TEICHMÜLLER SPACE AND FUNDAMENTAL DOMAINS OF FUCHSIAN GROUPS

Autor(en): SCHMUTZ SCHALLER, Paul
Objekttyp: Article
Zeitschrift: L'Enseignement Mathématique

Band (Jahr): 45 (1999)
Heft 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

PDF erstellt am:
25.07.2024

Persistenter Link: https://doi.org/10.5169/seals-64444

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

TEICHMÜLLER SPACE AND FUNDAMENTAL DOMAINS OF FUCHSIAN GROUPS

by Paul Schmutz Schaller

1. INTRODUCTION

There are a number of ways to define the Teichmüller space of Riemann surfaces. In this paper I treat an approach which is less common than others. Let Γ be a Fuchsian group which uniformizes a closed Riemann surface of genus g. Then a fundamental domain for Γ is chosen in a canonical way, namely as a polygon with $4 g$ sides such that opposite sides are identified. The Teichmüller space T_{g} of closed Riemann surfaces of genus g is then constructed by varying these polygons.

This construction of T_{g} by polygons was first done by Coldewey and Zieschang in an annex in [17], see also [18]; the construction includes the proof that T_{g} is homeomorphic to $\mathbf{R}^{6 g-6}$. In [2], Buser gave a different, however indirect proof. Here, I propose a new construction and a new proof which is, in my eyes, easier and more transparent than the original one of Coldewey and Zieschang.

The main idea is the following. Let $P(g)$ be a canonical polygon of $4 g$ sides which is the fundamental domain of a Fuchsian group uniformizing a closed Riemann surfaces of genus g (the definition of $P(g)$ will include some technical subtleties, to be discussed in Section 3). Then "triangulate" $P(g)$ into $4 g-4$ triangles and one quadrilateral S. This can be done in such a way that these triangles are determined by $6 g-5$ positive real numbers (corresponding to the lengths of the sides of the triangles) with the condition that the different triangle inequalities hold. It turns out that these $6 g-5$ lengths, taken as homogeneous parameters, provide a parametrization of the Teichmüller space T_{g}. Since the set of reals for which the different triangle

Figure 1
On the left hand side: usual identification
On the right hand side: identification chosen in this paper
inequalities hold is open and convex, this also proves that T_{g} is homeomorphic to $\mathbf{R}^{6 g-6}$.

Let P be a polygon of $4 g$ sides which is the fundamental domain for a Fuchsian group Γ uniformizing a closed Riemann surface M of genus g. This means that we can write

$$
M=\mathbf{H} / \Gamma
$$

where \mathbf{H} is the upper halfplane. Usually, P is chosen such that the identification of the sides of P is that of the polygon on the left hand side in Figure 1. The construction described above would equally work for these polygons. For the following reasons I prefer to choose the identification (compare the polygon on the right hand side of Figure 1) such that opposite sides are identified. First the sides of P correspond to simple (this means with no selfintersections) closed curves in M and if opposite sides are identified, then these simple closed curves intersect transversally (which is not the case with the usual identification). Secondly, the vertices of P correspond to a (unique) point Q in M; with the usual identification, Q is completely arbitrary while with the identification chosen here, there is a natural choice for Q in the case of hyperelliptic Riemann surfaces, namely, as a Weierstrass point. See Section 6 for details.

In this paper, I only treat the case of Fuchsian groups which uniformize closed Riemann surfaces. In a straightforward way, the construction and proof could be extended to all finitely generated Fuchsian groups. Note that concerning the original construction and proof in [17] (mentioned above) the corresponding generalization has been worked out by Coldewey in his thesis [3].

The paper is structured as follows. In Section 2 the basic definitions of hyperbolic geometry and Fuchsian groups are given. Section 3 defines the
canonical polygons. Section 4 provides the necessary material from hyperbolic trigonometry, it contains also some lemmas needed later. Section 5 contains the proof of the main theorem and Section 6 gives some applications, mainly concerning hyperelliptic Riemann surfaces. More precisely, I give a new proof of a geometric characterization of hyperelliptic Riemann surfaces which first appeared in [14] (I thank very much Feng Luo who, by his comments on [14], has contributed to the idea of this new proof). I also show (and this is a new result) that the Teichmüller space T_{g} for $g=2$ can be parametrized by 7 geodesic length functions, taken as homogeneous parameters. This is the optimum parametrization of Teichmüller space by geodesic length functions which one can expect.

I spoke about the content of this paper in lectures of the Troisième Cycle Romand de Mathématiques (Lausanne 1997); I thank the participants for their comments.

2. Hyperbolic geometry and Fuchsian groups

The material of this section and of parts of the following section is standard, see for example [1], [4], [5], [6], [7], [8], [15].

DEFINITION. (i) $\mathbf{H}=\{z=(x, y) \in \mathbf{C}: y>0\}$ denotes the upper halfplane. The hyperbolic metric on \mathbf{H} is given by

$$
d z=\frac{1}{y}(d z)_{E}
$$

where $(d z)_{E}$ is the standard Euclidean metric on \mathbf{C} and y is the imaginary part of z.
(ii) Define

$$
\mathrm{SL}(2, \mathbf{R})=\left\{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]: a d-b c=1 ; a, b, c, d \in \mathbf{R}\right\}
$$

and

$$
\operatorname{PSL}(2, \mathbf{R})=\operatorname{SL}(2, \mathbf{R}) / \sim
$$

with $A \sim B$ if and only if $A= \pm B$ for $A, B \in \operatorname{SL}(2, \mathbf{R})$. Let $\gamma \in \operatorname{SL}(2, \mathbf{R})$,

$$
\gamma=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] .
$$

Then the action of γ on \mathbf{H} is defined as

$$
\gamma(z)=\frac{a z+b}{c z+d}
$$

for $z \in \mathbf{H}$.

THEOREM 1. H is a complete Riemannian manifold of constant curvature -1. The geodesics in \mathbf{H} are either Euclidean semicircles which are orthogonal to the real axis or vertical half-lines.

THEOREM 2.
(i) $\operatorname{PSL}(2, \mathbf{R})=I \operatorname{som}^{+}(\mathbf{H})$, the group of orientation preserving isometries of \mathbf{H}.
(ii) Let u and v be geodesics in \mathbf{H}, let z be on u and z^{\prime} on v. Then there exists $\gamma \in \operatorname{PSL}(2, \mathbf{R})$ with $\gamma(u)=v$ and $\gamma(z)=z^{\prime}$.

Definition. For a measurable subset $G \subset \mathbf{H}$ define the volume $\operatorname{vol}(G)$ as

$$
\operatorname{vol}(G)=\int_{G} \frac{d x d y}{y^{2}} .
$$

REMARK. The volume is invariant under $\gamma \in \operatorname{SL}(2, \mathbf{R})$.

CONVENTIONS. (i) Speaking of triangles, quadrilaterals and polygons always means that the sides are hyperbolic geodesic segments in \mathbf{H}.
(ii) Speaking of angles in triangles, quadrilaterals and polygons always means interior angles.

THEOREM 3. The volume of a polygon with angles $\alpha_{i}, i=1,2, \ldots, m$, $m \geq 3$, is

$$
(m-2) \pi-\sum_{i=1}^{m} \alpha_{i}
$$

DEFINITION. A Fuchsian group Γ is a discrete subgroup of $\operatorname{PSL}(2, \mathbf{R})$ where discrete means that the identity matrix is not a cluster point in Γ with respect to the topology induced by the standard topology of \mathbf{R}^{4}.

THEOREM 4. Let Γ be a Fuchsian group without elliptic elements (an element $\gamma \in \operatorname{PSL}(2, \mathbf{R})$ is elliptic if $|\operatorname{tr}(\gamma)|<2$ where tr is the trace). Then \mathbf{H} / Γ is a complete connected orientable Riemannian manifold of dimension 2 with a metric of constant curvature -1 .

Definition. A hyperbolic surface is a connected orientable manifold $M=\mathbf{H} / \Gamma$ as in Theorem 4 (where Γ is a Fuchsian group without elliptic elements). M is called closed if M is compact and has no boundary.

3. FUNDAMENTAL DOMAINS AND CANONICAL POLYGONS

Definition (Compare Figure 2). Let $g \geq 2$ be an integer. A canonical polygon $P(g)$ is a polygon with $4 g$ sides, denoted by $a_{1}, \ldots, a_{4 g}$, ordered clockwise, and angles α_{i} between a_{i} and $a_{i+1}, i=1, \ldots, 4 g$ (indices are taken modulo $4 g$), such that
(I) a_{i} and $a_{i+2 g}$ have the same length, $i=1, \ldots, 2 g$;
(II) the sum of the angles of $P(g)$ is 2π;
(III) $0<\alpha_{i}<\pi, i=1, \ldots, 4 g$;
(IV) $\alpha_{1}=\alpha_{2 g+1}$;
(V) $\sum_{i=1}^{g} \alpha_{2 i-1}+\sum_{i=g+1}^{2 g} \alpha_{2 i}=\sum_{i=1}^{g} \alpha_{2 i}+\sum_{i=g+1}^{2 g} \alpha_{2 i-1}$.

I shall speak of condition (I) (or (II) or (III) or (IV) or (V)) referring to this definition.

Figure 2
A canonical polygon $P(g)$ for $g=2$

REMARKS. (i) Note that, by condition (II), both sides of the equation in condition (V) equal π.
(ii) The terminology canonical polygon is not standard, one finds different objects called canonical polygons in the literature (see for example in [15]).

Definition. Let Γ be a Fuchsian group. A fundamental domain for Γ is a measurable subset D of \mathbf{H} such that
(i) $\bigcup_{\gamma \in \Gamma} \gamma(D)=\mathbf{H}$, and
(ii) $\operatorname{int}(\bar{D}) \cap \operatorname{int}(\gamma(\bar{D}))=\varnothing$ for $i d \neq \gamma \in \Gamma$. Here, $\operatorname{int}(S)$ is the interior of a set S and id is the unit matrix.

THEOREM 5 (Poincaré). A canonical polygon $P=P(g)$ is the fundamental domain of a Fuchsian group Γ and \mathbf{H} / Γ is a closed hyperbolic surface of genus g. The group Γ is generated by the $2 g$ elements γ_{i} where γ_{i} is defined by the conditions $\gamma_{i}(P) \cap \operatorname{int}(P)=\varnothing$ and $\gamma_{i}\left(a_{i}\right)=a_{i+2 g}$ if i is odd and $\gamma_{i}\left(a_{i+2 g}\right)=a_{i}$ if i is even, $i=1, \ldots, 2 g$.

Remarks. (i) For a proof see for example Poincaré [10], Siegel [15], Beardon [1], Iversen [5]. The theorem holds for much more general polygons. A general proof was first given by Maskit [9] and by de Rham [11].
(ii) Traditionally, the $2 g$ generators γ_{i} of a Fuchsian group corresponding to a closed hyperbolic surface of genus g are chosen such that the relation

$$
\prod_{i=1}^{2 g}\left[\gamma_{2 i-1}, \gamma_{2 i}\right]=i d
$$

holds where

$$
\left[\gamma_{2 i-1}, \gamma_{2 i}\right]=\gamma_{2 i-1} \gamma_{2 i}\left(\gamma_{2 i-1}\right)^{-1}\left(\gamma_{2 i}\right)^{-1}
$$

With the choice made here, the relation

$$
\gamma_{1} \gamma_{2} \ldots \gamma_{2 g}\left(\gamma_{1}\right)^{-1}\left(\gamma_{2}\right)^{-1} \ldots\left(\gamma_{2 g}\right)^{-1}=i d
$$

holds. Compare the introduction for the reasons for this choice.
(iii) Let $P(g)$ be a canonical polygon and $M=\mathbf{H} / \Gamma$ be the corresponding closed hyperbolic surface. Then the vertices of $P(g)$ correspond to a unique point Q in M and the side a_{i} (as well as $a_{2 g+i}$) of $P(g)$ corresponds to a simple closed curve u_{i} in $M, i=1, \ldots, 2 g$. These curves all intersect transversally in Q and intersect in no other point. Moreover, these curves are geodesic loops based in Q, this means that the curves may have an angle $\neq \pi$ in Q, but outside Q, they are geodesic. Further, condition (IV) and
condition (V) of canonical polygons are equivalent to the condition that u_{1} and u_{2} are simple closed geodesics in M.

4. TRIGONOMETRY

REMARK. By abuse of notation a side of a polygon will often be identified with its length.

The following theorem is standard (for a proof see for example [1], [2]).

Figure 3
The notation for a triangle

THEOREM 6. Let T be a triangle with angles α, β, γ and sides of length a, b, c with the the notation of Figure 3. Then
(i) $\frac{\sinh a}{\sin \alpha}=\frac{\sinh b}{\sin \beta}=\frac{\sinh c}{\sin \gamma}$;
(ii) $\cosh c=\cosh a \cosh b-\sinh a \sinh b \cos \gamma$;
(iii) $\cos \gamma=-\cos \alpha \cos \beta+\sin \alpha \sin \beta \cosh c$.

Lemma 7. Let T be a triangle with the notation of Figure 3. Let T^{\prime} be a triangle with sides of length $a^{\prime}, b^{\prime}, c^{\prime}$ and angles $\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}$. Let $a=a^{\prime}$ and $b=b^{\prime}$. Then

$$
c^{\prime}>c \Longleftrightarrow \gamma^{\prime}>\gamma \Longleftrightarrow \alpha^{\prime}+\beta^{\prime}<\alpha+\beta .
$$

Proof. The first equivalence is a consequence of Theorem 6 (ii).
Let Z be the centre of the side c and let u be the geodesic segment, of length $d / 2$ say, between Z and the vertex C of T. The segment u separates T into two triangles (compare Figure 4). Applying Theorem 6 (ii) to them, we obtain

$$
\cosh a=\cosh (c / 2) \cosh (d / 2)-\sinh (c / 2) \sinh (d / 2) \cos \delta
$$

Figure 4
The triangle T (thick lines) is half of this quadrilateral
and

$$
\cosh b=\cosh (c / 2) \cosh (d / 2)+\sinh (c / 2) \sinh (d / 2) \cos \delta
$$

for an angle δ. This implies

$$
\begin{equation*}
\cosh a+\cosh b=2 \cosh (c / 2) \cosh (d / 2) \tag{1}
\end{equation*}
$$

Let \widetilde{T} be the triangle with sides of length a, b, d (compare Figure 4). Then the angles of \widetilde{T} are $\alpha+\beta, \gamma_{1}, \gamma_{2}$ with $\gamma=\gamma_{1}+\gamma_{2}$. Now if the length of c grows, then the length of d diminishes (by (1)), therefore, applying the first equivalence of the lemma to the triangle \widetilde{T}, the angle $\alpha+\beta$ diminishes and the second equivalence of the lemma follows.

COROLLARY 8. Let Q and Q^{\prime} be two quadrilaterals with the same lengths of the four sides. Let $\alpha, \beta, \gamma, \delta$ and $\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}, \delta^{\prime}$ be the four angles in Q and Q^{\prime}, respectively, in the natural order (α and γ are opposite). Then

$$
\alpha+\gamma>\alpha^{\prime}+\gamma^{\prime} \Longleftrightarrow \beta+\delta<\beta^{\prime}+\delta^{\prime}
$$

Proof. Clear by Lemma 7 (draw a diagonal in Q and in Q^{\prime}).

LEMMA 9. Let T be a triangle with the notation of Figure 3. Let $T(t)$ be a triangle with sides of length ta, tb, tc and angles $\alpha_{t}, \beta_{t}, \gamma_{t}$.
(i) If $t>1$, then $\alpha_{t}<\alpha, \beta_{t}<\beta, \gamma_{t}<\gamma$.
(ii) For $t \rightarrow \infty$, the three angles $\alpha_{t}, \beta_{t}, \gamma_{t}$ converge to zero.

Proof. (i) I prove $\gamma_{t}<\gamma$, the two other inequalities follow analogously. By Theorem 6 (ii) it has to be shown that

$$
\begin{equation*}
\frac{\cosh t a \cosh t b-\cosh t c}{\sinh t a \sinh t b}-\frac{\cosh a \cosh b-\cosh c}{\sinh a \sinh b}>0 \tag{2}
\end{equation*}
$$

By symmetry we can assume that $a \geq b$. Consider the left hand side of (2) as a function $f=f(c)$ of c with fixed a, b, t. A calculation yields

$$
\begin{equation*}
f(a+b)=f(a-b)=0 \tag{3}
\end{equation*}
$$

Further, $f^{\prime}(c)=0$ implies

$$
\frac{t \sinh t c}{\sinh c}=\frac{\sinh t a \sinh t b}{\sinh a \sinh b}
$$

and by the convexity of the function sinh we conclude that $f^{\prime}(c)$ has only one zero. Since $t>1$, it follows (by the definition of f) that

$$
f(c) \rightarrow-\infty \text { for } c \rightarrow \pm \infty
$$

Therefore, by (3), $f(c)>0$ for $a-b<c<a+b$, which is the triangle inequality, and $\gamma_{t}<\gamma$ follows.
(ii) Assume without restriction that $a \leq b \leq c$. It then follows by Theorem 6(i) that $\alpha \leq \beta \leq \gamma$. This implies by Theorem 6 (iii) that α_{t} and β_{t} converge to zero for $t \rightarrow \infty$. We compare the triangle $T(t)$ with the triangle $T^{\prime}(t)$ which has two sides of length $t(a+b) / 2$ and one side of length $t c$. Denote by γ_{t}^{\prime} the angle in $T^{\prime}(t)$ which is opposite to the side of length $t c$. By a similar (but easier) argument as in part (i) it follows that $\gamma_{t}^{\prime} \geq \gamma_{t}$ for all $t \geq 1$. It is therefore sufficient to prove

$$
\begin{equation*}
\gamma_{t}^{\prime} \rightarrow 0, \text { for } t \rightarrow \infty \tag{4}
\end{equation*}
$$

By Theorem 6 (i) we have

$$
\sin \frac{\gamma_{t}^{\prime}}{2}=\frac{\sinh (t c / 2)}{\sinh (t(a+b) / 2)}
$$

This implies (4) since $c / 2<(a+b) / 2$ (by the triangle inequality).
COROLLARY 10. Let Q be a quadrilateral with sides of length a, b, c, d and angles $\alpha, \beta, \gamma, \delta$ (so that a and c are opposite sides and α and γ are opposite angles). Let $Q(t)$ be a quadrilateral with sides of length ta, tb, tc, td and angles $\alpha_{t}, \beta_{t}, \gamma_{t}, \delta_{t}$ (the notation is analogous to that of Q).
(i) If $t>1$, then at least two opposite angles are smaller in $Q(t)$ than in Q.
(ii) For every $\epsilon>0$, there exists a real $T(\epsilon)$ such that, for every $t>T(\epsilon)$, $\alpha_{t}+\gamma_{t}<\epsilon$ or $\beta_{t}+\delta_{t}<\epsilon$.

Proof. Let e be the length of a diagonal of Q. Construct the quadrilateral $Q^{\prime}(t)$ with a diagonal of length $t e$ and sides of length $t a, t b, t c, t d$. By Lemma 9 all four angles of $Q^{\prime}(t)$ are smaller than the corresponding angles in Q and moreover converge to zero if $t \rightarrow \infty$. The corollary now follows by Corollary 8 .

5. TeIChmüLLER SPACE

DEFINITION. The space $\mathcal{P}(g)$ of canonical polygons contains all canonical polygons $P(g)$ with the topology $P_{j}(g) \rightarrow P(g)$ if and only if the lengths of all sides converge and all angles converge, more precisely, if and only if

$$
a_{i}\left(P_{j}(g)\right) \rightarrow a_{i}(P(g)), \quad i=1, \ldots, 4 g
$$

(where $a_{i}\left(P_{j}(g)\right)$ is the side a_{i} of $\left.P_{j}(g)\right)$ and

$$
\alpha_{i}\left(P_{j}(g)\right) \rightarrow \alpha_{i}(P(g)), \quad i=1, \ldots, 4 g
$$

(where $\alpha_{i}\left(P_{j}(g)\right.$) is the angle α_{i} of $P_{j}(g)$).

REMARKS. (i) Note that two canonical polygons $P(g)$ and $P^{\prime}(g)$ may be isometric, but represent different points in $\mathcal{P}(g)$. They represent the same point if and only if there is an isometry mapping the side $a_{i}(P(g))$ to the side $a_{i}\left(P^{\prime}(g)\right), i=1, \ldots, 4 g$ (and not to the side $\left.a_{j}\left(P^{\prime}(g)\right), j \neq i\right)$. One expresses this fact by saying that the sides of the canonical polygons are marked.
(ii) One may calculate the dimension of $\mathcal{P}(g)$ in the following heuristic way (this argument is modeled after one given in [16]). A canonical polygon has $4 g$ vertices. Each vertex is determined in \mathbf{H} by two (real) parameters, this gives $8 g$ parameters. The dimension of the space of isometries of \mathbf{H} is 3 so we remain with $8 g-3$ parameters. By condition (I) of a canonical polygon we have $2 g$ equalities and each of the conditions (II), (IV), (V) gives one equality. We remain with

$$
8 g-3-2 g-3=6 g-6
$$

parameters.
THEOREM 11. $\mathcal{P}(g)$ is homeomorphic to $\mathbf{R}^{6 g-6}$.

Remark. The following proof is new. The theorem was first proved by Coldewey and Zieschang in an annex to [17], see also [18]. An (indirect) proof has also been given by Buser [2], compare the introduction.

Proof. (i) Let $P(g)$ be a canonical polygon with sides a_{i} and angles α_{i} between a_{i} and $a_{i+1}, i=1, \ldots, 4 g$ (the indices are taken modulo $4 g$). Let $\left\{Q_{i}\right\}=a_{i} \cap a_{i+1}, i=1, \ldots, 4 g$. Denote by b_{i} the geodesic segment between

Figure 5
The "triangulation" of a canonical polygon $P(g)$
$Q_{4 g}$ and $Q_{i}, i=2, \ldots, 4 g-3, i \neq 2 g+1$. Denote by $b_{2 g+1}$ the geodesic segment between $Q_{2 g}$ and $Q_{2 g+2}$, compare Figure 5 .
$P(g)$ is separated by the geodesic segments $b_{2}, \ldots, b_{4 g-3}$ into one quadrilateral S and $4 g-4$ triangles $T_{i}, i=1, \ldots, 4 g-4$, with sides b_{i}, b_{i+1}, a_{i+1} for $i=2, \ldots, 4 g-4, i \neq 2 g, i \neq 2 g+1$; the triangle T_{1} has sides a_{1}, a_{2}, b_{2}, the triangle $T_{2 g}$ has sides $a_{2 g+1}, a_{2 g+2}, b_{2 g+1}$, and the triangle $T_{2 g+1}$ has sides $b_{2 g}, b_{2 g+1}, b_{2 g+2}$ (note that $T_{2 g+1}$ is only defined if $g>2$).

A point $x=\left(x_{1}, \ldots, x_{6 g-5}\right) \in \mathbf{R}^{6 g-5}$ is called admissible if $x_{j}>0$, $j=1, \ldots, 6 g-5$, and if, putting

$$
L\left(a_{i}\right)=L\left(a_{i+2 g}\right)=x_{i}, \quad i=1, \ldots, 2 g \quad(L=\text { length })
$$

and

$$
L\left(b_{2}\right)=L\left(b_{2 g+1}\right)=x_{2 g+1}
$$

and

$$
L\left(b_{i}\right)=x_{2 g+i-1}, \quad i=3, \ldots, 2 g ; \quad L\left(b_{i}\right)=x_{2 g+i-2}, \quad i=2 g+2, \ldots, 4 g-3,
$$

the triangle inequalities hold for the triangles $T_{k}, k=1, \ldots, 4 g-4$, and the "quadrilateral inequalities" hold for S (which means that the sum of the lengths of any three sides of S is greater than the length of the fourth side). Note that these are purely algebraic conditions on $x \in \mathbf{R}^{6 g-5}$.

Let O be the subset of $\mathbf{R}^{6 g-5}$ of admissible points. Being the intersection of a finite number of open sets, O is open. Moreover, O is convex since O is the intersection of a finite number of convex sets, namely, if for example $x_{1}+x_{2}>x_{3}$ and $y_{1}+y_{2}>y_{3}$, then

$$
\lambda\left(x_{1}+x_{2}\right)+(1-\lambda)\left(y_{1}+y_{2}\right)>\lambda x_{3}+(1-\lambda)\left(y_{3}\right), \forall \lambda \in[0,1] .
$$

(ii) Let $x \in O$. Then we associate a formal polygon $P(x)$ to x in the following way. $P(x)$ is the formal union of the triangles $T_{k}(x), k=$ $1, \ldots, 4 g-4$, and the quadrilateral $S(x)$ in the same way as $P(g)$. Hereby, the triangles, as well as the lengths of the sides of $S(x)$ are defined by the identifications described in part (i). The angles of the triangles are determined by their sides (by Theorem 6). The (formal) angles α_{i} of $P(x), i=1, \ldots, 4 g$, are defined as the sum of the angles of the corresponding triangles and (if $i \in\{4 g-3,4 g-2,4 g-1,4 g\})$ of $S(x)$. Thereby, the angles of $S(x)$ are defined by the conditions that $S(x)$ is convex and that

$$
\left|\sum_{i=1}^{g} \alpha_{2 i-1}+\sum_{i=g+1}^{2 g} \alpha_{2 i}-\sum_{i=1}^{g} \alpha_{2 i}-\sum_{i=g+1}^{2 g} \alpha_{2 i-1}\right|
$$

is minimal, this minimum is denoted by $\mathbf{m}(x)$. By Corollary 10 the angles of $S(x)$ are then determined and hence also the angles of $P(x)$. Note however that an angle α_{i} of $P(x)$ may be greater than 2π, this is why $P(x)$ is called a formal polygon with formally defined angles.
(iii) Let $x \in O$. Then $t x$ (for $t \in \mathbf{R}, t>0$) is also in O (since the triangle inequalities remain true). I claim that there exists a unique $t_{0}>0$ (depending on x) such that $P\left(t_{0} x\right)$ is a canonical polygon. I first show uniqueness. Assume that $\mathbf{m}(t x)>0$ for $P(t x)$. This means that $\mathbf{A}(t x)-\mathbf{B}(t x) \neq 0$ where

$$
\mathbf{A}(t x):=\sum_{i=1}^{g} \alpha_{2 i-1}+\sum_{i=g+1}^{2 g} \alpha_{2 i} \quad \text { and } \quad \mathbf{B}(t x):=\sum_{i=1}^{g} \alpha_{2 i}+\sum_{i=g+1}^{2 g} \alpha_{2 i-1} .
$$

If $\mathbf{A}(t x)-\mathbf{B}(t x)>0$, then an angle in $S(t x)$ must be π and, by Corollary 8 and the minimality of $\mathbf{m}(x)$, this angle must appear in the sum $\mathbf{B}(t x)$. This implies that

$$
\begin{equation*}
\Sigma(t x):=\mathbf{A}(t x)+\mathbf{B}(t x)>2 \pi . \tag{5}
\end{equation*}
$$

Of course, (5) also holds if $\mathbf{A}(t x)-\mathbf{B}(t x)<0$. It follows that if $P\left(t_{0} x\right)$ is a canonical polygon, then $\mathbf{m}\left(t_{0} x\right)=0$ (since $\Sigma\left(t_{0} x\right)=2 \pi$ by the definition of canonical polygons). Now assume that $P\left(t_{0} x\right)$ and $P\left(t_{1} x\right)$ are canonical polygons with $t_{1}>t_{0}$. By Lemma 9, all angles of the triangles $T_{k}\left(t_{1} x\right)$
are smaller than the corresponding angles in $T_{k}\left(t_{0} x\right), k=1, \ldots, 4 g-4$. Moreover, by Corollary 10, at least two opposite angles in $S\left(t_{1} x\right)$ are smaller than the corresponding angles in $S\left(t_{0} x\right)$. This implies that $\mathbf{A}\left(t_{1} x\right)<\mathbf{A}\left(t_{0} x\right)$ or $\mathbf{B}\left(t_{1} x\right)<\mathbf{B}\left(t_{0} x\right)$. But since $\mathbf{A}\left(t_{1} x\right)=\mathbf{B}\left(t_{1} x\right)$ and $\mathbf{A}\left(t_{0} x\right)=\mathbf{B}\left(t_{0} x\right)$ $\left(\mathbf{m}\left(t_{0} x\right)=\mathbf{m}\left(t_{1} x\right)=0\right)$, it follows that $\Sigma\left(t_{1} x\right)<\Sigma\left(t_{0} x\right)$, a contradiction. This proves uniqueness.

As for existence note that if $t \rightarrow 0$, then the volume of all triangles $T_{k}, k=1, \ldots, 4 g-4$, and the volume of S tend to zero which implies by Theorem 3 that

$$
\Sigma:=\sum_{i=1}^{4 g} \alpha_{i} \rightarrow(4 g-2) \pi .
$$

On the other hand, for $t \rightarrow \infty$, all angles in the triangles $T_{k}, k=1, \ldots, 4 g-4$, converge to zero by Lemma 9 and, by Corollary 10 (ii), at least two opposite angles of S converge to zero. It follows by the condition that

$$
\left|\sum_{i=1}^{g} \alpha_{2 i-1}+\sum_{i=g+1}^{2 g} \alpha_{2 i}-\sum_{i=1}^{g} \alpha_{2 i}-\sum_{i=g+1}^{2 g} \alpha_{2 i-1}\right|
$$

is minimal that all angles of S converge to zero and hence Σ converge to zero. Therefore, there exists a t_{0} such that $\Sigma\left(t_{0} x\right)=2 \pi$. Now $P\left(t_{0} x\right)$ is a canonical polygon. Namely, conditions (I), (II) and (IV) hold by construction. By the argument above, we further have $\mathbf{m}\left(t_{0} x\right)=0$ and condition (V) holds. Finally, condition (III) holds since all sides of the triangles of $P\left(t_{0} x\right)$ have finite length and since conditions (II) and (V) hold.
(iv) We therefore have defined a projection from the open convex set O to the unit sphere in $\mathbf{R}^{6 g-5}$. Since all operations are controlled by the formulas of Theorem 6, it is clear that this map is continuous and that the image is homeomorphic to $\mathbf{R}^{6 g-6}$ as well as homeomorphic to $\mathcal{P}(g)$ since every canonical polygon is thereby obtained.

DEfinition. By Theorem 5 each of the canonical polygons in $\mathcal{P}(g)$ defines a closed hyperbolic surface of genus g. The Teichmüller space T_{g} is the space of these hyperbolic surfaces with the topology induced from that of $\mathcal{P}(g)$.

COROLLARY 12. T_{g} is homeomorphic to $\mathbf{R}^{6 g-6}$.

6. APPLICATIONS

LEMMA 13. Let M be a closed hyperbolic surface of genus g which has $2 g-2$ simple closed geodesics $u_{1}, \ldots, u_{2 g-2}$ which all intersect in the same point Q and intersect in no other point. Then M has simple closed curves $u_{2 g-1}$ and $u_{2 g}$, passing through Q, such that the curves u_{i} intersect in no other point than $Q, i=1, \ldots, 2 g$. Moreover, $u_{2 g-1}$ and u_{g} can be chosen such that

$$
M \backslash \bigcup_{i=1}^{2 g} u_{i}
$$

is the interior of a canonical polygon $P(g)$.
Proof. Cut M along u_{1}, the result is a hyperbolic surface M_{1} with boundary and genus $g-1$, the boundary consists of two simple closed geodesics v_{1} and w_{1}. Cut M_{1} along u_{2}, the result is a hyperbolic surface M_{2} with one boundary component v_{2} and genus $g-1$. Now cut M along all $2 g-2$ simple closed geodesics $u_{1}, \ldots, u_{2 g-2}$. By induction, the result is a hyperbolic surface $M_{2 g-2}$ with one boundary component v and genus 1 . More precisely, the boundary v is piecewise geodesic with $4 g-4$ pieces and we may assume that the notation is chosen such that these pieces appear on v in the order (the pieces are called like the corresponding closed curves) $u_{1}, u_{2}, \ldots, u_{2 g-2}, u_{1}, u_{2}, \ldots, u_{2 g-2}$ (note that closed geodesics intersect transversally). Denote by S and S^{\prime} the two copies of Q on v between u_{1} and $u_{2 g-2}$. Let $u_{2 g-1}$ be a simple geodesic in $M_{2 g-2}$ which joins S and S^{\prime} such that $u_{2 g-1}$ is not homotopic to a part of v. Cut $M_{2 g-2}$ along $u_{2 g-1}$. The result is a hyperbolic surface $M_{2 g-1}$ of genus zero with two boundary components w and w^{\prime} which both consist of $2 g-1$ geodesic pieces in the order $u_{1}, u_{2}, \ldots, u_{2 g-2}, u_{2 g-1}$. Denote by R and R^{\prime} the copies of Q between u_{1} and $u_{2 g-1}$ on w and w^{\prime}, respectively. Let $u_{2 g}$ be a simple geodesic in $M_{2 g-1}$ which joins R and $R^{\prime}, u_{2 g}$ can be chosen such that when we cut $M_{2 g-1}$ along $u_{2 g}$, then we obtain the interior of a canonical polygon as desired.

DEFInITION. A hyperelliptic surface is a closed hyperbolic surface of genus g which has an isometry ϕ with $\phi^{2}=i d$ and with exactly $2 g+2$ fixed points.

In [14], the equivalence of (i) and (ii) of the following theorem was first proved. With the approach chosen here, we can give a third equivalence and
a different proof.
TheOrem 14. Let M be a closed hyperbolic surface M of genus g. Then the following conditions are equivalent.
(i) M is hyperelliptic.
(ii) M has a set of at least $2 g-2$ simple closed geodesics which all intersect in the same point and intersect in no other point.
(iii) M has a corresponding canonical polygon with equal opposite angles $\left(\alpha_{i}=\alpha_{2 g+i}, i=1, \ldots, 2 g\right)$.

Proof. I shall prove (i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (i).
Let M be hyperelliptic. Let $R_{i}, i=1, \ldots, 2 g+2$, be the fixed points of a hyperelliptic involution ϕ. Let c_{1} be a simple geodesic segment from R_{1} to R_{2}. Then $c_{1} \cup \phi\left(c_{1}\right)$ is a simple closed geodesic u_{1} since $\phi^{2}=i d$. It also follows that on u_{1}, there are only two fixed points of ϕ and that $M_{1}=M \backslash u_{1}$ is connected. Therefore, we can choose a simple geodesic segment c_{2} from R_{1} to R_{3} which intersects u_{1} only in R_{1}. By the same argument as above, $c_{2} \cup \phi\left(c_{2}\right)$ is a simple closed geodesic, $M_{2}=M \backslash\left(u_{1} \cup u_{2}\right)$ is connected and on $u_{1} \cup u_{2}$, there are only three fixed points of ϕ. Continuing this construction we can find simple closed geodesics $u_{1}, \ldots, u_{2 g-2}$ which all intersect in R_{1} and in no other point. This proves (i) \Rightarrow (ii).

Figure 6
The partition of a canonical polygon $P(g)$ into two $(2 g-1)$-gons and two quadrilaterals

Assume now that M has $2 g-2$ simple closed geodesics $u_{1}, \ldots, u_{2 g-2}$ which all intersect in the same point Q and intersect in no other point. By Lemma 13 we then can find simple closed curves $u_{2 g-1}$ and $u_{2 g}$ such that

$$
M \backslash \bigcup_{i=1}^{2 g} u_{i}
$$

is the interior of a canonical polygon $P(g)$ with the usual notation. For $i=1, \ldots, 4 g$, let $\left\{Q_{i}\right\}=a_{i} \cap a_{i+1}$. In $P(g)$ let d_{1} be the geodesic segment from $Q_{4 g}$ to $Q_{2 g-2}, d_{2}$ the geodesic segment from $Q_{2 g}$ to $Q_{4 g-2}$, and d the geodesic segment from $Q_{2 g}$ to $Q_{4 g}$, compare Figure 6. Then $P(g) \backslash\left(d_{1} \cup d_{2} \cup d\right)$ has four connected components, two quadrilaterals W_{j} having d and d_{j}, $j=1,2$, among the sides and two $(2 g-1)$-gons V_{j} having d_{j} among the sides, $j=1,2$. Since $u_{i}, i=1, \ldots, 2 g-2$, are simple closed geodesics, it follows that $\alpha_{i}=\alpha_{i+2 g}$ for $i=1, \ldots, 2 g-3$. This implies that V_{1} and V_{2} are isometric and that d_{1} and d_{2} have the same length. Therefore, W_{1} and W_{2} are quadrilaterals with equal lengths of the four sides. Fix now W_{1} and try to vary W_{2} such that the lengths of the sides remain invariant and so that property (V) for canonical polygons holds. This is certainly the case if W_{2} and W_{1} are isometric. But then Corollary 8 implies that this is the unique possibility. Therefore, W_{1} and W_{2} must be isometric and hence $\alpha_{i}=\alpha_{i+2 g}$ for all $i=1, \ldots, 2 g$, which proves (ii) \Rightarrow (iii).

Now assume that (iii) holds. Let d be the geodesic segment from $Q_{2 g}$ to $Q_{4 g}$. Then d separates $P(g)$ into two isometric $(2 g+1)$-gons and the π rotation around the centre C of d induces an isometry ϕ of M with $\phi^{2}=i d$. The fixed points of ϕ are C, the point Q corresponding to the vertices of $P(g)$ as well as the centres of the sides $a_{i}, i=1, \ldots, 2 g$. Therefore, ϕ is a hyperelliptic involution which proves (iii) \Rightarrow (i).

COROLLARY 15. All closed hyperbolic surfaces of genus 2 are hyperelliptic.

Proof. All closed hyperbolic surfaces have two simple closed geodesics which intersect in a unique point. The corollary follows by Theorem 14.

DEFInition. Let M_{0} be a closed hyperbolic surface in T_{g}. For every $M \in T_{g}$ fix a homeomorphism ϕ_{M}, homotopic to the identity, from M_{0} to M (ϕ_{M} exists since closed surfaces of the same genus are homeomorphic). Let u be a simple closed geodesic in M_{0}. Then, in the homotopy class of $\phi_{M}(u)$ there exists a unique simple closed geodesic which is denoted by $\Phi_{M}(u)$. The function

$$
L(u): T_{g} \rightarrow \mathbf{R}
$$

which associates to M the length of $\Phi_{M}(u)$ is called a geodesic length function.

REmARK. It is well known that T_{g} can be parametrized by a finite number of geodesic length functions, see for example [12], [13] where it is shown that T_{g} can be parametrized by $6 g-5$ geodesic length functions.

THEOREM 16. The Teichmüller space T_{g} for $g=2$ can be parametrized by 7 (suitably chosen) geodesic length functions $L\left(u_{1}\right), \ldots, L\left(u_{7}\right)$, taken as homogeneous parameters (which means that $L\left(u_{1}\right) / L\left(u_{7}\right), \ldots, L\left(u_{6}\right) / L\left(u_{7}\right)$ gives a parametrization of T_{2}).

Proof. Let $P(2)$ be a canonical polygon corresponding to a closed hyperbolic surface M_{0} of genus 2 . As usual let $Q_{i}=a_{i} \cap a_{i+1}, i=1, \ldots, 8$, where the a_{i} are the sides of $P(2)$. Let b_{i} be the geodesic segment (in $P(2)$) between Q_{i} and $Q_{i+4}, i=1, \ldots, 4$. By Corollary $15, M_{0}$ is hyperelliptic, therefore (compare Theorem 14) b_{i} corresponds to a simple closed geodesic in M_{0}, denoted by $B_{i}, i=1, \ldots, 4$. It also follows by Theorem 14 that a_{i} corresponds to a simple closed geodesic in M_{0}, denoted by $A_{i}, i=1, \ldots, 4$.

Figure 7
A triangulation of a canonical polygon $P(g)$ for $g=2$

I now prove that the 7 length functions, given by the simple closed geodesics $A_{i}, i=1,2,3, B_{i}, i=1, \ldots, 4$, taken as homogeneous parameters, give a parametrization of T_{2}. In order to do this, it is enough (by Theorem 11 and Corollary 12) to show that $P(2)$ is uniquely determined by the lengths of $a_{i}, i=1,2,3, b_{i}, i=1, \ldots, 4$, taken as homogeneous parameters (in the sequel I shall refer to these lengths calling them "the seven lengths"). This can be done analogously as in the proof of Theorem 11. The geodesic segments $b_{i}, i=1, \ldots, 4$, intersect in a point C, the "centre" of $P(2)$, and they separate
$P(2)$ into 8 triangles D_{j} so that a_{j} is a side of $D_{j}, j=1, \ldots, 8$, compare Figure 7. Since M is hyperelliptic, D_{j} and D_{j+4} are isometric, $j=1, \ldots, 4$. Denote by δ_{i} the angle of D_{i} in the vertex $C, i=1, \ldots, 4$. The seven lengths determine the triangles $D_{i}, i=1,2,3$, as well as two sides and the angle δ_{4} of D_{4} by the condition

$$
\begin{equation*}
\Delta:=\sum_{j=1}^{4} \delta_{j}=\pi \tag{6}
\end{equation*}
$$

so they determine also D_{4}. This shows that the seven lengths determine $P(2)$. Multiply the seven lengths by a positive real t and assume that the seven new lengths also determine a canonical polygon $P_{t}(2)$. If $t>1$, then δ_{i}, $i=1,2,3$, are smaller in $P_{t}(2)$ than in $P(2)$ by Lemma 9, therefore, by (6), δ_{4} is larger in $P_{t}(2)$ than in $P(2)$. It follows by Lemma 7 that the sum of the two other angles of D_{4} is smaller in $P_{t}(2)$ than in $P(2)$. Since all angles in $D_{i}, i=1,2,3$, are smaller in $P_{t}(2)$ than in $P(2)$ by Lemma 9 , it follows that

$$
\sum_{i=1}^{4} \alpha_{i}
$$

is smaller in $P_{t}(2)$ than in $P(2)$. But this contradicts condition (II) of canonical polygons. An analogous contradiction follows if $t<1$ proving thus that $t=1$ and therefore the theorem.

Remark. Theorem 16 is new. It is well known that $6 g-6$ length functions can never parametrize T_{g} so that the situation of Theorem 16 is the best we can expect. It is not known whether $6 g-5$ geodesic length functions, taken as homogeneous parameters, can parametrize T_{g} for $g \geq 3$.

REFERENCES

[1] Beardon, A.F. The Geometry of Discrete Groups. Springer, 1983.
[2] BuSER, P. Geometry and Spectra of Compact Riemann Surfaces. Birkhäuser, Boston, 1992.
[3] Coldewey, H.-D. Kanonische Polygone endlich erzeugter Fuchsscher Gruppen. Dissertation, Bochum, 1971.
[4] Ford, L. Automorphic Functions. Chelsea, New York, 1929.
[5] Iversen, B. Hyperbolic Geometry. Cambridge University Press, 1992.
[6] Jost, J. Compact Riemann Surfaces. Springer, 1997.
[7] KАТок, S. Fuchsian Groups. The University of Chicago Press, 1992.
[8] Lehner, J. Discontinuous groups and automorphic functions. Math. Surveys, No. VIII, AMS Providence, 1964.
[9] Maskit, B. On Poincare's theorem for fundamental polygons. Advances in math. 7 (1971), 219-230.
[10] Poincaré, H. Théorie des groupes fuchsiens. Acta math. 1 (1882), 1-62.
[11] DE Rham, G. Sur les polygones générateurs de groupes fuchsiens. L'Enseignement math. (2) 17 (1971), 49-61.
[12] Schmutz, P. Une paramétrisation de l'espace de Teichmïller de genre g donnée par $6 \mathrm{~g}-5$ géodésiques explicites. Sém. théorie spectrale et géométrie, Chambéry-Grenoble (1991-1992), 59-64.
[13] -- Die Parametrisierung des Teichmüllerraumes durch geodätische Längenfunktionen. Comment. Math. Helv. 68 (1993), 278-288.
[14] Schmutz Schaller, P. Geometric characterization of hyperelliptic Riemann surfaces. Ann. Acad. Sci. Fenn. Math. (to appear).
[15] Siegel, C.L. Topics in Complex Function Theory. Vol. II. Wiley Interscience, 1969.
[16] Thurston, W.P. Three-dimensional Geometry and Topology. Vol. I. Princeton University Press, 1997.
[17] Zieschang, H., E. Vogt and H.-D. Coldewey. Flächen und ebene diskontinuierliche Gruppen. Springer LNM 122, 1970.
[18] Zieschang, H., E. Vogt and H.-D. Coldewey. Surfaces and Planar Discontinuous Groups. Springer LNM 835, 1980.
(Reçu le 6 janvier 1998; version révisée reçue le 26 octobre 1998)

Paul Schmutz Schaller
Institut de mathématiques
Université de Neuchâtel
Rue Emile-Argand 11
CH-2007 Neuchâtel
Switzerland
e-mail: Paul.Schmutz@maths.unine.ch

