4. NONEXISTENCE OF FREE SUBGROUPS

Objekttyp: Chapter

Zeitschrift: L'Enseignement Mathématique

Band (Jahr): 45 (1999)
Heft 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

PDF erstellt am:

25.07.2024

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Proof. Let φ be an automorphism of X. If φ fixes a point p of Λ_{i}^{*}, then p can be chosen as a vertex or a midpoint of an edge. If p is a vertex, then the preimage X^{\prime} of p under r_{i} is a closed and convex subcomplex of X. If p is the midpoint of an edge, X^{\prime} is a hyperspace and as a union of walls, carries a natural cubical structure. In either case, X^{\prime} is a closed, convex and φ-invariant subset of X, and therefore φ is semisimple if and only if the restriction $\left.\varphi\right|_{X^{\prime}}$ is semisimple. Since moreover X^{\prime} is a simply connected folded cubical chamber complex of nonpositive curvature and of dimension lower than X, we can assume by induction on $\operatorname{dim} X$ that the action of φ on all the trees Λ_{i}^{*} is axial.

Let a_{i} be an axis of φ in Λ_{i}^{*} (unique up to parameter). Let $X_{i}=r_{i}^{-1}\left(a_{i}\right)$. Since r_{i} is surjective, X_{i} is non-empty. Furthermore, X_{i} is a closed, convex and φ-invariant subcomplex of X.

Set $Y_{1}:=X_{1}$. The image of Y_{1} under r_{2} is path connected and φ-invariant, hence contains a_{2}. Let $Y_{2}=Y_{1} \cap X_{2}$. Then Y_{2} is non-empty, closed, convex and φ-invariant. By induction we get that $Y=X_{1} \cap \ldots \cap X_{n}$ is a non-empty, closed, convex and φ-invariant subcomplex of X. It is then sufficient to prove semisimplicity for the restriction $\left.\varphi\right|_{Y}$. Note that $Y=r^{-1}(F)$, where $F \cong \mathbf{R}^{n}$ is the flat

$$
F=\left\{\left(a_{1}\left(t_{1}\right), \ldots, a_{n}\left(t_{n}\right)\right) \mid t_{i} \in \mathbf{R}\right\}
$$

in the product of trees. Now φ operates as a translation on F, hence the displacement of φ on F is constant, say $=\delta$. Since r is injective, we can consider Y as a closed subcomplex of F, namely a union of chambers. The metric on Y is the induced path metric. It follows easily that there are only finitely many possible values for the distance in Y from a point x to its image φx, if the location of x in its chamber is given.

4. NONEXISTENCE OF FREE SUBGROUPS

In this section we discuss the proof of Theorem 2 of the introduction. We assume throughout this section that X is a simply connected folded cubical chamber complex of nonpositive curvature and that $\Gamma \subset \operatorname{Aut}(X)$ is a group that preserves the folding of X (this can be always assumed by passing to a finite index normal subgroup if necessary) and does not contain a free nonabelian subgroup acting freely on X. By equivariance of the maps r_{i}, the same holds for the actions of Γ on the trees Λ_{i}^{*}. Up to a subgroup of index two, there are three possibilities for each particular i [PV]:
(0) Γ fixes a point of Λ_{i}^{*};
(1) Γ fixes no point of Λ_{i}^{*}, but precisely one end of Λ_{i}^{*};
(2) Γ fixes no point of Λ_{i}^{*}, but precisely two ends of Λ_{i}^{*}.

Thus by passing to a subgroup of Γ of index at most 2^{n}, we can assume that the above three alternatives hold for all i. Corresponding to the alternative, we say that i is an index of type 0,1 or 2 respectively.

We first construct a homomorphism $h=\left(h_{1}, \ldots, h_{n}\right): \Gamma \rightarrow \mathbf{Z}^{n}$ as claimed. If Γ fixes a point of Λ_{i}^{*}, we define h_{i} to be the trivial homomorphism. If Γ does not fix a point of Λ_{i}^{*}, we let ω_{i} be the end or one of the two ends of Λ_{i}^{*} fixed by Γ. The Busemann function $b_{i}: \Lambda_{i}^{*} \rightarrow \mathbf{R}$ at ω_{i} is well defined up to an additive constant (see [Ba], Section 1 of Chapter II). Since Γ fixes ω_{i},

$$
h_{i}(\phi):=b_{i}(\phi p)-b_{i}(p), \quad p \in \Lambda_{i}^{*},
$$

is a well defined homomorphism $h_{i}: \Gamma \rightarrow \mathbf{Z}$, called the Busemann homomorphism. Note that h_{i} is integer valued since Λ_{i}^{*} is a simplicial tree and Γ acts by automorphisms. This completes the definition of $h=\left(h_{1}, \ldots, h_{n}\right)$. We set

$$
\Delta_{i}=\operatorname{ker} h_{i} \quad \text { and } \quad \Delta=\bigcap \Delta_{i}=\operatorname{ker} h .
$$

PRoposition 4.1. Δ consists precisely of the elliptic elements of Γ.

Proof. If the action of Γ on Λ_{i}^{*} has a fixed point, then any $\phi \in \Gamma$ is elliptic on Λ_{i}^{*} and $\Delta_{i}=\Gamma$. If Γ does not have a fixed point in Λ_{i}^{*}, but fixes a point $\xi_{i} \in \Lambda_{i}^{*}(\infty)$ and $\phi \in \Gamma$ is axial on Λ_{i}^{*}, then ξ_{i} is an end point of the axis of ϕ. Then $h_{i}(\phi) \neq 0$. Hence by Proposition 3.5, any $\phi \in \Delta$ is elliptic on X. Conversely, if $\phi \in \Gamma$ is elliptic on X, then $\phi \in \Delta$.

For the proof of the other assertions of Theorem 2 we need some more preparations.

LEmmA 4.2. Let Λ be a simplicial tree on which Γ acts by automorphisms. Suppose Δ fixes a point of Λ. Then either Γ fixes a point of Λ or exactly two points in $\Lambda(\infty)$.

Proof. Since Δ is a normal subgroup of Γ, the set Φ of fixed points of Δ is Γ-invariant. Now Φ is a subtree of Λ, hence we can assume $\Phi=\Lambda$. Then the quotient action by Γ / Δ on Λ is well defined.

Suppose that Γ / Δ contains an element ϕ which is axial on Λ. Since Γ / Δ is abelian, it leaves the unique axis of ϕ invariant and fixes the endpoints of the axis.

Suppose now that all elements of Γ / Δ are elliptic on Λ. Let $\phi_{1}, \ldots, \phi_{k}$ be a system of generators. The set of fixed points of ϕ_{1} is a Γ / Δ-invariant subtree. Replacing Λ by this subtree, we can assume that $\phi_{1}=\mathrm{id}_{\Lambda}$. The quotient of Γ / Δ by the subgroup generated by ϕ_{1} is abelian and has a system of $k-1$ generators. Induction on k shows that Γ has a fixed point.

If i is an index of type 0 and $p \in \Lambda_{i}^{*}$ a fixed point, then $X^{\prime}:=r_{i}^{-1}(p) \subset X$ is closed, convex and Γ-invariant. In particular, $X^{\prime}(\infty) \subset X(\infty)$ is Γ-invariant. Although X^{\prime} is not a subcomplex if p is not a vertex, it is parallel to the walls with label i in the chambers it intersects. Hence we obtain a natural cubical structure on X^{\prime} with a folding onto an $(n-1)$-cube, and Γ preserves this cubical structure and folding. Hence by passing to such subspaces if necessary, we can assume that no indices of type 0 occur.

Let i be an index of type 2 . Let $\alpha_{i}, \omega_{i} \in \Lambda_{i}^{*}(\infty)$ be the fixed points of Γ and σ_{i} the unit speed geodesic from α_{i} to ω_{i}. Then σ_{i} is Γ-invariant and $\Delta_{i}=\operatorname{Stab}\left(\sigma_{i}(t)\right)$ for all $t \in \mathbf{R}$. Hence $X^{\prime}=r_{i}^{-1}\left(\mathrm{im} \sigma_{i}\right)$ is a closed, convex and Γ-invariant subcomplex of X. Hence by passing to such subspaces if necessary, we can assume that $\Lambda_{i}^{*}=\operatorname{im} \sigma_{i} \cong \mathbf{R}$ for all indices i of type 2 .

Proposition 4.3. If there are no indices of type 1, then there is a Γ invariant convex subset $E \subset X$ isometric to a Euclidean space of dimension $k \in\{0, \ldots, n\}$ and an exact sequence

$$
0 \rightarrow \Delta \rightarrow \Gamma \rightarrow \mathbf{Z}^{k} \rightarrow 0
$$

such that Δ fixes E pointwise and such that the quotient $\Gamma / \Delta \cong \mathbf{Z}^{k}$ acts on E as a cocompact lattice of translations.

Proof. After reductions as above we can assume that all indices are of type 2 , that $\Lambda_{i}^{*} \cong \mathbf{R}$ for all i and that Δ fixes each point of $\Pi \Lambda_{i}^{*}$. Since r is an injection, Δ fixes each point of X.

The image im h of the homomorphism h is a subgroup of the group \mathbf{Z}^{n}, hence it is isomorphic to \mathbf{Z}^{k} for some $k \leq n$. Thus we may identify the quotient group Γ / Δ with \mathbf{Z}^{k}. Consider the quotient action of $\mathbf{Z}^{k}=\Gamma / \Delta$ on X, which is well defined since Δ acts trivially on X. This action is free and the elements are semisimple by Proposition 3.6. Applying the Flat Torus Theorem, see $[\mathrm{CE}]$ and $[\mathrm{BH}]$, we get that there exists a \mathbf{Z}^{k}-invariant convex subspace $E \subset X$, isometric to k-dimensional Euclidean space, such that \mathbf{Z}^{k} acts on it as a cocompact lattice of translations.

We now discuss the more difficult case that indices of type 1 occur. As explained above, we can assume that no indices of type 0 occur and that $\Lambda_{i}^{*} \cong \mathbf{R}$ for all indices of type 2 .

Choose a vertex $x_{0} \in X$ as an origin. For indices of type 2 choose the parameter on the above geodesics σ_{i} such that $\sigma_{i}(0)=r_{i}\left(x_{0}\right)$. For indices of type 1 we denote by $\omega_{i} \in \Lambda_{i}^{*}(\infty)$ the corresponding fixed point. For these indices, we let $\sigma_{i}:[0, \infty) \rightarrow \Lambda_{i}^{*}$ be a unit speed geodesic ray with $\sigma_{i}(0)=r_{i}\left(x_{0}\right)$ and $\sigma_{i}(\infty)=\omega_{i}$.

We set $F=\operatorname{im} \sigma_{1} \times \cdots \times \operatorname{im} \sigma_{n}$. Note that F is a closed and convex subspace of $\prod \Lambda_{i}^{*}$. We also define a geodesic ray

$$
\sigma:[0, \infty) \rightarrow F \quad \text { by } \quad \sigma(t)=\left(\sigma_{1}(t), \ldots, \sigma_{n}(t)\right)
$$

By construction, $\sigma(0)=r\left(x_{0}\right)$.

LEMMA 4.4. $\operatorname{Stab}\left(\sigma_{i}(t)\right) \rightarrow \Delta_{i}$ and $\operatorname{Stab}(\sigma(t)) \rightarrow \Delta$ as $t \rightarrow \infty$, where the limit of groups is understood as the union of increasing family.

Proof. Let $\phi \in \Delta_{i}$. Then ϕ fixes $\omega_{i}=\sigma_{i}(\infty)$. Therefore $\phi \circ \sigma_{i}$ is asymptotic to σ_{i}. Now Λ_{i}^{*} is a tree, hence $\phi \circ \sigma_{i}(t)=\sigma_{i}(t+c)$ for all t sufficiently large, where c is some constant independent of t. Since $\phi \in \Delta_{i}$, $c=0$ and therefore $\phi \in \operatorname{Stab}\left(\sigma_{i}(t)\right)$ for all t sufficiently large.

Corollary 4.5. There exists a sequence $\left(x_{m}\right)$ in X such that $\operatorname{Stab}\left(x_{m}\right) \rightarrow \Delta$.
Proof. We observe that $\operatorname{Stab}(x) \subset \Delta$ for all $x \in X$. Now the assertion follows immediately from Proposition 3.5 and Lemma 4.4.

LEMMA 4.6. If the group Γ fixes precisely one point $\omega_{i} \in \Lambda_{i}^{*}(\infty)$, then $\Delta \cap \operatorname{Stab}\left(\sigma_{i}(t)\right)$ has infinitely many jumps as $t \rightarrow \infty$.

Proof. Let $\phi \in \Delta \subset \Delta_{i}$. By Lemma 4.4 there is $t_{\phi} \geq 0$ such that $\phi \in \operatorname{Stab}\left(\sigma_{i}(t)\right)$ for all $t \geq t_{\phi}$. Hence if $\Delta \cap \operatorname{Stab}\left(\sigma_{i}(t)\right)=\Delta \cap \operatorname{Stab}\left(\sigma_{i}\left(t^{\prime}\right)\right)$ for all t, t^{\prime} sufficiently large, then $\Delta \subset \operatorname{Stab}\left(\sigma_{i}(t)\right)$ for all t sufficiently large. By Lemma 4.2, Γ either fixes a point of Λ_{i}^{*}, which is excluded by our reductions above, or Γ fixes exactly two points of $\Lambda_{i}^{*}(\infty)$, which is in contradiction to the assumption.

LEMmA 4.7. Let $\left(x_{m}\right)$ be a sequence in X such that $\operatorname{Stab}\left(x_{m}\right) \rightarrow \Delta$ and $\gamma_{m}:\left[0, s_{m}\right] \rightarrow X$ be the unit speed geodesic from x_{0} to x_{m}, where $s_{m}=d\left(x_{0}, x_{m}\right)$. Then given a constant $t_{0}>0$, there exists m_{0} such that $s_{m} \geq t_{0}$ and $r \circ \gamma_{m}\left(\left[0, t_{0}\right]\right) \in F$ for all $m \geq m_{0}$.

Proof. For those i for which Γ fixes exactly one point $\omega_{i} \in \Lambda_{i}^{*}(\infty)$ we choose $\phi_{i} \in \Delta$ such that $\phi_{i} \notin \operatorname{Stab}\left(\sigma_{i}(t)\right)$ for $t \leq t_{0}$, see Lemma 4.6. By assumption, there is m_{0} such that $\phi_{i} \in \operatorname{Stab}\left(x_{m}\right)$ for all $m \geq m_{0}$ and all such i. Now $r_{i} \circ \gamma_{m}$ is a monotonic curve in Λ_{i}^{*} from $\sigma_{i}(0)=r_{i}\left(x_{0}\right)$ to $r_{i}\left(x_{m}\right)$. By equivariance of $r_{i}, \phi_{i} \in \operatorname{Stab}\left(r_{i}\left(x_{m}\right)\right)$ for all $m \geq m_{0}$. On the other hand, $r_{i} \circ \sigma$ has speed ≤ 1, hence by the choice of $t_{0}, s_{m} \geq t_{0}$ and $r_{i}\left(\gamma_{m}(t)\right) \in \sigma_{i}\left(\left[0, t_{0}\right]\right)$ for $0 \leq t \leq t_{0}$.

The claim follows since the image of r_{i} is σ_{i} for those i for which Γ fixes exactly two ends of Λ_{i}^{*}.

Lemma 4.8. Given $\phi \in \Gamma$, there is a constant $c=c_{\phi}$ such that $d(\phi(p), p) \leq c$ for all $p \in F$.

Proof. We show that $d_{i}(\phi(p), p) \leq c_{i}$ for each point p in the image of σ_{i}. This is clear for those indices i for which Γ fixes exactly two ends of Λ_{i}^{*}. Consider some other index i. Then σ_{i} is defined on $[0, \infty)$.

If ϕ is elliptic on Λ_{i}^{*}, then $\phi \in \Delta_{i}$. By Lemma 4.4, there exists a constant t_{ϕ} such that ϕ fixes $\sigma_{i}(t)$ for all $t \geq t_{\phi}$. We conclude that $d_{i}(\phi(p), p) \leq 2 t_{\phi}$ for each point p in the image of σ_{i}.

We assume now that ϕ is axial on Λ_{i}^{*} and let ρ be an axis of ϕ in Λ_{i}^{*}. We parametrize ρ such that $\rho(\infty)=\omega_{i}$. Since Λ_{i}^{*} is a tree and $\sigma_{i}(\infty)=\rho(\infty)$, we can actually choose the parameter such that $\sigma_{i}(t)=\rho(t)$ for all $t \geq t_{\phi}$, where t_{ϕ} is an appropriate constant. Now $\phi(\rho(t))=\rho(t+\tau)$ for some constant τ independent of t. We conclude that $d_{i}(\phi(p), p) \leq 2 t_{\phi}+\tau$ for each point p in the image of σ_{i}.

Proposition 4.9. Suppose that indices of type 1 occur. Then
(1) Δ does not fix a point of X;
(2) Γ fixes a point in $X(\infty)$. More precisely, if $\left(x_{m}\right)$ is a sequence in X such that $\operatorname{Stab}\left(x_{m}\right) \rightarrow \Delta$, then after passing to a subsequence if necessary, $\left(x_{m}\right)$ converges to a fixed point $\xi \in X(\infty)$ of Γ.

Proof. The first assertion is an immediate consequence of Lemma 4.7. As for the proof of the second assertion, let $\left(x_{m}\right)$ be a sequence in X with $\operatorname{Stab}\left(x_{m}\right) \rightarrow \Delta$. Let $\gamma_{m}:\left[0, s_{m}\right] \rightarrow X$ be the unit speed geodesic from x_{0} to x_{m} as in Lemma 4.7. Note that $r \circ \gamma_{m}$ is a sequence of unit speed curves (with respect to the metric $d_{(2)}$, for which r restricted to any chamber of X is an isometry) in $\prod \Lambda_{i}^{*}$. For each constant $t_{0}>0, r \circ \gamma_{m}\left(\left[0, t_{0}\right]\right)$ is contained in F for all m sufficiently large. Now F is locally compact, hence a subsequence of
the sequence of curves ro γ_{m} converges locally uniformly. By Proposition 3.4, the corresponding subsequence of the sequence of unit speed geodesics γ_{m} converges locally uniformly. By definition, this means that the corresponding subsequence of $\left(x_{m}\right)$ converges to a point $\xi \in X(\infty)$.

Let $\phi \in \Gamma$ and choose $c=c_{\phi}$ as in Lemma 4.8. Let $t_{0}>0$ be given. By Lemma 4.8 we have $r \circ \gamma_{m}\left(t_{0}\right) \in F$ for all $m \geq m_{0}$. By Proposition 3.4 and Lemma 4.8, we have $d\left(\phi\left(\gamma_{m}\left(t_{0}\right)\right), \gamma_{m}\left(t_{0}\right)\right) \leq \sqrt{n} c_{\phi}$ for all such m. Now c_{ϕ} is independent of t_{0}, hence $\phi(\xi)=\xi$.

We now complete the proof of Theorem 2 of the introduction. By Proposition 4.1, $\Delta \cong \operatorname{ker} h$ consists precisely of the elliptic elements of Γ. If indices of type 1 do not occur, then Proposition 4.3 applies: If $k=0$, then $\Gamma \cong \Delta$ fixes a point of X and possibility (1) holds. If $k>0$, then possibility (2) holds. If indices of type 1 occur, then possibility (3) holds by Proposition 4.9 and Corollary 4.5. Note that $\operatorname{Stab}(x) \neq \Delta$ for any $x \in X$ in this case since Δ would have a fixed point otherwise.

5. Parallel transport in a cubical manifold and the proof of Theorem 3

Let X be a cubical manifold of dimension n. Given two chambers P and Q in X with a common face of dimension $n-1$, we define $t_{P Q}: P \rightarrow Q$ to be the translation which moves each point p of P along the unit geodesic segment starting at p and orthogonal to the common $(n-1)$-face of P to the end point in Q. The map $t_{P Q}$ is an isomorphism and isometry of P with Q. Given a gallery $\pi=\left(P_{1}, \ldots, P_{n}\right)$ in X, the parallel transport along π is the isomorphism $t_{\pi}: P_{1} \rightarrow P_{n}$ given by

$$
t_{\pi}:=t_{P_{n-1} P_{n}} \circ \cdots \circ t_{P_{2} P_{3}} \circ t_{P_{1} P_{2}} .
$$

LEMMA 5.1. Let X be a simply connected cubical manifold and assume that the number of chambers adjacent to each face of codimension 2 in X is divisible by 4. Then for any two chambers P and Q in X, the parallel transport t_{π} along a gallery π connecting P and Q is independent of π.

Proof. It is enough to show that the parallel transport along any closed gallery is the identity. Let π be such a gallery with initial and final chamber P.

