Zeitschrift:	L'Enseignement Mathématique
Herausgeber:	Commission Internationale de l'Enseignement Mathématique
Band:	45 (1999)
Heft:	1-2: L'ENSEIGNEMENT MATHÉMATIQUE
Artikel:	TEICHMÜLLER SPACE AND FUNDAMENTAL DOMAINS OF FUCHSIAN GROUPS
Autor:	SCHMUTZ SCHALLER, Paul
Autor: Kapitel:	SCHMUTZ SCHALLER, Paul 4. Trigonometry
	,

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. <u>Siehe Rechtliche Hinweise.</u>

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. <u>Voir Informations légales.</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. <u>See Legal notice.</u>

Download PDF: 18.04.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

condition (V) of canonical polygons are equivalent to the condition that u_1 and u_2 are simple closed geodesics in M.

4. TRIGONOMETRY

REMARK. By abuse of notation a side of a polygon will often be identified with its length.

The following theorem is standard (for a proof see for example [1], [2]).

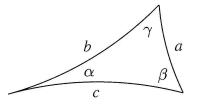


FIGURE 3 The notation for a triangle

THEOREM 6. Let T be a triangle with angles α, β, γ and sides of length a, b, c with the notation of Figure 3. Then

(i) $\frac{\sinh a}{\sin \alpha} = \frac{\sinh b}{\sin \beta} = \frac{\sinh c}{\sin \gamma};$

(ii) $\cosh c = \cosh a \cosh b - \sinh a \sinh b \cos \gamma$;

(iii) $\cos \gamma = -\cos \alpha \, \cos \beta + \sin \alpha \, \sin \beta \, \cosh c$.

LEMMA 7. Let T be a triangle with the notation of Figure 3. Let T' be a triangle with sides of length a', b', c' and angles α', β', γ' . Let a = a' and b = b'. Then

 $c' > c \iff \gamma' > \gamma \iff \alpha' + \beta' < \alpha + \beta.$

Proof. The first equivalence is a consequence of Theorem 6(ii).

Let Z be the centre of the side c and let u be the geodesic segment, of length d/2 say, between Z and the vertex C of T. The segment u separates T into two triangles (compare Figure 4). Applying Theorem 6(ii) to them, we obtain

 $\cosh a = \cosh(c/2) \cosh(d/2) - \sinh(c/2) \sinh(d/2) \cos \delta$

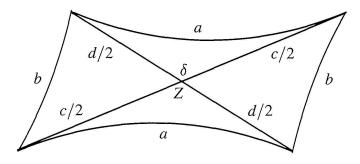


FIGURE 4 The triangle T (thick lines) is half of this quadrilateral

and

 $\cosh b = \cosh(c/2) \cosh(d/2) + \sinh(c/2) \sinh(d/2) \cos \delta$

for an angle δ . This implies

(1)
$$\cosh a + \cosh b = 2 \cosh(c/2) \cosh(d/2)$$
.

Let \widetilde{T} be the triangle with sides of length a, b, d (compare Figure 4). Then the angles of \widetilde{T} are $\alpha + \beta, \gamma_1, \gamma_2$ with $\gamma = \gamma_1 + \gamma_2$. Now if the length of cgrows, then the length of d diminishes (by (1)), therefore, applying the first equivalence of the lemma to the triangle \widetilde{T} , the angle $\alpha + \beta$ diminishes and the second equivalence of the lemma follows. \Box

COROLLARY 8. Let Q and Q' be two quadrilaterals with the same lengths of the four sides. Let $\alpha, \beta, \gamma, \delta$ and $\alpha', \beta', \gamma', \delta'$ be the four angles in Q and Q', respectively, in the natural order (α and γ are opposite). Then

 $\alpha + \gamma > \alpha' + \gamma' \iff \beta + \delta < \beta' + \delta'.$

Proof. Clear by Lemma 7 (draw a diagonal in Q and in Q').

LEMMA 9. Let T be a triangle with the notation of Figure 3. Let T(t) be a triangle with sides of length ta, tb, tc and angles $\alpha_t, \beta_t, \gamma_t$.

(i) If t > 1, then $\alpha_t < \alpha$, $\beta_t < \beta$, $\gamma_t < \gamma$.

(ii) For $t \to \infty$, the three angles $\alpha_t, \beta_t, \gamma_t$ converge to zero.

Proof. (i) I prove $\gamma_t < \gamma$, the two other inequalities follow analogously. By Theorem 6(ii) it has to be shown that

(2)
$$\frac{\cosh ta \cosh tb - \cosh tc}{\sinh ta \sinh tb} - \frac{\cosh a \cosh b - \cosh c}{\sinh a \sinh b} > 0$$

By symmetry we can assume that $a \ge b$. Consider the left hand side of (2) as a function f = f(c) of c with fixed a, b, t. A calculation yields

(3)
$$f(a+b) = f(a-b) = 0$$
.

Further, f'(c) = 0 implies

$$\frac{t \sinh tc}{\sinh c} = \frac{\sinh ta \sinh tb}{\sinh a \sinh b}$$

and by the convexity of the function sinh we conclude that f'(c) has only one zero. Since t > 1, it follows (by the definition of f) that

$$f(c) \to -\infty$$
 for $c \to \pm \infty$.

Therefore, by (3), f(c) > 0 for a - b < c < a + b, which is the triangle inequality, and $\gamma_t < \gamma$ follows.

(ii) Assume without restriction that $a \leq b \leq c$. It then follows by Theorem 6(i) that $\alpha \leq \beta \leq \gamma$. This implies by Theorem 6(iii) that α_t and β_t converge to zero for $t \to \infty$. We compare the triangle T(t) with the triangle T'(t) which has two sides of length t(a+b)/2 and one side of length tc. Denote by γ'_t the angle in T'(t) which is opposite to the side of length tc. By a similar (but easier) argument as in part (i) it follows that $\gamma'_t \geq \gamma_t$ for all $t \geq 1$. It is therefore sufficient to prove

(4)
$$\gamma'_t \to 0, \text{ for } t \to \infty$$

By Theorem 6(i) we have

$$\sin\frac{\gamma_t'}{2} = \frac{\sinh(tc/2)}{\sinh(t(a+b)/2)}$$

This implies (4) since c/2 < (a+b)/2 (by the triangle inequality).

COROLLARY 10. Let Q be a quadrilateral with sides of length a, b, c, dand angles $\alpha, \beta, \gamma, \delta$ (so that a and c are opposite sides and α and γ are opposite angles). Let Q(t) be a quadrilateral with sides of length ta, tb, tc, tdand angles $\alpha_t, \beta_t, \gamma_t, \delta_t$ (the notation is analogous to that of Q).

(i) If t > 1, then at least two opposite angles are smaller in Q(t) than in Q.

(ii) For every $\epsilon > 0$, there exists a real $T(\epsilon)$ such that, for every $t > T(\epsilon)$, $\alpha_t + \gamma_t < \epsilon$ or $\beta_t + \delta_t < \epsilon$.

Proof. Let *e* be the length of a diagonal of *Q*. Construct the quadrilateral Q'(t) with a diagonal of length *te* and sides of length *ta*, *tb*, *tc*, *td*. By Lemma 9 all four angles of Q'(t) are smaller than the corresponding angles in *Q* and moreover converge to zero if $t \to \infty$. The corollary now follows by Corollary 8.