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8 P. BAUM AND A. CONNES

Addition in K*(X, G) is given by disjoint union of X-cocycles. Further,

K*(X, G)K°(X, G) © K\X, G),

where Kl(X, G) is the subgroup of K*(X,G) determined by all X-cocycles
(Z, £,/) with £ G VlG(T*Z®f*T*X). The natural homomorphism of abelian

groups
KXX^G) -> Ki[C0(X) x G]

is defined by

(z,^/)^M(z,e,/).

CONJECTURE. For any G-manifold X, (JL : Kl(X,G) —» Xz[Co(X) x G] zs

<2« isomorphism.

This conjecture is known to be true if X is a proper G-manifold. If X is

proper there is a commutative diagram

K*(X,G)K,[Cq(X)xi G]

h \
K*g(X)

in which each arrow is an isomorphism. it: X*(X, G) —> KG{X) maps a

X-cocycle (Z,£,/) to its topological index, and ao p: X*(X,G) —» X£(X)
maps a X-cocycle (Z, £,/) to its analytic index. If G is compact then any
G-manifold is proper and commutativity of the diagram is equivalent to the

Atiyah-Singer index theorems of [6], [7], [8].

3. Homotopy quotient

Let VF be a topological space. V°(W) denotes the collection of all complex
vector bundles (Eo,Euo) on VF with compact support. Thus £0, E\ are

complex vector bundles on VF and o: Eq —> E\ is a morphism of complex
vector bundles with Support (<r) compact, where

Support (a) {peW\ cr: E0p —> Eip is not an isomorphism}

Also Vl(W) V°(W x R).
Suppose given an R-vector bundle F on VF. Following [9], a twisted by F

K-cycle on IF is a triple (M, £,</>) such that:
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(1) M is a C°°-manifold without boundary;

(2) (/>: M —> W is a continuous map from M to W ;

(3) £ G V*(T*M®(j)*F)

As in [9] an equivalence relation is imposed on these twisted by F X-cycles

to obtain the twisted by F ^-homology of W :

K\ (W) is the subgroup determined by all (M, £, d>) with £ G Vl(T*F). If
F has a Spinc-structure then K%(W) is isomorphic to K*(W), the X-homology

of W.

With G as in §2 above, let EG be a contractible space on which G acts

freely
EGxG^ EG.

Given a G-manifold X, let G act on EG x X by

(p,x)g (pg,xg)

(p G EG, x G X, g £ G). The quotient space [EG x X]/G will be referred to

as the homotopy quotient. Since T*X is a G-vector bundle on X, the quotient
[EG x r*X]/G is a vector bundle on [EG x X]/G. Denote this vector bundle

by t and consider the twisted by r X-homology Kl([EG x X]/G). There is

a map
X^([EG x X]/G) X*(X, G).

This map is not quite canonical. First an orientation must be chosen for the

Lie algebra of G, so assume that such an orientation has been chosen.

Let (M, £, 4i>) be a twisted by r K-cycle on [EG x X]/G. Now EG x X is
the total space of a principal G-bundle over [EG x X]/G and this principal
bundle can be pulled back via (j) to yield a principal bundle Z over M

EG xX Z

i 1P

[EGxX] < M.
4>

Let 7T : EG x X —> Xbethe projection and set / tr o

f-.Z-^X.

i V*(T*M(B<p*t) lifts to give £ G V*(p*TrM®f*T*X). Denote the bundle
along the fibres of p: Z —> M by F. This is a trivial vector bundle since,
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for each z G Z, Fz is canonically isomorphic to the Lie algebra of G. Using
the orientation of this Lie algebra, F has a G-invariant Spinc-structure so

that £ G V£(p*T*M@f*T*X) determines 77 p*T*M @f*T*X). Now

F® p*T*M — F*Z, so (Z, 77,/) is a X-cocycle for (X, G). The map

2C([FGxX]/G)-*X*(X,G)

is :

(M,£,</>) ^(Z,77,/).
This map has a dimension-shift in it. Set e dim (G). Then with addition of
indices mod 2 this map takes K[([EG x X]/G) to Kl+e{X, G).

LEMMA 1. If G is torsion free then Kl([EG x X]/G) —» X*(X, G) L an

isomorphism.

Proof Let (Z, £,/) be a X-cocycle for (X, G). The action of G on Z is

proper, so each isotropy group is compact. Since G is assumed to be torsion
free this implies that the action of G on Z is free. Hence Z is a G-principal
bundle over G/Z, and thus Z maps equivariantly to EG. Combining this with

/ : Z —> X we obtain a commutative diagram

EG x X < Z

1 I-
[EG x X] * Z/G.

Denote the map of Z/G to [EG x X]/G by <p. Then £ e
determines g G V/(p*T*(Z/G) ®f*T*X). Since the action of on Z is free

Ç' descends to give 0 G V*{T*{Z/G)®t). Then

(Z, £,/)-» (Z/G, 0,0

maps K*{X,G)toXJ([£G x X]/G) and provides an inverse to the map

XJ([£G x X]/G) -> X*(X, G).

REMARK 2. If G is the trivial one-element group then the isomorphism
of the lemma becomes

Kl"x(X) ^
If X is a Spinc-manifold then Kl*x(X) X*(X), so that in this case

the isomorphism of the lemma becomes the Poincaré duality isomorphism

KXX) K*(X).
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When G has torsion, the map Kf([EG x X]/G) —> K*(X,G) can fail to

be an isomorphism. The simplest example of this is obtained by taking X to

be a point and G Z/2Z.
When G has torsion, Kl([EGxX]/G) appears to be only a first

approximation to K*(X,G) and K*[Q, (X)xG]. The key point is that when

G has torsion, there will be proper G-manifolds on which the G-action is

not free.

4. Solvable simply connected Lie groups

The conjecture stated in §2 above is verified for (connected) solvable

simply connected Lie groups by

PROPOSITION 1. Let G be a (connected) solvable simply connected Lie

group, and let X be a G-manifold. Then there is a commutative diagram

K*(X, G) —^ K,[Cq(X) x G]

i I
K*(X) f iUCo(X)]

in which each arrow is an isomorphism.

The proof depends on

LEMMA 2. Let G be a (connected) solvable simply connected Lie group,
and let Z be a proper G-manifold. Then there exists a G-map from Z to G.

Proof of Lemma 2. Since the action of G on Z is proper all isotropy

groups are compact. G has no non-trivial compact subgroups, so the action

of G on Z is free. Therefore Z is a principal G-bundle with base Z/G. As
G is itself a contractible space on which G acts freely, there is a G-map
from Z to G.

Proof of Proposition 1. In the diagram of the proposition the right vertical
arrow is the Thorn isomorphism of [13]. The lower horizontal arrow is
the standard isomorphism which is valid for any locally compact Hausdorff
topological space.
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