ is birational, it induces an isomorphism between an open subvariety of $(X - S)^{(\pi)}$ and an open subvariety of J_m . Moreover f' is a morphism of algebraic varieties. Hence F is a morphism of algebraic varieties when restricted to some open subset of J_m . The whole J_m can be obtained from this open subset by translation. So F is a morphism of algebraic varieties.

6. Generalized jacobians and Picard schemes

In this section we prove J_m is the Picard scheme of X_m . Let T be a k -scheme. Consider the Cartesian square

We have $q_*\mathcal{O}_{X_m \times T} = \mathcal{O}_T$ by [EGA] III, §1.4.15, The scheme of X_m .

The spec(k).

1.4.15, the fact $H^0(X_m, \mathcal{O}_{X_m}) = k$,

The morphism *a* has a section and the fact that $T \rightarrow spec(k)$ is flat. The morphism q has a section $s: T \to X_{\mathfrak{m}} \times T, t \mapsto (P_0, t).$