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4. A Lie algebra representation

Let Mbe a projective 7?-module of rank two. Let G AutÄ(M) and let

g — Endr(M) viewed as a Lie algebra over R.

The group G acts on the right on Syms(M*) by algebra automorphisms

via
(Fa)(x) F(cjx)

for F £ Sym R(M*) and a eG. Taking the formal derivative at the origin of

the associated map
G Auttf_aig(Sym R(M*))

we get a representation of Lie algebras

(22) p : 0 —» Der/?(SymR(M*)).

The action of G preserves the homogeneous components Sym^(M*) and also

the submodule Sn(M*) of Gaussian forms. The same is true for the Lie algebra

action of 0.

We shall compute the action of g on Sn(M*) explicitly :

LEMMA 4.1. Let F e Sn(Af*) and let T be the associated n -linear form.
Then

p(g)(F)(x) n7(px,x,...,x)

for all g e $.

Proof To compute the derivative of G —> AutR(Sn(M*)), we extend the

scalars to the "dual numbers" R[e]/(e2). Using the symmetry of T we have

F((l + ge)x) F(x) + nT(gx, x,..., x) e

which proves our assertion.

Let C/R be a quadratic algebra in the sense of Section 2 and let M be

an invertible C-module. Then we have a natural map C End/?(M) and we
can restrict the representation p to C. Note that when F is a field and C
is an étale quadratic algebra then the image of C is a Cartan subalgebra f)c

of 0.

Comparing (22) with equation (21), we see that the C-module structure
on Sq{M*) is related to the Lie algebra action by

(23) cF \
We will make this explicit in a special case that we need :
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LEMMA 4.2. Let F C S3(M*) be a binary cubic form over a field K of
characteristic not 2 or 3. Let qF be its determining form, and C — CF(qF)
its even Clifford algebra. Let xi, x2 be coordinates on the vector space M
with respect to a basis mi,m2. Let

t mim2 - m2mi e C C+{qF).

Note that r2 D is the discriminant of qp. Then

dqF 3
_

dqp 9
^ dx2 dx\ dx\ 0x2 '

acting on forms of any degree.

Proof As we have seen,

qF(xiiîij + x2m2) Px\ + Qx\X2 + Rx\

where P a\ — ao«2, Q — a\02 — a^a^, and R a\ — a\a-$. By direct
computation in the Clifford algebra C, we see that

rmi Qm\ — 2Pm2

rm2 2Rm\ — Qm2

Since p{c) is a derivation of SymR(M*), we have

0 0
p(c) p(c)(x0— + p(c){x2)—

Thus r(ximi + x2m2) (Qx\ + 2i?x2)mi — (2Px\ + ßx2)m2, which gives

P(f)(xi) 0qF/dx2 and p(r){x2) ~0qF/0xi.

Corollary 4.3.

(24)

p(j)qF

p(r)F

0 and

_ 0F/0xi OFj0x2

Oqpj0x\ OqF j0x2

— 3GF

where GF is as in (5).

Remark 4.4. If we further assume that C is an étale algebra, then as we
have remarked, p maps C onto a Cartan subalgebra of End^(M) ^ g[(2, K).
This algebra decomposes as

be 3© be

where the first factor is the center, consisting of scalar matrices, and the second

factor is the intersection 2, K), consisting of matrices of trace 0. As

the formulas in the proof of the preceding lemma show that r acts on M
with trace 0, we see that f)'c Kr.
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THEOREM 4.5. Let C/R be a quadratic algebra such that C<S>K is étale

over K. Let M be a projective rank-one C-module and let F G S3(M*) be

such that the determining mapping qF is not 0. Then the following conditions

are equivalent:

(a) F is a C-form

(b) (MyqF,T)(M)) is of type C

(c) p(c)p(c)F 9n(c)F for all c G C.

Proof (a)=>(b). If T is the trilinear form attached to F, then, using the

symmetry of F(cx, y,z), we have

qF(cx)A2 T(cx-, -)
A2 T(x

n(c) A2 (7Xx, -, -))
n(c)qF{x),

which proves the claim. In fact, this implication does not depend on C <g> K
being étale.

It is enough to prove the theorem for the case where R K is a separably

closed field. We can assume in this case C K[a] with a satisfying a2 1.

We will make these assumptions for the rest of the proof.

(b)=>(c). Let {mi,m2} be a basis of M over K with ami mi and

am2 —m2. With respect to this basis, the form qF, being of type C, must

have the shape

qF(x) ooc\X2

where a / 0. To see that this is so, note that because qF is of type C, we
have qF{am\) n(o)qF(mi) —qF(mi), which shows that qF(mi) 0.
One sees similarly that qF(jn2) — 0. Then the coefficients of F(x)
aoxl + ?>a\x\x2 + 3a2x\X2 + a^x\ satisfy the relations: a\ — a$a2 0,

aia2 — ao<23 — öl an<I a\ ~ aia3 — 0. Since a^0, it follows at once that

ax — a2 — 0, so F is of the form F(x) \x\ + px\. Since qF ^ 0 (in fact
nondegenerate under the étaleness hypothesis), the algebra C can be identified
with the even Clifford algebra C^(M,qF,T>(M)) by Proposition 2.8. Under
that identification we have r aa, where r is defined as in Lemma 4.2. From
that lemma we get p(cr) x\djdx\ —x2d/dx2, which can be seen directly,
since both sides agree on xi,x2. Hence p{cr){p^~loéf) (3 — 2i)x\~lx^. In
particular, for F(x) Ax3 + pj?2 we have

p(a)p(jcr)F —p(cr)2F -9F 9n{cr)F.
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The more general identity p(c)p(c)F — 9n(c)F for c G C follows from this

particular case by noting that, from Lemma 4.1, p(l)F 3F.

(c)=>(a). Suppose that p(a)2F 9F. Then F must have the form F
Xx\ + px2. This is because, as we saw in the discussion above, the monomials
x\~~lxl2 are eigenvectors for the operator p(cr)2 with eigenvalue (3—2i)2, which
equals 9 only for i — 0 and i 3. Hence the associated trilinear form is

T(x, y,z) Axiyizi +/ix2y2Z2- Thus T(crx, y,z) Aaqyizi - px2y2Z2, which
is visibly symmetric in x,y,z.

Remark 4.6. It is interesting to notice that the syzygy (6) can be

recovered from Part (c) of Theorem 4.5. Assume for simplicity that R — K
is a field and C is an étale F-algebra. Let {mi,m2} be a basis of
M. Let t ?» mim2 — m2mi e C C+(qF) as in Lemma 4.2. As

we noted in Remark 4.4, r generates the trace 0 part of the Cartan

subalgebra defined by C. Using the derivation property and Corollary 4.3, we

see p(r)(G2F — DF2) (2/3)(p(r)2F — 9DF)Gf- From the above theorem,

p(r)2F ça 9DF, so this is 0. On the other hand, p(r)qF 0, also by

Corollary 4.3, which implies that p(r)qF 0. Hence both qF and GF — DF2

lie in the subspace on weight 0 (for the action of the Cartan subalgebra

\]'c C 51(2, K)) of S6(M*). As S6(M*) is an irreducible representation of
51(2, K), this is one-dimensional. Hence qF and GF — DfF2 differ by a

constant multiple. A priori, this constant could depend on F (e.g., D). That
this is not so can be seen by noting that both sides are of the same degree

in the coefficients of F.

COROLLARY 4.7. Let M be a projective R-module of rank 2, and let

F G S3(M*).

(i) Let C — C+(M, qF, D(M)) and suppose that C (g) K is étale, and that

qF is primitive. Then F is a C-form.

(ii) If F is a C-form for a quadratic R-algebra C and (M,qF:D(M)) is

primitive, then C C+ (M, qF, D(M)).

Proof (i) By Proposition 2.8, (M,qFlV(M)) is of type C. We conclude

by Theorem 4.5.

(ii) If F is a C-form, then by Theorem 4.5, the quadratic mapping

(M, qF, D(M)) is type C. But assuming furthermore that (M,g/r,D(M)) is

primitive, we see that C is isomorphic with C+(M,qF,T)(Mj) by Proposition

2.8.
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LEMMA 4.8. Suppose that C <g) K is étale over K and let (M,F) and

tM',Fl) he cubic C-forms. Assume that the determining mappings qF,qF>

are nonzero. Then every R-linear isomorphism f : (M, F) » (M F is either

C-linear or C-sesquilinear.

Proof. The map / will induce an isomorphism of determining quadratic

mappings of type C. We conclude by Proposition 2.3. D

5. Structure of the cubic C-forms

We shall describe below the C-module structure of S3C(M*) and the

corresponding C-isomorphism classes.

Theorem 5.1. Let M be a rank-one projective C-module. For each

f G Homc(M®3, C*) we define a cubic form by F^(x) 0 x 0 x)(l).
Then

(i) The correspondence f is an isomorphism of C-modules

Homc(M®3, C*) —» S3c(M*).

(ii) The determining mapping qF(f} is primitive if and only if f is an

isomorphism.

(iii) Two cubic C-forms F and F\ on M are equivalent over C if and only

if there exists cGCx such that F\ c3F.

Proof, (i) This is a restatement of Proposition 3.7. The map <f F$ is

a C-isomorphism by definition of the structure of C-module on Sç(M*) in
Section 3.

(ii) It is enough to prove our assertion locally, so we assume that M is
free over C. Write M Cm for some m G M. Let À m (g) m (g) m). Then
we have f(xm (g) ym (g) zm) \(xyz). Let ß(ym,zm) X(yz) and observe that
À is a basis of C* over C if and only if the symmetric bilinear form ß is

unimodular. We have

qF(f>(xm) - n{x)qF(f>{m)

n(x) A2 ß

It follows from this equality that qF(j} is primitive if and only if ß is unimodular,
that is, if and only if f is an isomorphism.
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