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202 P. KOOSIS

exactly as above and may be omitted. The only change in our work consists

of the insertion of a factor x in the integral on the right in (87) and in each

of the integrals deriving therefrom, and one arrives at the analogue of (97)
for /(r, ft2) without further ado.

In treating d/dr of the second right-hand integral in (42) it is better,
when I 0, to replace the path T used there by T\ shown in figure 8. The

formulas (43) and (44) can be used in the resulting integral, and show it to
be an analytic function of ft2 when r > 0.

Proof of the theorem is now complete. Before going further, and coming
to the end of this paper, it is worthwhile to point out that the development
(97), the same as

°° rl e~2fxerx

Y^ / a+2
j=o Jo x

is what we would obtain formally if we substituted (90) into the expansion of
jn p0wers 0f 0(x), grouped together all the terms involving each power

ft2-7 and, finally, plugged the resulting series into the (meaningless) formal

expression

[I e-2/xe0(x)erx

Jo

We now recall the conclusions of the discussion pursued at the beginning
of this §. According to them, the last theorem has the

COROLLARY. The asymptotic development (86) holds for each of the

functions À/(n).

This immediately implies the corresponding development (85) for the quantities

6i(n) appearing in (77).

Addendum

At the beginning of §9 and again in §12 it was said that the functions

^2(r, ft2) and ^(r, ft2) — r~lW2(r, ft2) - the first given by (40) - are not

analytic in ft2 at the point ft 0. This can be seen by referring to a

(complicated) explicit representation of u2(r, ft2) in terms of known special

functions; one may, for instance, consult pp. 181-184 of [4] and especially
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formula (2.35) on p. 181 therein. Although the non-analyticity is not actually
used in the preceding development, it seems worthwhile to see how it can be

verified directly, without resorting to special technical material. Let us do that.

It is enough, in light of the observation at the beginning of the proof of
Theorem 6 (§12), to show that the function 7(r,ft2) given by (87), viz.,

r, 2\ /V-^V7*]^{—K) {x2_K2}l+,d'-

is not even analytic in ft at the point ft — 0. For 0 < ft < min(l, I/I) this
function has an expansion in powers of r with coefficients depending on ft,
and it suffices to show that the latter are not all analytic at ft 0. In fact,
the first 21 + 1 of them are (they can be easily computed), and we have to

go out to the coefficient of r21+1 in order to observe failure of analyticity.
Here we only consider the case where 1 0 so as to keep things simple. The

treatment for larger values of I is very similar, but a bit more involved.

Taking, then, I 0, we look at the value of

9/(r, ft2) 2 f1 fx — n\l/K erx
dx,Kj{r, K2) f

JK \x + KJdr ' JK \x 4- ft/ x + ft

for r 0, that is, at

JK \x + ft/ x + ft

With (x ft)/(x ft) — s, this becomes

l—K 1' l+ K

(98) A(k)= / i ds,
Jo 1

and we wish to show that the function A(k), so far only defined for 0 < k 1,
cannot thence be extended into any neighbourhood of 0 so as to be analytic
therein.

For 0 < k<1 we have 0 < (1 - k)/( \ + k) < 1 and the expansion of
1/(1 ~s) in powers of r can be substituted into the right side of (98), yielding

(99) A(K) —)1/K Y (d - «)/(! + K))"
Vi +J^(!/«) + „

Here,
1 - / 2 2«4
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(cf. in §4), a function obviously analytic (in k2) for |/s| < 1 (with k complex).
Hence A(k) can be extended from (0,1) so as to be analytic near 0 if and

only if

can be so extended.

The series in (100) converges uniformly on any compact set of (complex)
k in the open right half plane, since |(1 — «)/(l + ft)| < 1 precisely in that

region. The function B(k), initially specified only for 0 < k < 1, thus has

an analytic extension to the half plane Re k > 0. To ensure analyticity of
a corresponding extension of A(k), we should further require |/c| < 1 (see

above) ; we can thus be sure that A(k) has, at any rate, an analytic extension

from (0,1) to the half-disk

(100)

D+ {k; Re k > 0 and |«| < 1},

and continues to be given by (99) therein.

Figure 10
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The transformation n -* (1 - k)/(1 + n) takes V+ conformally onto

itself so, for KGV+ ,we have paths 7K lying in V+ (save for their initial

endpoints) and running from 0 out to (1 — k)/(1 + k) (see figure 10). Referring

to (99) we see that a version of (98) holds for k V+ ; we have, namely,

f sl/K
-,

(101) A(k) / —— ds,J-ÏK^S

where is any of the paths just described. (In integrals like the one on the

right, s1/* is understood to be obtained from the principal branch of logs'.)

Take now any integer m >1 ; then (101) can be rewritten

m-l f f Jl/K)+m
A(n) y / s^'^ds+ / — ds,A l~s

that is,

/l-KNl/* ^ ((1 - K)/(1+«))"f jO/tH"
»02> «K»=(lTï) S (1/4 +

+ ln= 1 !K

And this formula, valid for k G V+, enables us to continue A(k) analytically
across the segment (0, i), from T)+ into the intersection of the open unit disk

with the second quadrant (excluding the negative real axis).

Let, indeed, C be any compact set passing, across (0, i), from V+ into
the second region; then |1/«| will be bounded for n E C and hence Re(l/«)
bounded below there, so, if the integer m in (102) is large enough, Re (l/«)+m
will be > — 1 on C. For such «, on (0,i) or beyond it, (1 — n)/(l 4- «) will
lie in the open fourth quadrant, and there will be paths like the dotted

one shown in figure 10, lying in the fourth quadrant and going from 0 out
to (1 — k)/{\ 4- k) while avoiding the point 1. The integral in (102) will
thus make sense with such paths for n G C, and obviously continue to

represent an analytic function of k there. At the same time, the sum in (102)
will remain analytic for n in the second quadrant, not on the real axis, and

with \k\ < 1.

It is now claimed that when k, in the open second quadrant, tends to

any point —l/p, p « 2,3,..., the function A(k), specified in the way
just described, tends to oo. Fixing any such p, we can choose an integer
m > p such that (102) will be valid for the k in question, with indeed
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Re(l/«) + m > —1 and bounded away from —1 as k —> — 1 /p. For the

we can take circular arcs lying in the fourth quadrant, orthogonal to the real
axis and running from 0 to (1 — k)/(1 + k) ; these will stay away from 1

while (1 — ft)/(l + ft) — (p-F l)/(p — 1), i.e., while k; —> — 1/p. Then |1 — sj

will be uniformly bounded away from 0 for s on these and the integral
in (102) thus remain bounded as k —> — I/p. At the same time, however, the

sum in (102) will tend to 00 like l/((l/n)-\-p). Hence A(k) will tend to 00

as k —> — 1/p in the manner described.

This being so for each of the points — 1 /p, p — 2,3,... A(k) can have

no analytic continuation from T>+ into any neighbourhood of 0, since any
such continuation would have to coincide with the one just constructed on the

intersection of the open second quadrant with the neighbourhood in question.
That is what we needed to prove.

Before concluding, I must again thank my friend Victor Havin for having,
during a conversation, expressed a thought which, indirectly, got me onto a

path leading to the above argument.
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