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REMARKS ON THE HAUSDORFF-YOUNG INEQUALITY

by Srishti D. Chatterji

§1. Introduction

A standard version of the Hausdorff-Young inequality for a locally compact
commutative group G can be given as follows : for a fixed Haar measure in

G, let / e L\G)nL2(G) ; if 1 < p<2, p'- 1), then

(1) 11/11,. S11/11,

where

(2) 7(7) [fix) j(x) dx, 7
J G

G being the dual group of G, endowed with a Haar measure which is such

that for p p' — 2, there is equality in (1); that this last condition can be

met is one form of Plancherel's theorem in L2(G). Note that, for 1 <P<2,
\\f\\p <00 if / is in L!(G) HL2(G), the latter space being dense in each

LP(G), 1 < p <2. Hence, because of the Hausdorff-Young inequality (1), the
Fourier transform Tpf can be defined uniquely for all / G LP{G), 1 < p < 2,
in such a way that

(3) Tp\ U{G) U'(G)

is a linear contraction with Tpf f for all / in Ll(G) flL2(G). It is known
that, for each p G [1,2], is injective and that if / G LPl(G) HLP2(G),
1 < P\,P2 < 2, then TPJ TPlf a.e. on G; see [HR] vol.2, chap.VIII
((31.26), p.229; (31.31), p.231). The purpose of the present note is to prove
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(Thm. 1) by a very simple general argument that the operator Tp in (3)
is surjective only in the following obvious cases: (i) p p' 2 or (ii)
G finite. This fact is now well-known ([HR] vol.2, p.227, pp.430-431);
however, most of the known proofs of this depend on a careful analysis of the

group G whereas our proof shows that this is an immediate consequence of a

general theorem concerning the isomorphism of arbitrary LP -spaces (stated in
§2). From this we deduce fairly simply that for any infinite locally compact
commutative group G, the inequality (1) cannot be extended to the case
2 < p < oo ; the exact statement is given as Thm. 2 in §3. I have not seen

this statement given in complete generality elsewhere, although it is highly
likely to be known to many.

We set up the necessary notations in §2, state and prove the facts alluded
to above in §3 and add a few historical comments in §4; a short appendix
(§5) is added to explain the LP -isomorphism theorem stated in §2.

We have not tried to extend our theorems to the case of G non-commutative,
using for G the set of all equivalence classes of continuous unitary irreducible

representations of G. For G compact, this has been done (for our Thm. 1)

in [HR] vol.2, (37.19), p. 429; our analysis carries over to this case as well
without any difficulty. However, we have preferred to leave out the non-
commutative case entirely in this paper, except to make a few remarks on it
in §4.

§2. Notations and some known facts

Our reference for general functional analysis and integration theory is [DS]
and that for group theory is [HR]. A measure space is a triple (A, £, p) where

£ is a cr-algebra of subsets of the abstract set X and ß : £ —» [0, oo] is a

a-additive positive measure; no finiteness or a-finiteness conditions will be

imposed a priori on ß. Then LP{ß), 1 < p < oo, will denote the usual Banach

space associated with £-measurable complex-valued functions / defined on X
with U/H p<oo, \\f\\p being the standard Z/-norm with respect to ß. If G

is a locally compact commutative group (always supposed to be Hausdorff),
LP(G), 1 < p < oo, will stand for the associated LP-space obtained by fixing
some Haar (invariant) measure on G, and G will stand for the dual group,
formed by the continuous homomorphisms (characters)

7:G^T {zeC:|z| l}.
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For a given Haar measure on G, the Haar measure on G will always be fixed

in such a way that the Plancherel formula be valid in L2(G) ; if / G Ll(G),

f will be defined by (2) above.

Recall that for any measure space (X, I, p), the dual Banach space of

W{p) is If'{p)whenever 1 <p<oo,i.e. in symbols

(4) {Win))'

whether pis a-finite or not. Here and elsewhere,

p' — ~—r,1 < oo,
P- 1

and 1' oo ; for (4) to hold for p1, p'oo, one needs some conditions

on p (cr-finiteness of p is sufficient but not necessary). Nevertheless,

(LP(G))'

holds for all p, 1 < p < oo, and any locally compact group G. We shall not,

however, need this fact.

Two Banach spaces E, F are called isomorphic if there is an isomorphism

u: E —> F where u is a continuous linear bijection; it is well-known that

u~l : F —* E is then automatically continuous. The following is proved in [C] :

if (X, Z, /i), (Y,J,v) are any two measure spaces and 1 <p,q< oo then

Lp(p) isomorphic to Lq(y) implies necessarily that p q provided that Ep{pt)

or Fq(y) is infinite dimensional

We shall refer to this statement as the LP -isomorphism theorem ; as

indicated in §5, this is an easy consequence of the theory of types and cotypes
for Banach spaces. The same reasoning proves (cf. §5) that if (XfL,p) is

any measure space such that Lx(p) is infinite dimensional and Y is any
locally compact Hausdorff space then Ll(p) cannot be isomorphic to Cq-(F)

(or to C(T)). Here C(T) is the Banach space of all bounded complex-valued
functions on Y endowed with the sup norm, and Cq(Y) is the subspace of
those continuous complex-valued functions in Y which vanish at oo ; if Y is

compact, we put Co(Y) — C(Y).

Recall that if / G Ll(G), G any locally compact commutative group, then

/ G Co(G) ; cf. [HR] vol.2, p.212; this fact is sometimes referred to as the

Riemann-Lebesgue lemma for G.



342 S.D. CHATTERJI

§3. Main theorems

THEOREM 1. Let G be a locally compact commutative group, G its dual

group, the Haar measures on G, G being determined as in §2.

(i) If 1 < P < 2, then the contraction operator Tp given by (3) is surjective

if and only if G is a finite group.

(ii) T\ Ll{G) —» Co(G) is surjective if and only if G is a finite group; here

Ff=l
Proof (i) It is known that Tp is always injective; cf. [HR] vol.2, (31.31),

p. 231. If Tp is surjective, then Tp will be an isomorphism between LP(G)
and LP(G); since p' p if 1 <p< 2, this implies, according to the

Lp-isomorphism theorem of §2, that LP{G) and hence Lp\G) are finite
dimensional i.e. G (and hence G) are finite groups. On the other hand,

if G is a finite commutative group then it is a well-known elementary fact

(see [HR] vol.1, p. 357) that G is isomorphic to G so that, for any p,q
in [l,oo], LP(G) and Lq(G) are then of the same finite dimension equal to
the order of the group G ; hence, in particular, if G is a finite commutative

group, LP(G) is isomorphic to LP (G) for 1 < p < 2 ; the isomorphism can
be realized via Tp since Tp is injective and dim LP{G) dim LP (G).

(ii) The proof here is perfectly similar; it uses the impossibility of an

isomorphism between Ll(p) and Co(Y) given in §2.

This completes the proof of Theorem 1.

The notations p', etc. are as in §2 for the following theorem as well;
its proof uses the non-surjectivity given by Theorem 1 and an elementary
inversion formula.

THEOREM 2. Let G be an infinite commutative locally compact group
and 2 < p < oo. Then no inequality of the form

(5) I! /||„,<M||/||,

can hold for f G D, D being a LP{G) -dense linear subspace of LP(G)DL1(G),
whatever be the choice of M, 0 < M < oo.

Proof. We shall need the following simple facts:

(i) If 0 < a < c < b < oo then, for any positive measure /i,

L»niV)cicW.
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This is evident from the following:

[ \f\cd(i « f \f\cdp + f l/T^/i

< [ \f\adp + f \f\bdß.
J\f |<i

(ii) (Inversion formula for L2(G)). If / G L2(G) then

T.W2/) =/
where rg(x) g(-x), g: G —> C being any function; cf. [HR] (31.17), p. 225.

(iii) If (/? E Lfl(G) nL*(G), a, b being in [1,2], then

Taip — ci.e.

This fact has already been explicitly mentioned in the introduction where an

exact reference is given.

If (5) were to hold for f £ D, there would be a bounded linear operator T,

T : Z/(G) ^Z/(G)
such that

Tf=f, f GD C L"(.G)n L\G).
Since 1 < p'<2,the Hausdorff-Young inequality gives a linear contraction S,

S: Lp' (G)—> LP(

such that S(p tTp> <p.

Now, if f £ D,fisin L2(G) (since 1 < 2 < p ; cf. (i) above) as well as

in Ll(G) (by hypothesis) so that

Tf =f eL2(G)nLp'(G).

Thus, for f <E D,

S(Tf) S{T2f) t Tp'{T2=f
by using the facts (ii) and (iii) given above. Since D is dense in LP{G) and
the operator ST is continuous we deduce that

STf fe

which obviously implies that Smust be surjective; this contradicts Theorem 1

thus establishing the impossibility of (5) for
This completes the proof of Theorem 2.
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Remark. We observe that conversely, Theorem 1 can be deduced from
Theorem 2 ; we shall not elaborate on this ; however, our proof of Theorem 1

shows that its validity stems from a simple general result on Lp -spaces.

§4. Historical remarks

The inequality (1) was given first by Hausdorff [H] in 1923 for the groups
G T (with G Z) and G — Z (with G T). Hausdorff was inspired
by the work of W. H. Young from 1912-13 who proved that the Fourier
series of a function in Z/, 1 <P< 2, had coefficients which were in £p

(and, in a suitable sense, vice-versa) for p' 2k, a positive even integer,

p 2k/(2k — 1). Young did not formulate his results in terms of inequalities
which were given first by Hausdorff (for all p G [1,2] and for the groups
G T, G Z, i.e. for Fourier series). Hausdorff's proof, which is all
but forgotten today, used Young's results for p' 2k and some of Young's
techniques to carry out an interpolation argument for all the values of p, p',
1 < P < 2, missing in Young's work. Hausdorff's paper [H] gives the exact

references to W. H. Young's paper which were related to his work.

Shortly afterwards, after having heard of Hausdorff's inequalities, F. Riesz

obtained independently (in [RF]) some Hausdorff-Young type inequalities, valid
for series expansions in terms of arbitrary bounded orthogonal functions. This

paper of F. Riesz was important not only because it showed that Hausdorff-

Young type inequalities did not belong exclusively to the theory of Fourier
series but also because F. Riesz (in collaboration with his colleague A. Haar)

conjectured there the validity of a general "arithmetical" inequality for linear
forms (in a finite number of variables) which they claimed to be enough for
proving F. Riesz's theorem for orthogonal expansions.

It was this conjecture which seems to have led M. Riesz (F. Riesz's younger
brother) to formulate and prove in 1927 ([RM]) his convexity theorem for
bilinear forms and use it to deduce Hausdorff-Young-F. Riesz inequalities
and many others. M. Riesz's work was exactly what A. Weil used in 1940 to
establish (1) for general locally compact commutative groups in his book [W],

p. 117. As is well-known, once the Plancherel theorem for a general L2(G), G

locally compact commutative, is established (and this was done by Weil) the

proof of (1) via M. Riesz's theorem is almost immediate. M. Riesz's work was

simplified and much generalized by Thorin in 1938 (and later in 1948; exact

references can be found in [DS] or in [HR]) which launched the later theory
of interpolation of operators due to many well-known mathematicians which
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we shall not attempt to describe here. As regards Theorem I given in §3, it
was proven by I. Segal in 1950 (for the part concerning Co(G)) and generally

by E. Hewitt in 1954. The theorem was rediscovered by Rajagopalan in 1964;

exact references to the papers of these authors can be found in [HR] vol. 2.

The fact that the inequality (1) does not generalize to p > 2 had been foreseen

in papers of 1918-19 by Carleman, Hardy and Littlewood, Landau for the

case of G T (exact references are in Hausdorff's paper [H]) where the

work depends on the detailed study of the Fourier series of special continuous

functions. However, I do not know of any explicit previous formulation and

proof of Theorem 2 for arbitrary infinite locally compact commutative groups
G ; it is difficult to imagine that it has not been written down somewhere,

since its proof is a straight-forward deduction from the inversion formula and

the non-surjectivity theorem.

Theorem 1 has been generalized to the case of non-commutative compact

groups G in [HR] vol.2, (37.19), p.429; now, G is taken to be the set of
all equivalence classes of continuous unitary irreducible representations of G.

For G any locally compact unimodular group, Kunze (1958) has given the

appropriate formulation of the Hausdorff-Young inequality (1) (see reference
in [HR] vol.2). If G is compact, G as a set has the discrete topology and

our proof of Theorem 1 carries over to this case. Theorem 2 in this case can
be formulated as in [HR] vol.2, (37.19) (iii), p.429; its proof now is no more
difficult than that of our Thm. 2. However, we do not intend to discuss the

non-commutative case in any detail here.

We close this section by mentioning the remarkable later (1990)
development around the Hausdorff-Young inequality due to Lieb [L]. Lieb has

shown, generalizing considerably previous work of Babenko (1961) and Beckner

(1975), that for the group R" and for "Gaussian" transforms T more
general than the Fourier transform, one has

(6) \\Tf\\p, < Mp\\f\\p
where Mp <\;Lieb has determined Mp exactly and has specified all the
functions / for which equality obtains in (11). In particular, the LP -Fourier
transform in R", (1 < p<2) turns out to be a strict contraction (a fact
noticed by Babenko and Beckner) whose contraction coefficient (< 1) can
be determined exactly; this is in sharp contrast to the situation in those
locally compact abelian groups which have compact open subgroups where
the corresponding Fourier transforms are just contractions. This has been
studied in detail by Hewitt, Hirschmann, Ross ([HR] vol.2, §43).
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§5. Appendix

Here we outline a simple proof of the Lp -isomorphism theorem stated

in §2; the proof uses the notion of type and cotype of Banach spaces and

follows [C].

Definition. A Banach space E is of type p (1 < p < 2) if there is

a finite positive number Cp such that for all choices of x\ xn in E,
n 1,2,... we have

2~" EIEHI-^Enh'A
e\---en j=\ 7=1

where stands for the sum of the 2n quantities obtained by letting
each £j taking the values +1 or — 1. E is said to have exact type p if it is

of type p but not of type p > p.
A Banach space E is of cotype q (2 < q < oo) if there is a finite positive

number cq such that for all choices of x\ ,...,xn in E, n 1,2,... we
have

2 " XI|Ë% ^(Xi >!/<?

e\--en 7=1 7=1

E is said to have exact cotype q if it is of cotype q but not of cotype q < q.

It is obvious that exact type or cotype is an isomorphism invariant. It
can be shown that for any measure space (X, Z, p) giving rise to infinite
dimensional Lp(p)-spaces we have the following:

• Lp(p) has exact type p if 1 < p < 2, exact type 2 if 2 < p < oo and

exact type 1 if p — oo ;

• LP{p) has exact cotype 2 if 1 < p < 2, exact cotype p if 2 < p < oo

ßftd exact cotype oo if p oo.

All this and more is completely proved in [C] ; a reference for the general

theory of types and cotypes is [DJT].

Suppose now that Lp{p) and Lq(u) are infinite dimensional and isomorphic
where 1 <p, q < oo, (X, ^,/i), being any two measure spaces;

we shall prove that p q. Without loss of generality, we may suppose that

if p zfz q then p < q\ this would lead to a contradiction as shown below.
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(i) If 1 < p < q< 2 then

exact type of Lp(p)p < exact type of LL,(v) —

which excludes any isomorphism between LP{p), Lq(y).

(ii) If 1 < p < 2, 2 < q <oothen
exact type of Lp(p) =p <exacttype of Lq(v) 2,

which excludes any isomorphism between Lp(jj), Lq(v).

(iii) If 2 < p < q<oothen 1 < q' << 2 ; if were

isomorphic then their duals Lp (//). (v) would be isomorphic, which

is impossible in view of (i).

(iv) If 1 < p < oo, q oo then Lp(p) has exact type equal to min(p, 2) > 1

whereas L°°0) has exact type 1 ; thus If(ß) is not isomorphic to L°° (V)

(a fact which is obvious on the grounds of reflexivity as well).

(v) Finally, let p 1, q oo ; then is not isomorphic to L°°0)
since the exact cotype of L1^) is 2 and the exact cotype of L°°(v)
is oo.

This completes the proof of the LP -isomorphism theorem.

A proof that no infinite dimensional Ll(/i) can be isomorphic to any Co(Y)

or CiY) (Y any locally compact Hausdorff space) can be based on the same

ideas as (v) above. The exact cotype of is 2 whereas the exact cotype
of any infinite dimensional Co(F) or C(Y) is oo (exactly as in the case of
L°°(/i)). This excludes the possibility of any isomorphism between Ll(ß) and

C0(T) or C(Y).

Remark. The Lp -isomorphism theorem seems to be known to various

specialists; however, I know of no explicit formulation or proof of it in
complete generality except for that in [C].
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