6. Shifted Radon transforms, waves, and the amusing formula

Objekttyp: Chapter

Zeitschrift: L'Enseignement Mathématique

Band (Jahr): 47 (2001)

Heft 3-4: L'ENSEIGNEMENT MATHÉMATIQUE

PDF erstellt am:

23.07.2024

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.
product is then the reciprocal of a polynomial in λ^{2} (as in the case d even), and the corresponding inversion formula is

$$
u=P(L)\left(\left(R^{*} R u\right) * f_{a, b}\right),
$$

where P is a polynomial. We refer to [1] for details.
Unfortunately the method of spherical transforms sketched above seems to provide explicit inversion formulas for the d-geodesic Radon transform on X only when $q^{\prime}=q$ or $q^{\prime}=1$ on the one hand (to get rid of ${ }_{3} F_{2}$) and d even or $X=H^{n}(\mathbf{R})$ on the other hand. The only reachable results so far are thus the formulas already obtained in [1] for $H^{n}(\mathbf{R})$ and a new proof of the above Theorem 8. The method might however yield some new results in the wider class of Damek-Ricci spaces (or harmonic NA groups), where the dimension q can be an arbitrary integer.
6. Shifted Radon transforms, waves, and the amusing formula

On page 146 of [10], S. Helgason notes the "amusing formula"

$$
\begin{equation*}
L R^{*} R u(x)=-\left.\frac{\partial}{\partial \tau} R_{t(\tau)}^{*} R u(x)\right|_{\tau=1} \tag{12}
\end{equation*}
$$

for the 2-geodesic Radon transform R on the hyperbolic space $X=H^{3}(\mathbf{R})$, where L is the Laplace-Beltrami operator of X and $x \in X$. In this formula, R_{t}^{*} is the generalized dual transform obtained by integrating over all 2-dimensional totally geodesic submanifolds at distance t from a point x, and $t=t(\tau)$ denotes the positive solution of the equation $\cosh t=1 / \tau$. In.[10], or [11], p. 55 , equation (12) is indirectly obtained by bringing together two different inversion formulas for R.

In this section we study general shifted transforms, a concept going back to Radon himself [16] for the line transform in \mathbf{R}^{2}, and we use them to derive inversion formulas. They also provide solutions of wave-type equations; formula (12) can actually be seen as a wave equation at time $t=0$. We shall give a direct proof of some generalized "amusing formulas", thus solving wave equations (called multitemporal when the time variable is multidimensional), and we use them to relate two different types of Radon inversion formulas (with or without shifts).

6.1 SHIFTS

As before, let $X=G / K$ and $Y=G / H$ be two homogeneous spaces, with K compact, and

$$
R u\left(g \cdot y_{o}\right)=\int_{H} u\left(g h \cdot x_{o}\right) d h
$$

be the corresponding Radon transform of $u \in C_{c}(X)$.
Let $t \in G$ be a "shift", fixed at first. Replacing the origin $y_{o}=H$ in Y by the shifted origin $y_{t}=t \cdot y_{o}$, with stabilizer subgroup $H_{t}=t H t^{-1} \subset G$, we obtain the new identification $Y=G / H_{t}$, and a new incidence relation between X and Y. A point $x=g \cdot x_{o} \in X$ is now incident to $y \in Y$ if and only if there exists $\gamma \in G$ such that

$$
x=\gamma \cdot x_{o} \quad \text { and } \quad y=\gamma \cdot y_{t}=\gamma t \cdot y_{o},
$$

i.e.

$$
y=g k t \cdot y_{o},
$$

for some $k \in K$. The corresponding shifted dual transform of $v \in C(Y)$ is

$$
R_{t}^{*} v\left(g \cdot x_{o}\right)=\int_{K} v\left(g k t \cdot y_{o}\right) d k
$$

Remark. We now have two double fibrations

and we are dealing with the Radon tranform R given by the first and the dual transform R_{t}^{*} given by the second. The transform R_{t} associated with the second diagram is

$$
R_{t} u\left(g \cdot y_{o}\right)=\int_{H} u\left(g h t^{-1} \cdot x_{o}\right) d h
$$

but, excepting the proof of Proposition 12, it will not be used in the sequel.
Lemma 11. Let $u \in C_{c}(X)$ and $g, t \in G$. Then

$$
\left(R_{t}^{*} R u\right)\left(g \cdot x_{o}\right)=\left(R u_{g}\right)\left(t \cdot y_{o}\right),
$$

where u_{g} is the K-invariant function on X defined by

$$
u_{g}(x)=\int_{K} u(g k \cdot x) d k
$$

Proof. Immediate, since

$$
\left(R_{t}^{*} R u\right)\left(g \cdot x_{o}\right)=\int_{K \times H} u\left(g k t h \cdot x_{o}\right) d k d h=\int_{H} u_{g}\left(t h \cdot x_{o}\right) d h .
$$

Before proceeding we mention the following extension of Proposition 3 to shifted transforms. This result will not be used in the sequel.

Proposition 12. Let G and H be unimodular, K compact, $X=G / K$ and $Y=G / H$. For any $u \in C_{c}(X)$ and $t \in G$ we have

$$
R_{t}^{*} R u=u * S_{t}
$$

(convolution on X). Here S_{t} is the K-invariant distribution on X defined by $S=R_{t}^{*} R \delta$, and δ is the Dirac distribution at the origin $x_{o}=K$ of X, i.e.

$$
\left\langle S_{t}, u\right\rangle=R^{*} R_{t} u\left(x_{o}\right)=\int_{K \times H} u\left(k h t^{-1} \cdot x_{o}\right) d k d h .
$$

Proof. The proof of Proposition 3 can be repeated here, with $R^{*} R_{t}$ as the dual of $R_{t}^{*} R$. The claim can also be checked directly, writing, for $\varphi \in \mathcal{D}(X)$,

$$
\left\langle R_{t}^{*} R u, \varphi\right\rangle=\int_{G \times H} u\left(g t h \cdot x_{o}\right) \varphi\left(g \cdot x_{o}\right) d g d h
$$

and changing variables into $h^{\prime}=h^{-1}, g^{\prime}=g t h$; the result follows easily, G and H being unimodular groups. Details are left to the reader.

6.2 RADON INVERSION BY SHIFTS

The elementary Lemma 11 can be used in the following way. Assume the transform R can be inverted at the origin for K-invariant functions on X, say

$$
\begin{equation*}
u\left(x_{o}\right)=\left\langle T_{(y)}, R u(y)\right\rangle, \tag{13}
\end{equation*}
$$

where T is some linear form on a space of functions on Y. Then, replacing u by the K-invariant function u_{g} in the lemma, we obtain

$$
u\left(g \cdot x_{o}\right)=u_{g}\left(x_{o}\right)=\left\langle T, R u_{g}\right\rangle
$$

The roles of g and t can now be interchanged by Lemma 11, whence

$$
\begin{equation*}
u(x)=\left\langle T_{(t)}, R_{t}^{*} R u(x)\right\rangle \tag{14}
\end{equation*}
$$

for arbitrary $u \in \mathcal{D}(X)$ and $x \in X$. The notation $T_{(t)}$ means that T now acts on the shift variable t, or $t \cdot y_{o}$ to be precise. Since $R_{k t h}^{*} R u(x)=R_{t}^{*} R u(x)$ for $k \in K$ and $h \in H$, this variable may actually be taken in $K \backslash G / H$.

The general inversion formula (14) for R thus follows from the special case (13) of K-invariant functions at the origin, thanks to the shifted dual transform.

If X is an isotropic space, the above trick (replace u by u_{g}) simply means replacing $u(x)$ by its mean value over the sphere with center $g \cdot x_{o}$ and radius $d\left(x_{o}, x\right)$.

6.3 EXAMPLES

a. Horocycle transform. We first consider the horocycle Radon transform on $X=G / K$, a Riemannian symmetric space of the noncompact type. Using the classical semisimple notations related to an Iwasawa decomposition $G=K A N$ (see Notations, d), we take the point $x_{o}=K$, resp. the horocycle $y_{o}=N \cdot x_{o}$, as the origin in X, resp. in $Y=G / M N$. Then

$$
R u\left(g \cdot y_{o}\right)=\int_{N} u\left(g n \cdot x_{o}\right) d n
$$

(integrating over M is unnecessary here) and the dual transform shifted by $a \in A$ is

$$
R_{a}^{*} v\left(g \cdot x_{o}\right)=\int_{K} v\left(g k a \cdot y_{o}\right) d k
$$

For K-invariant u the decomposition $g=k a n$ gives

$$
R u\left(g \cdot y_{o}\right)=R u\left(a \cdot y_{o}\right)=\int_{N} u\left(a n \cdot x_{o}\right) d n=a^{-\rho} \mathcal{A} u(a)
$$

the Abel transform \mathcal{A} is defined by this equality.
For K-invariant $u \in \mathcal{D}(X)$ we have $\mathcal{A} u \in \mathcal{D}(A)$. Let \mathfrak{a}^{*} be the dual space of \mathfrak{a}. It is known from spherical harmonic analysis on X that the classical Fourier transform

$$
\widehat{\mathcal{A} u}(\lambda)=\int_{A} a^{-i \lambda} \mathcal{A} u(a) d a, \quad \lambda \in \mathfrak{a}^{*}
$$

coincides with the spherical transform of u, with the inversion formula ([9] p. 454)

$$
\begin{equation*}
u\left(x_{o}\right)=C \int_{\mathfrak{a}^{*}} \widehat{\mathcal{A} u}(\lambda)|c(\lambda)|^{-2} d \lambda \tag{15}
\end{equation*}
$$

where C is a positive constant and $c(\lambda)$ is Harish-Chandra's function. Since
$C \cdot|c(\lambda)|^{-2}$ has polynomial growth on \mathfrak{a}^{*} its Fourier transform is a tempered distribution T on $A=\exp \mathfrak{a}$ such that

$$
u\left(x_{o}\right)=\langle T, \mathcal{A} u\rangle=\left\langle T_{(a)}, a^{\rho} R u\left(a \cdot y_{o}\right)\right\rangle .
$$

Thus T inverts the Abel transform at the origin. By (14) we obtain the next theorem.

Theorem 13. Let X be a Riemannian symmetric space of the noncompact type. Its horocycle Radon transform R can be inverted by

$$
u(x)=\left\langle T_{(a)}, a^{\rho} R_{a}^{*} R u(x)\right\rangle, x \in X
$$

for $u \in \mathcal{D}(X)$. The distribution $T_{(a)}$ (acting on the variable $a \in A$) is, up to a constant factor, the Fourier transform of $|c(\lambda)|^{-2}$.

REMARKs.

(i) This extends a result by Berenstein and Tarabusi [2] for $X=H^{n}(\mathbf{R})$, obtained by direct calculations.
(ii) Helgason's original inversion formula ([11], p.116)

$$
u(x)=R^{*} \Lambda \bar{\Lambda} R u(x)
$$

follows easily from Theorem 13. Indeed Helgason's operator $\Lambda \bar{\Lambda}$ is defined as follows ([11], p.111). Given $v \in \mathcal{D}(Y)$ and $g=k a n \in G$, multiply $v\left(g \cdot y_{o}\right)=v\left(k a \cdot y_{o}\right)$ by a^{ρ}, take the Fourier transform with respect to $a \in A$, multiply it by $C \cdot|c(\lambda)|^{-2}$ (an even function of λ), take the inverse Fourier transform, and multiply by $a^{-\rho}$; the result is $\Lambda \bar{\Lambda} v\left(g \cdot y_{o}\right)$. In other words

$$
\Lambda \bar{\Lambda} v\left(g \cdot y_{o}\right)=\Lambda \bar{\Lambda} v\left(k a \cdot y_{o}\right)=a^{-\rho}\left(T *\left(a^{\rho} v\right)\right)\left(k a \cdot y_{o}\right)
$$

where $*$ is the convolution on A with respect to a. Let b denote a variable in A; since T is even we have

$$
\begin{aligned}
\Lambda \bar{\Lambda} v\left(g \cdot y_{o}\right) & =a^{-\rho}\left\langle T_{(b)},(a b)^{\rho} v\left(k a b \cdot y_{o}\right)\right\rangle \\
& =\left\langle T_{(b)}, b^{\rho} v\left(k a b \cdot y_{o}\right)\right\rangle=\left\langle T_{(b)}, b^{\rho} v\left(g b \cdot y_{o}\right)\right\rangle
\end{aligned}
$$

Replacing v by $R u, g$ by $g k$ and integrating with respect to $k \in K$ we obtain

$$
\begin{aligned}
R^{*} \Lambda \bar{\Lambda} R u\left(g \cdot x_{o}\right) & =\int_{K}\left\langle T_{(b)}, b^{\rho} R u\left(g k b \cdot y_{o}\right)\right\rangle d k \\
& =\left\langle T_{(b)}, b^{\rho} \int_{K} R u\left(g k b \cdot y_{o}\right) d k\right\rangle=\left\langle T_{(b)}, b^{\rho} R_{b}^{*} R u\left(g \cdot x_{o}\right)\right\rangle .
\end{aligned}
$$

By Theorem 13 this is $u\left(g \cdot x_{o}\right)$, as claimed.
(iii) Note that T is supported at the origin if and only if $|c(\lambda)|^{-2}$ is a polynomial, i.e. if the Lie algebra \mathfrak{g} has only one conjugacy class of Cartan subalgebras (see Corollary 20 below).
b. TOTALLY GEODESIC TRANSFORM ON CLASSICAL HYPERBOLIC SPACES. We retain the notation of Section $4.3 \mathbf{c}$.

Theorem 14. Let $X=H^{m}(\mathbf{F}), \mathbf{F}=\mathbf{R}, \mathbf{C}$ or \mathbf{H}, be one of the classical hyperbolic spaces, let \mathfrak{s} be any \mathbf{F}-vector subspace of $\mathfrak{p}=\mathbf{F}^{m}$, and T any unit vector orthogonal to \mathfrak{s} in \mathfrak{p}.

For the Radon transform defined by the totally geodesic submanifolds $y=g \cdot \operatorname{Exp} \mathfrak{s}$, of (real) dimension d, we have the following inversion formulas by means of shifted dual transforms, for $u \in \mathcal{D}(X)$ and $x \in X$.
(i) If $d=2 k+1$ is odd, $k \geq 0$,

$$
2^{k} \pi^{k+1} u(x)=\left.\left(\sigma^{-1} \partial_{\sigma}\right)^{k+1} \int_{0}^{\sigma}\left(R_{\exp t(\tau) T}^{*} R u(x)\right)\left(\sigma^{2}-\tau^{2}\right)^{-1 / 2} d \tau\right|_{\sigma=1},
$$

where $t(\tau)$ denotes the positive solution of the equation $\cosh t=1 / \tau$.
(ii) If $d=2 k$ is even, $k \geq 1$, there exists a polynomial of degree k

$$
Q_{k}(\lambda)=\frac{2^{k} k!}{(2 k)!} \lambda^{k}+\cdots+\left(q^{\prime}+1\right)\left(q^{\prime}+3\right) \cdots\left(q^{\prime}+2 k-1\right)
$$

with rational coefficients (depending on k and $q^{\prime}=\operatorname{dim} \mathfrak{s}_{2 \alpha}$), such that

$$
(-2 \pi)^{k} u(x)=Q_{k}\left(\partial_{t}^{2}\right)\left(R_{\exp t T}^{*} R u(x)\right)_{t=0} .
$$

Remarks. This extends a result proved by Helgason ([10], p. 144, or [14], p. 97) for $\mathbf{F}=\mathbf{R}$. In case (i), a look at the proof below shows that an arbitrary positive integer ℓ may be added to the exponents of $\sigma^{-1} \partial_{\sigma}$ and $\sigma^{2}-\tau^{2}$; Helgason's result is obtained for $\ell=k$. From the proof of case (ii) we obtain for $k=1,2$

$$
\begin{aligned}
& Q_{1}\left(\partial_{t}^{2}\right)=\partial_{t}^{2}+q^{\prime}+1 \\
& Q_{2}\left(\partial_{t}^{2}\right)=\frac{1}{3} \partial_{t}^{4}+\left(2 q^{\prime}+\frac{14}{3}\right) \partial_{t}^{2}+\left(q^{\prime}+1\right)\left(q^{\prime}+3\right)
\end{aligned}
$$

Our d is of course even whenever $\mathbf{F}=\mathbf{C}$ or \mathbf{H}. A comparison with Section $4.3 \mathbf{c}$ shows that (except for $\mathbf{F}=\mathbf{R}$) the present assumption on \mathfrak{s} is stronger than in Theorem 8.

Proof of Theorem 14. In order to use spherical coordinates on totally geodesic submanifolds of X, we need a lemma. As in Section $4.3 \mathbf{c}$, the
matrices in \mathfrak{p} can be identified to vectors $V=\left(V_{1}, \ldots, V_{m}\right) \in \mathbf{F}^{m}$, and the scalar product of $T, V \in \mathfrak{p}$ is

$$
(T, V)=\operatorname{Re}(\bar{T} \cdot V), \text { with } \bar{T} \cdot V=\sum_{i=1}^{m} \bar{T}_{i} V_{i}
$$

Let || || be the corresponding norm.
Lemma 15. Let $X=H^{m}(\mathbf{F})$ be a classical hyperbolic space.
(i) Let $T, V \in \mathfrak{p}$. In the geodesic triangle with vertices x_{o} (the origin of X), $\operatorname{Exp} T$ and $\exp T \cdot \operatorname{Exp} V$, the Riemannian lengths of the sides are $t=\|T\|, r=\|V\|$ and w given by

$$
\begin{aligned}
\cosh ^{2} w=\left(\cosh t \cosh r+\frac{\sinh t \sinh r}{t}\right. & (T, V))^{2} \\
& +\left(\frac{\sinh t}{t} \frac{\sinh r}{r}|\bar{T} \cdot V-(T, V)|\right)^{2}
\end{aligned}
$$

(ii) Let $\mathfrak{s} \subset \mathfrak{p}$ be a Lie triple system. If $T \in \mathfrak{p}$ is orthogonal to \mathfrak{s}, the totally geodesic submanifold $\exp T \cdot \operatorname{Exp} \mathfrak{s}$ is at distance $t=\|T\|$ from the origin.

Proof. (i) The Riemannian distance from x_{o} to $\operatorname{Exp} T$ is $\|T\|=t$. Transforming x_{o} and $\operatorname{Exp} V$ by the isometry $\exp T \in G$ shows that the second side of the triangle has length r. The third side is $w=\|W\|$, where W is the unique $W \in \mathfrak{p}$ such that $\operatorname{Exp} W=\exp T \cdot \operatorname{Exp} V$, in other words

$$
\exp W=(\exp T \exp V) k
$$

for some $k \in K$. The map $g \mapsto g \theta(g)^{-1}$, where θ is the Cartan involution of G, transforms this equality into

$$
\exp 2 W=\exp T \exp 2 V \exp T
$$

By elementary matrix computations $T^{3}=t^{2} T$, and the exponential is

$$
\exp T=I+\frac{\sinh t}{t} T+\frac{\cosh t-1}{t^{2}} T^{2}
$$

where I is the unit matrix. Now $\operatorname{tr} T=0$ and $\operatorname{tr} T^{2}=2 t^{2}$ is real, so that taking the traces we obtain

$$
\operatorname{tr}(\exp 2 W)=\operatorname{Re} \operatorname{tr}(\exp 2 W)=\operatorname{Re} \operatorname{tr}(\exp 2 T \exp 2 V)
$$

indeed $\operatorname{Re} \operatorname{tr}\left(g g^{\prime}\right)=\operatorname{Re} \operatorname{tr}\left(g^{\prime} g\right)$ for $g, g^{\prime} \in G$, even when $\mathbf{F}=\mathbf{H}$.

Taking account of

$$
\begin{aligned}
& \operatorname{Re} \operatorname{tr} T V=2(T, V), \quad \operatorname{tr} T^{2} V=\operatorname{tr} T V^{2}=0, \\
& \operatorname{Re} \operatorname{tr} T^{2} V^{2}=t^{2} r^{2}+|\bar{T} \cdot V|^{2},
\end{aligned}
$$

the expression of $\cosh w$ follows after some elementary calculations.
(ii) Let $y=\exp T \cdot \operatorname{Exp} \mathfrak{s}$. By (i) with $V \in \mathfrak{s}$ and $(T, V)=0$, the distance w of the origin to the point $\operatorname{Exp} W=\exp T \cdot \operatorname{Exp} V$ of y is given by

$$
\cosh ^{2} w=(\cosh t \cosh r)^{2}+\left(\frac{\sinh t \sinh r}{r}|\bar{T} \cdot V|\right)^{2} .
$$

Therefore $w \geq t$, with equality if and only if $V=0$, and $\operatorname{Exp} T$ is the unique point of y closest to x_{o} (geodesic orthogonal projection of the origin on y). The lemma is proved.

Going back to Theorem 14, let $g \in G$ and let $y=g \cdot \operatorname{Exp} \mathfrak{s}$ be an arbitrary given totally geodesic submanifold, element of Y. The minimum distance between y and the origin x_{o} is obtained at a point $\operatorname{Exp} T \in y$, with $T \in \mathfrak{p}$. In particular there exists $V \in \mathfrak{s}$ such that $\operatorname{Exp} T=g \cdot \operatorname{Exp} V$, i.e. $(\exp T) k=g \exp V$ for some $k \in K$. But $\operatorname{Exp} \mathfrak{s}$ is globally invariant under the action of $\exp V$, so that $y=(\exp T) k \cdot \operatorname{Exp} \mathfrak{s}=\exp T \cdot \operatorname{Exp}(k \cdot \mathfrak{s})$. Changing notation, we may write \mathfrak{s} for $k \cdot \mathfrak{s}$ and $y=\exp T \cdot \operatorname{Exp} \mathfrak{s}$.

Let $V \in \mathfrak{s}$. On the geodesic $\exp T \cdot \operatorname{Exp} s V, s \in \mathbf{R}$, contained in y, the minimum distance to x_{o} is obtained for $s=0$. By Lemma 15 (i) with $s V$ instead of V, this implies $(T, V)=0$ so that T is orthogonal to \mathfrak{s} and Lemma 15 (ii) applies.

Besides, if we assume \mathfrak{s} is a \mathbf{F}-vector subspace of \mathfrak{p} therefore a Lie triple system (Section $4.3 \mathbf{c}$), the vector T must be orthogonal to all $V \lambda, V \in \mathfrak{s}$, $\lambda \in \mathbf{F}$, whence $\bar{T} \cdot V=0$. By Lemma 15 the distance $w=w(t, r)$ between x_{o} and an arbitrary point $x=\exp T \cdot \operatorname{Exp} V$ of y is simply given by

$$
\begin{equation*}
\cosh w(t, r)=\cosh t \cosh r, \quad t=\|T\|, \quad r=\|V\|, \tag{16}
\end{equation*}
$$

the same expression as for real hyperbolic spaces.
According to (13) and (14) we only need to invert R at the origin for a K-invariant function u. As shown in Section 4.1 a, Lemma 1 applies and $R u(y)=\int_{y} u(x) d m_{y}$. When u is radial the integral can be obtained in spherical coordinates on y with origin $\operatorname{Exp} T$, as

$$
\begin{equation*}
R u(y)=\int_{0}^{\infty} u(w(t, r)) A_{o}(r) d r \tag{17}
\end{equation*}
$$

where $A_{o}(r)=\omega_{d}(\sinh r)^{d-1}(\cosh r)^{q^{\prime}}$ is the area of spheres of radius r in y. By (16) and (17) $R u$ may be viewed as a smooth even function $R u(t)$ of $t \in \mathbf{R}$.

The end of the proof is now similar to the case of $H^{n}(\mathbf{R})$, as given in [11], p. 53 or [14], p. 97. Let $\tau=(\cosh t)^{-1}$, and let $t=t(\tau) \geq 0$ denote the inverse function. Introducing the functions

$$
\varphi(\tau)=\tau^{-d-q^{\prime}} u(t(\tau)), \quad \psi(\tau)=\tau^{-1-q^{\prime}} R u(t(\tau))
$$

which are C^{∞} on 10,1$]$, (17) becomes

$$
\begin{equation*}
\psi(\tau)=\omega_{d} \int_{0}^{\tau} \varphi(\rho)\left(\tau^{2}-\rho^{2}\right)^{(d / 2)-1} d \rho \tag{18}
\end{equation*}
$$

Proof of (i). The Abel type integral equation (18) can be inverted as usual: it implies that, for any $a>0, \sigma>0$,

$$
\begin{aligned}
& \Gamma\left(\frac{d}{2}+a\right) \int_{0}^{\sigma} \psi(\tau)\left(\sigma^{2}-\tau^{2}\right)^{a-1} \tau d \tau= \\
&=\pi^{d / 2} \Gamma(a) \int_{0}^{\sigma} \varphi(\rho)\left(\sigma^{2}-\rho^{2}\right)^{(d / 2)+a-1} d \rho
\end{aligned}
$$

and, choosing $a>0$ such that $N=(d / 2)+a$ is a strictly positive integer, it follows easily that

$$
2^{N-1} \pi^{d / 2} \Gamma(a) \varphi(\sigma)=\sigma\left(\sigma^{-1} \partial_{\sigma}\right)^{N}\left(\int_{0}^{\sigma} \psi(\tau)\left(\sigma^{2}-\tau^{2}\right)^{a-1} \tau d \tau\right)
$$

If $d=2 k+1$ is odd, $k \geq 0$, the smallest such a is $1 / 2$ so that $N=k+1$ and

$$
2^{k} \pi^{k+1} \varphi(\sigma)=\sigma\left(\sigma^{-1} \partial_{\sigma}\right)^{k+1}\left(\int_{0}^{\sigma} \psi(\tau)\left(\sigma^{2}-\tau^{2}\right)^{-1 / 2} \tau d \tau\right), \quad \sigma>0
$$

the derivatives cannot be taken here under the integral. Besides d can only be odd for $\mathbf{F}=\mathbf{R}$ according to the assumption on \mathfrak{s}, and $q^{\prime}=0$ in that case. Going back to u and $R u$ we thus obtain for $\sigma=1$

$$
2^{k} \pi^{k+1} u\left(x_{o}\right)=\left.\left(\sigma^{-1} \partial_{\sigma}\right)^{k+1} \int_{0}^{\sigma} R u(t(\tau))\left(\sigma^{2}-\tau^{2}\right)^{-1 / 2} d \tau\right|_{\sigma=1}
$$

for any K-invariant $u \in \mathcal{D}(X)$. The claim follows by Section 6.2.
Proof of (ii). If $d=2 k$ is even, $k \geq 1$, the integral equation (18) can be directly solved as

$$
(2 \pi)^{k} \varphi(\tau)=\tau\left(\tau^{-1} \partial_{\tau}\right)^{k} \psi(\tau), \quad \tau>0
$$

In particular, at the origin,

$$
\begin{aligned}
& (2 \pi)^{k} u\left(x_{o}\right)=\left(\tau^{-1} \partial_{\tau}\right)^{k}\left(\tau^{-1-q^{\prime}} R u(t(\tau))\right)_{\tau=1} \\
& \quad=\left.\left(\partial_{\tau}^{k}+\cdots+(-1)^{k}\left(q^{\prime}+1\right)\left(q^{\prime}+3\right) \cdots\left(q^{\prime}+2 k-1\right)\right) \operatorname{Ru}(t(\tau))\right|_{\tau=1} .
\end{aligned}
$$

To switch over to derivatives with respect to t we note that, if $g(\tau)=f(t)$ with $\tau=(\cosh t)^{-1}=1-\frac{t^{2}}{2}+\cdots$, identification of Taylor expansions at $\tau=1$, resp. $t=0$, leads to

$$
\left(-\frac{1}{2}\right)^{k} \frac{g^{(k)}(1)}{k!}=\frac{f^{(2 k)}(0)}{(2 k)!}+\cdots+a_{k} f^{\prime \prime}(0),
$$

where dots are a sum of even derivatives of f multiplied by some rational coefficients (like a_{k}). Therefore

$$
(-2 \pi)^{k} u\left(x_{o}\right)=\left.\left(\frac{2^{k} k!}{(2 k)!} \partial_{t}^{2 k}+\cdots+\left(q^{\prime}+1\right)\left(q^{\prime}+3\right) \cdots\left(q^{\prime}+2 k-1\right)\right) R u(t)\right|_{t=0}
$$

for any K-invariant $u \in \mathcal{D}(X)$, whence the claim by Section 6.2.

6.4 THE AMUSING FORMULA GENERALIZED

a. To motivate the forthcoming generalizations of the amusing formula (12) and their applications to Radon inversion, we briefly recall the classical example of points and hyperplanes in the Euclidean space $X=\mathbf{R}^{n}$. Let (ω, p) be parameters for the hyperplane defined by the equation $\omega \cdot x=p$, where ω is a unit vector, p is a real number and \cdot is the scalar product. Given $t \in \mathbf{R}$ and a point $x \in \mathbf{R}^{n}$, the parameters $(\omega, p)=(\omega, t+\omega \cdot x)$ define a hyperplane at distance $|t|$ from x, and

$$
R_{t}^{*} v(x)=\int_{S^{n-1}} v(\omega, t+\omega \cdot x) d \omega
$$

is the corresponding shifted dual Radon transform, where $v(\omega, p)=v(-\omega,-p)$ is an arbitrary smooth even function on $S^{n-1} \times \mathbf{R}$. Changing ω into $-\omega$ in the integral shows that $R_{t}^{*} v(x)$ is an even function of t.

Since $\sum \omega_{i}^{2}=1$ it is easily checked that

$$
\left(\partial_{t}^{2}-\Delta_{x}\right) v(\omega, t+\omega \cdot x)=0
$$

where Δ_{x} is the Euclidean Laplace operator acting on x. Thus $R_{t}^{*} v(x)$, as a function of (x, t) in $\mathbf{R}^{n} \times \mathbf{R}$, is a solution of the wave equation, being an
integral of the elementary plane waves $v(\omega, t+\omega \cdot x)$. More generally, for any positive integer k,

$$
\begin{equation*}
\left(\partial_{t}^{2 k}-\Delta_{x}^{k}\right) R_{t}^{*} v(x)=0 . \tag{19}
\end{equation*}
$$

For odd n we have, by Theorem 8 with $n=2 k+1, d=2 k$ and $\varepsilon=0$, the following inversion formula for the Radon transform on hyperplanes

$$
\begin{equation*}
C u(x)=\Delta_{x}^{k} R^{*} R u(x) . \tag{20}
\end{equation*}
$$

Putting $v=R u$ in (19) and observing that $R^{*}=R_{0}^{*}$, we thus obtain a new inversion formula by means of the shifted dual transform

$$
\begin{equation*}
C u(x)=\left.\partial_{t}^{n-1} R_{t}^{*} R u(x)\right|_{t=0} . \tag{21}
\end{equation*}
$$

Formula (21) might also be proved directly by the method of Section 6.2.
b. To extend formula (12) we first deal with the Laplace operator; general invariant operators will be considered in the next section.

Let G be a Lie group, K a compact subgroup and let L be the Laplace operator of the Riemannian manifold $X=G / K$ (cf. Notations, \mathbf{b}). The operator L can be expressed by means of any orthonormal basis X_{1}, \ldots, X_{n} of \mathfrak{p} as

$$
L f(g K)=\left.\sum_{j=1}^{n} \partial_{s}^{2} f\left(g \exp \left(s X_{j}\right) K\right)\right|_{s=0}
$$

with $f \in C^{2}(G / K), g \in G$; indeed both sides are G-invariant operators on X which coincide at $g=e$.

Now let $Y=G / H$ where H is a Lie subgroup of G and, as before,

$$
R^{*} v(g K)=\int_{K} v(g k H) d k, \quad R_{t}^{*} v(g K)=\int_{K} v(g k t H) \dot{d} k
$$

for $v \in C^{2}(Y)$ and $g, t \in G$. Then

$$
\begin{equation*}
L R^{*} v(g K)=\int_{K}\left(\left.\sum_{j} \partial_{s}^{2} v\left(g \exp \left(s X_{j}\right) k H\right)\right|_{s=0}\right) d k \tag{22}
\end{equation*}
$$

But $\sum X_{j}^{2}$ is a K-invariant element in the symmetric algebra of \mathfrak{p} and it follows that, for any $\varphi \in C^{2}(\mathfrak{p}), k \in K$,

$$
\left.\sum_{j} \partial_{s}^{2} \varphi\left(s X_{j}\right)\right|_{s=0}=\left.\sum_{j} \partial_{s}^{2} \varphi\left(s\left(k \cdot X_{j}\right)\right)\right|_{s=0}
$$

Therefore k can be moved to the left of $\exp s X_{j}$ in (22) and we obtain

$$
\begin{equation*}
L R^{*} v(x)=\left.\sum_{j} \partial_{s}^{2} R_{\exp s X_{j}}^{*} v(x)\right|_{s=0} \tag{23}
\end{equation*}
$$

for $v \in C^{2}(Y), x \in X$. If $\mathfrak{h} \cap \mathfrak{p}$ is a nontrivial subspace of \mathfrak{p} and the basis $\left(X_{j}\right)$ contains a basis of this subspace, the sum in (23) only runs over an orthonormal basis of the orthogonal subspace $(\mathfrak{h} \cap \mathfrak{p})^{\perp}$, due to the right H-invariance of v.

We now give a more specific result for the geodesic Radon transform, in the notation of Section 4.1. If \mathfrak{s} is a d-dimensional Lie triple system contained in \mathfrak{p} and $y_{o}=\operatorname{Exp} \mathfrak{s}$ the corresponding totally geodesic submanifold of X, we take as Y the set of all $g \cdot y_{o}$ for $g \in G$. Then $Y=G / H$, where H is the subgroup of all $h \in G$ globally preserving y_{o}.

Proposition 16. Let X be one of the classical hyperbolic spaces $H^{n}(\mathbf{F})$, $\mathbf{F}=\mathbf{R}, \mathbf{C}$ or \mathbf{H}. Assume \mathfrak{s} is a \mathbf{F}-vector subspace of \mathfrak{p} and let $T \in \mathfrak{p}$ be any unit vector orthogonal to \mathfrak{s}. For $v \in C^{2}(Y)$, the shifted dual geodesic transform $R_{\exp t T}^{*} v$ is then an even function of $t \in \mathbf{R}$ and, for $x \in X$,

$$
L R^{*} v(x)=\left.(n-d) \partial_{t}^{2} R_{\exp t T}^{*} v(x)\right|_{t=0}
$$

where n and d denote the real dimension of X and \mathfrak{s} respectively.
In other words, the function $(x, t) \mapsto R_{\exp t T}^{*} v(x)$ is a solution at time $t=0$ of the wave operator $L-(n-d) \partial_{t}^{2}$ on $X \times \mathbf{R}$.

Applying the proposition to $H^{3}(\mathbf{R})$ with $d=2$ we obtain formula (12). Indeed, if $\varphi(t)$ is an even function of t, let ψ be defined by $\psi(\tau)=\varphi(t)$ with $\cosh t=1 / \tau$; then $-\psi^{\prime}(1)=\varphi^{\prime \prime}(0)$.

Example. By Theorem 8 the 2 -geodesic transform on $X=H^{n}(\mathbf{R})$ can be inverted by means of a second order differential operator:

$$
-2 \pi(n-2) u=(L+n-2) R^{*} R u
$$

and Proposition 16 now yields the inversion formula

$$
\begin{equation*}
-2 \pi u=\left.\left(\partial_{t}^{2}+1\right) R_{\exp t T}^{*} R u\right|_{t=0} \tag{24}
\end{equation*}
$$

where $u \in \mathcal{D}(X)$ and $T \in \mathfrak{p}$ is any unit vector orthogonal to \mathfrak{s}. Formula (24) also follows from Theorem 14 (ii) with $k=1, q^{\prime}=0$.

Proof of Proposition 16. The point is to show that the group $K \cap H$ acts transitively on the unit sphere of \mathfrak{s}^{\perp}, the orthogonal of \mathfrak{s} in \mathfrak{p}. For the
scalar product $(T, V)=\operatorname{Re} \sum \bar{T}_{i} V_{i}$ on \mathfrak{p} we have $(T, V \lambda)=(T \bar{\lambda}, V), \lambda \in \mathbf{F}$, therefore \mathfrak{s}^{\perp} is a \mathbf{F}-subspace of \mathfrak{p}.

An element k of $K \cap H$ is characterized by $k \in K$ and $k \cdot \operatorname{Exp} \mathfrak{s}=\operatorname{Exp} \mathfrak{s}$, i.e. $k \cdot \mathfrak{s}=\mathfrak{s}$ (adjoint action). Let n^{\prime}, d^{\prime} be the respective dimensions of \mathfrak{p} and \mathfrak{s} as \mathbf{F}-vector spaces. Taking a \mathbf{F}-basis of \mathfrak{p} according to the decomposition $\mathfrak{p}=\mathfrak{s} \oplus \mathfrak{s}^{\perp}$, it follows that

$$
K=U(1 ; \mathbf{F}) \times U\left(n^{\prime} ; \mathbf{F}\right), \quad K \cap H=U(1 ; \mathbf{F}) \times U\left(d^{\prime} ; \mathbf{F}\right) \times U\left(n^{\prime}-d^{\prime} ; \mathbf{F}\right) .
$$

But $U\left(n^{\prime}-d^{\prime} ; \mathbf{F}\right)$ acts transitively on the unit sphere of $\mathbf{F}^{n^{\prime}-d^{\prime}}$, which implies our claim.

If $T, T^{\prime} \in \mathfrak{s}^{\perp}$ are two unit vectors, there exists $k_{o} \in K \cap H$ such that $k_{o} \cdot T=T^{\prime}$. Thus

$$
\begin{aligned}
R_{\exp t T^{\prime}}^{*} v(g K) & =\int_{K} v\left(g k k_{o} \exp (t T) k_{o}^{-1} H\right) d k \\
& =\int_{K} v(g k \exp (t T) H) d k=R_{\exp t T^{*}}^{*} v(g K) .
\end{aligned}
$$

In particular $R_{\exp t T}^{*} v$ is an even function of t.
Going back to (23), we now take as $\left(X_{j}\right)$ an orthonormal \mathbf{R}-basis of \mathfrak{p} according to the decomposition $\mathfrak{p}=\mathfrak{s} \oplus \mathfrak{s}^{\perp}$. The $n-d$ basis vectors in \mathfrak{s}^{\perp} give the same contribution to the right hand side, whereas the d vectors in \mathfrak{s} generate one parameters subgroups of H and give no contribution; indeed $\exp t V \cdot \operatorname{Exp} \mathfrak{s}=\operatorname{Exp} \mathfrak{s}$ for $V \in \mathfrak{s}$, since \mathfrak{s} is a Lie triple system by Section 4.3 c. This completes the proof.

6.5 MULTITEMPORAL WAVES

We shall now deal with general invariant differential operators. As before G is a Lie group, H a closed subgroup, K a compact subgroup, and $X=G / K$, $Y=G / H$. Let $\mathfrak{g}, \mathfrak{h}, \mathfrak{k}$ be the respective Lie algebras, and \mathfrak{t} a vector subspace of \mathfrak{g} such that

$$
\mathfrak{g}=(\mathfrak{k}+\mathfrak{h}) \oplus \mathfrak{t} .
$$

Let K_{1}, \ldots, K_{p} be a basis of \mathfrak{k}, complemented by $H_{1}, \ldots, H_{q} \in \mathfrak{h}$ so that the K_{i} 's and H_{j} 's are a basis of $\mathfrak{k}+\mathfrak{h}$, and let T_{1}, \ldots, T_{r} be a basis of \mathfrak{t}. We shall use the same notations for the corresponding left-invariant vector fields on G, e.g.

$$
K_{i} f(g)=\left.\partial_{s} f\left(g \exp s K_{i}\right)\right|_{s=0}
$$

with $f \in C^{\infty}(G), g \in G, s \in \mathbf{R}$. We denote by $\mathbf{D}(G)$ the algebra of all left invariant differential operators on G, by $\mathbf{D}(G)^{K}$ the subalgebra of right
K-invariant operators and by $\mathbf{D}(X)$ the algebra of G-invariant differential operators on X. For $s=\left(s_{1}, \ldots, s_{r}\right) \in \mathbf{R}^{r}$, let

$$
t(s)=\exp s_{1} T_{1} \cdots \exp s_{r} T_{r}
$$

We recall that, for $g, t \in G$,

$$
R_{t}^{*} v(g K)=\int_{K} v(g k t H) d k
$$

Theorem 17. Let G be a Lie group, H, K Lie subgroups, with K compact and $X=G / K, Y=G / H$.
(i) For any $P \in \mathbf{D}(X)$ there exists $Q(\partial)$, a constant coefficients differential operator on \mathbf{R}^{r}, with order $(Q) \leq \operatorname{order}(P)$, such that for any $v \in C^{\infty}(Y)$, $x \in X$,

$$
\begin{equation*}
P R^{*} v(x)=\left.Q\left(\partial_{s}\right) R_{t(s)}^{*} v(x)\right|_{s=0} . \tag{25}
\end{equation*}
$$

(ii) Assume furthermore that \mathfrak{t} is a Lie subalgebra of \mathfrak{g} with $[\mathfrak{t}, \mathfrak{h}] \subset \mathfrak{h}$, and let T denote the connected Lie subgroup of G with Lie algebra \mathfrak{t}. Then for any $P \in \mathbf{D}(X)$ there exists a right-invariant differential operator Q on T, with $\operatorname{order}(Q) \leq \operatorname{order}(P)$, such that

$$
\begin{equation*}
P_{(x)} R_{t}^{*} v(x)=Q_{(t)} R_{t}^{*} v(x) \tag{26}
\end{equation*}
$$

for $v \in C^{\infty}(Y)$; here $P_{(x)}$ acts on the variable $x \in X$ and $Q_{(t)}$ acts on $t \in T$.

Thus $R_{t}^{*} v(x)$, as a function of $(x, t) \in X \times T$, solves the generalized "multitemporal" wave equation (26) with time variable in a multidimensional space. Similarly (25) can be viewed as a wave equation in the variables $(x, s) \in X \times \mathbf{R}^{r}$ at the time $s=0$.

Proof. In order to work on G rather than on its homogeneous spaces, we define $w(g)=v(g H)$ and, for $g, t \in G$,

$$
\begin{equation*}
F(g, t)=\left(R_{t}^{*} v\right)(g K)=\int_{K} w(g k t) d k, \tag{27}
\end{equation*}
$$

so that $F\left(g k, k^{\prime} t h\right)=F(g, t)$ for any $k, k^{\prime} \in K, h \in H$, and

$$
F(g, e)=\left(R^{*} v\right)(g K)=\int_{K} w(g k) d k
$$

Let $P \in \mathbf{D}(X)$ be given. Since K is compact the coset space $X=G / K$ is reductive and there exists $D \in \mathbf{D}(G)^{K}$ such that ([9], p. 285)

$$
\begin{equation*}
(P f)(g K)=D_{(g)}(f(g K)) \tag{28}
\end{equation*}
$$

for $f \in C^{\infty}(X), g \in G$.
To transfer derivatives from g to t we observe that, by the invariance of D under left translation by $g k$ and right translation by k,

$$
D_{(g)} w(g k t)=\left.D_{(x)} w(g k x t)\right|_{x=e},
$$

where g, x, t are variables in G. Integrating over K it follows that

$$
\begin{equation*}
D_{(g)} F(g, t)=\left.D_{(x)} F(g, x t)\right|_{x=e}, \tag{29}
\end{equation*}
$$

By the Poincaré-Birkhoff-Witt theorem, the differential operators

$$
K_{1}^{\beta_{1}} \cdots K_{p}^{\beta_{p}} T_{1}^{\alpha_{1}} \cdots T_{r}^{\alpha_{r}} H_{1}^{\gamma_{1}} \cdots H_{q}^{\gamma_{q}}
$$

(where all exponents are positive integers) are a basis of $\mathbf{D}(G)$. Setting apart the terms with $\beta=\gamma=0$, we can thus write, for some $E_{i}, F_{j} \in \mathbf{D}(G)$ and some constant coefficients a_{α},

$$
\begin{equation*}
D=D^{\prime}+\sum_{i=1}^{p} K_{i} E_{i}+\sum_{j=1}^{q} F_{j} H_{j}, \quad D^{\prime}=\sum_{\alpha} a_{\alpha_{1} \ldots \alpha_{r}} T_{1}^{\alpha_{1}} \cdots T_{r}^{\alpha_{r}} . \tag{30}
\end{equation*}
$$

If we replace $D_{(x)}$ by (30) in (29), the second term $\left.\left(K_{i} E_{i}\right)_{(x)} F(g, x t)\right|_{x=e}$ vanishes because $K_{i} \in \mathfrak{k}$ and $F(g, k x t)=F(g, t)$. In the third term the left invariant vector field $H_{j} \in \in \mathfrak{h}$ acts by

$$
\left(H_{j}\right)_{(x)} F(g, x t)=\left.\partial_{s} F\left(g, x \exp \left(s H_{j}\right) t\right)\right|_{s=0},
$$

and this vanishes too whenever t normalizes H, because $F(g, x t h)=F(g, x t)$.
Since $t=e$ in case (i), or $t \in T$ with $H t=t H$ in case (ii), we finally obtain for both cases (in multi-index notation)

$$
\begin{align*}
D_{(g)} F(g, t) & =\left.D_{(x)}^{\prime} F(g, x t)\right|_{x=e} \tag{31}\\
& =\left.\sum_{\alpha} a_{\alpha} \partial_{s}^{\alpha} F\left(g,\left(\exp s_{1} T_{1} \cdots \exp s_{r} T_{r}\right) t\right)\right|_{s=0} . \\
& =\left.\left(\sum_{\alpha} a_{\alpha} \partial_{s}^{\alpha}\right) F(g, t(s) t)\right|_{s=0} .
\end{align*}
$$

Let the operator Q be defined by

$$
Q f(t)=\left.\sum_{\alpha} a_{\alpha} \partial_{s}^{\alpha} f(t(s) t)\right|_{s=0},
$$

a right invariant differential operator on the group T in case (ii). The theorem now follows from (27), (28) and (31) in both cases (i) and (ii).

6.6 EXAMPLES

Keeping the notations of the previous section, we shall illustrate Theorem 17.
a. Totally geodesic transform. As in Section 4.1 a, let $X=G / K$ be a Riemannian symmetric space of the noncompact type and $y_{o}=\operatorname{Exp} \mathfrak{s}$ the origin in the dual space $Y=G / H$. By (3) we have $\mathfrak{k}+\mathfrak{h}=\mathfrak{k} \oplus \mathfrak{s}$, therefore Theorem 17 (i) applies with $\mathfrak{t}=\mathfrak{s}^{\perp}$, the orthogonal of \mathfrak{s} in \mathfrak{p}.
b. Horocycle transform. Again $X=G / K$ is a Riemannian symmetric space of the noncompact type (see Notations, \mathbf{d}), but the dual space is now the space of horocycles $Y=G / M N$. We recall Harish-Chandra's isomorphism of algebras ([9], p.306)

$$
\Gamma: \mathbf{D}(X) \longrightarrow \mathbf{D}(A)^{W},
$$

where $\mathbf{D}(A)^{W}$ is the subalgebra of W-invariant differential operators in $\mathbf{D}(A)$. The definition of Γ will be recalled during the next proof.

Proposition 18. Given $v \in C^{\infty}(Y)$, the function of $x=g K$ and $a \in A$ given by

$$
w(x, a)=a^{\rho} R_{a}^{*} v(x)=a^{\rho} \int_{K} v(g k a N) d k
$$

is a solution of the system of multitemporal wave equations

$$
P_{(x)} w(x, a)=\Gamma(P)_{(a)} w(x, a), \quad P \in \mathbf{D}(X), x \in X, a \in A .
$$

Proof. Theorem 17 (ii) applies here with $T=A$, the abelian subgroup from the Iwasawa decomposition $G=K A N$; indeed $\mathfrak{k}+\mathfrak{h}=\mathfrak{k}+\mathfrak{m}+\mathfrak{n}=\mathfrak{k} \oplus \mathfrak{n}$, and $\mathfrak{g}=(\mathfrak{k} \oplus \mathfrak{n}) \oplus \mathfrak{a},[\mathfrak{a}, \mathfrak{h}] \subset[\mathfrak{a}, \mathfrak{m}]+[\mathfrak{a}, \mathfrak{n}] \subset \mathfrak{n} \subset \mathfrak{h}$. By (31) we thus have

$$
\begin{equation*}
P_{(x)} R_{a}^{*} v(x)=D_{(a)}^{\prime} R_{a}^{*} v(x) \tag{32}
\end{equation*}
$$

where $D \in \mathbf{D}(G)^{K}$ is related to P by (28) and $D^{\prime} \in \mathbf{D}(A)$ was characterized by

$$
\begin{equation*}
D-D^{\prime} \in \mathfrak{k} \mathbf{D}(G)+\mathbf{D}(G) \mathfrak{n} \tag{33}
\end{equation*}
$$

To compare D^{\prime} and $\Gamma(P)$ we recall that $\Gamma(P)=a^{-\rho} D_{\mathfrak{a}} \circ a^{\rho}$, where $D_{\mathfrak{a}} \in \mathbf{D}(A)$ is characterized by

$$
\begin{equation*}
D-D_{\mathfrak{a}} \in \mathfrak{n} \mathbf{D}(G)+\mathbf{D}(G) \mathfrak{k} \tag{34}
\end{equation*}
$$

Moreover $(D f)(a)=D_{\mathfrak{a}}(f(a))$ for $a \in A$, if $f \in C^{\infty}(G)$ is such that $f(n g k)=f(g)$ for any $g \in G, k \in K, n \in N$ ([9], p. 302 sq.).

Taking $u \in \mathcal{D}(G)$ we have, by a classical integral formula,

$$
\begin{align*}
\int_{G} D f(g) \cdot u(g) d g & =\int_{N \times A \times K} D f(a) \cdot u(n a k) a^{-2 \rho} d n d a d k \tag{35}\\
& =\int_{N \times A \times K} D_{\mathfrak{a}} f(a) \cdot u(n a k) a^{-2 \rho} d n d a d k
\end{align*}
$$

On the other hand, this integral can be written with the transpose operator ${ }^{t} D$ as

$$
\begin{aligned}
\int_{G} D f(g) \cdot u(g) d g & =\int_{G} f(g)^{t} D u(g) d g \\
& =\int_{A} f(a) a^{-2 \rho} d a \int_{N \times K}\left({ }^{t} D u\right)(n a k) d n d k
\end{aligned}
$$

But ${ }^{t} D \in \mathbf{D}(G)^{K}$ therefore, for any $g \in G$,

$$
\int_{N \times K}\left({ }^{t} D u\right)(n g k) d n d k=\left({ }^{t} D\right)_{(g)}\left(\int_{N \times K} u(n g k) d n d k\right) .
$$

The latter integral, as a function of g, is left N-invariant and right K-invariant so that

$$
\int_{N \times K}\left({ }^{t} D u\right)(n a k) d n d k=\left({ }^{t} D\right)_{a}\left(\int_{N \times K} u(n a k) d n d k\right) .
$$

Since $\left({ }^{t} D\right)_{\mathfrak{a}}={ }^{t}\left(D^{\prime}\right)$ obviously by (33) and (34), we obtain

$$
\begin{aligned}
\int_{G} D f(g) \cdot u(g) d g & =\int_{A} D^{\prime}\left(f(a) a^{-2 \rho}\right) d a \int_{N \times K} u(n a k) d n d k \\
& =\int_{N \times A \times K}\left(a^{2 \rho} D^{\prime} \circ a^{-2 \rho}\right) f(a) \cdot u(n a k) a^{-2 \rho} d n d a d k
\end{aligned}
$$

for any $f \in C^{\infty}(A)$ and any $u \in \mathcal{D}(G)$. Comparing with (35) it follows that

$$
D_{\mathfrak{a}}=a^{2 \rho} D^{\prime} \circ a^{-2 \rho}, \quad D^{\prime}=a^{-\rho} \Gamma(P) \circ a^{\rho},
$$

whence the result by (32).

A slightly different proof can be obtained by decomposing the wave $a^{\rho} R_{a}^{*} v(g K)$ into elementary horocycle waves as follows. For $g \in G$ we denote by $A(g) \in A$ the A-component of g in the Iwasawa decompositions $G=N A K=A N K$ (we recall that A normalizes N), and by $K(g) \in K$ its K-component in the decompositions $G=K A N=K N A$.

Proposition 19. (i) Given $f \in C^{\infty}(A)$ and $k \in K$, the function

$$
w(g K, a)=a^{-\rho} f\left(A\left(k^{-1} g\right) a\right)
$$

is a solution of the system of multitemporal wave equations

$$
P_{(x)} w(x, a)=\Gamma(P)_{(a)} w(x, a), \quad P \in \mathbf{D}(X), x \in X, a \in A
$$

(ii) Given $v \in C^{\infty}(Y)$, the function of $x=g K$ and $a \in A$ given by

$$
a^{\rho} R_{a}^{*} v(g K)=\int_{K} a^{\rho} v(g k a N) d k
$$

is a solution of the same equations.

Remarks. Part (i) is Proposition 8.5 in [12], p.118. Note that, k being fixed, the "wave surfaces" $A\left(k^{-1} g\right)=$ constant are parallel horocycles with the same normal $k M \in K / M$ (cf. [11], p.81). Indeed the equality $A\left(k^{-1} g\right)=a_{o} \in A$ is equivalent to $k^{-1} g \in a_{o} N K$, i.e. $g \cdot x_{o} \in k a_{o} \cdot y_{o}$.

If λ is a linear form on \mathfrak{a} and $f(a)=a^{i \lambda+\rho}$, the result (i) implies that $A\left(k^{-1} g\right)^{i \lambda+\rho}$ is, as a function of $g K$, an eigenfunction of all invariant operators $P \in \mathbf{D}(X)$; this is a fundamental result for harmonic analysis on X.

Part (ii) provides a simpler proof and a generalization of Proposition 8.6 in [12], p.118, where v was the Radon transform $R u$ of some $u \in \mathcal{D}(X)$. We refer to [12] or [13] for a detailed study of those multitemporal wave equations.

Proof of Proposition 19. (i) Both sides of the wave equation are invariant under the action of K on X; we can therefore assume $k=e$. Now $w(g K, a)=a^{-\rho} f(A(g) a)$ is left N-invariant and right K-invariant as a function of g, and it will suffice to prove the result for $g=a \in A$.

By the decomposition (34) of D we have, for any $b \in A$,

$$
\left.D_{(g)}(f(A(g) b))\right|_{g=a}=\left(D_{a}\right)_{(a)}(f(a b))=a^{\rho} \Gamma(P)_{(a)}\left(a^{-\rho} f(a b)\right) .
$$

But $\Gamma(P)$ is an invariant differential operator on A, isomorphic to the additive group of a vector space, and we obtain

$$
\begin{aligned}
\left.D_{(g)}\left(b^{-\rho} f(A(g) b)\right)\right|_{g=a} & =a^{\rho} \Gamma(P)_{(a)}\left((a b)^{-\rho} f(a b)\right) \\
& =a^{\rho} \Gamma(P)_{(b)}\left((a b)^{-\rho} f(a b)\right) \\
& =\Gamma(P)_{(b)}\left(b^{-\rho} f(a b)\right)=\left.\Gamma(P)_{(b)}\left(b^{-\rho} f(A(g) b)\right)\right|_{g=a} .
\end{aligned}
$$

Thus (i) is proved for $g=a$.
(ii) Let $g \in G, k \in K$ and $k^{\prime}=K(g k)$. Then $g k=k^{\prime} a^{\prime} n^{\prime}$ with $a^{\prime} \in A$ and $n^{\prime} \in N$. It follows that $k^{\prime-1} g=a^{\prime} n^{\prime} k^{-1}$, therefore $a^{\prime}=A\left(k^{\prime-1} g\right)$ and

$$
g k a N=k^{\prime} A\left(k^{\prime-1} g\right) a N
$$

For fixed g the map $k \mapsto K(g k)=k^{\prime}$ is a diffeomorphism of K onto itself and, by the integral formula ([9], p. 197)

$$
\int_{K} F\left(k^{\prime}\right) d k=\int_{K} A\left(k^{\prime-1} g\right)^{2 \rho} F\left(k^{\prime}\right) d k^{\prime}
$$

we have

$$
\begin{aligned}
a^{\rho} R_{a}^{*} v(g K) & =a^{\rho} \int_{K} v(g k a N) d k \\
& =a^{\rho} \int_{K} v\left(k^{\prime} A\left(k^{\prime-1} g\right) a N\right) d k \\
& =a^{-\rho} \int_{K}\left(A\left(k^{\prime-1} g\right) a\right)^{2 \rho} v\left(k^{\prime} A\left(k^{\prime-1} g\right) a N\right) d k^{\prime}
\end{aligned}
$$

By (i) applied to the functions $f(a)=a^{2 \rho} v\left(k^{\prime} a N\right), k^{\prime} \in K$, this is a solution of the wave equations.

COROLLARY 20 (Helgason). If \mathfrak{g} has only one conjugacy class of Cartan subalgebras, there exists a differential operator $P \in \mathbf{D}(X)$ such that the horocycle Radon transform of $X=G / K$ is inverted by

$$
u(x)=P R^{*} R u(x)
$$

for $u \in \mathcal{D}(X), x \in X$.

We prove it here by means of shifted transforms and wave equations; see [11], p. 116 for Helgason's original proof.

Proof. The assumption on \mathfrak{g} implies that, in the notation of (15), $C \cdot|c(\lambda)|^{-2}$ is a W-invariant polynomial on \mathfrak{a}^{*}. Let $P \in \mathbf{D}(X)$ be the corresponding operator under the isomorphism $\Gamma: \mathbf{D}(X) \rightarrow \mathbf{D}(A)^{W}$, so that $\Gamma(P)(i \lambda)=C \cdot|c(\lambda)|^{-2}$. By Theorem 13 and Proposition 19 (ii) (with $v=R u$)
we have

$$
\begin{aligned}
u(x) & =\left\langle T_{(a)}, a^{\rho} R_{a}^{*} R u(x)\right\rangle=\left.\Gamma(D)_{(a)}\left(a^{\rho} R_{a}^{*} R u(x)\right)\right|_{a=e} \\
& =\left.P_{(x)}\left(a^{\rho} R_{a}^{*} R u(x)\right)\right|_{a=e}=P_{(x)} R^{*} R u(x)
\end{aligned}
$$

REFERENCES

[1] Berenstein, C. and E.C. Tarabusi. Inversion formulas for the k-dimensional Radon transform in real hyperbolic spaces. Duke Math. J. 62 (1991), 613-631.
[2] - An inversion formula for the horocyclic Radon transform on the real hyperbolic space. Lectures in Appl. Math. 30 (1994), 1-6.
[3] Erdelyi, A., W. Magnus, F. Oberhettinger and F. Tricomi. Higher Transcendental Functions. Vol. I. McGraw-Hill, 1953.
[4] Gel'fand, I., M. Graev and Z. Shapiro. Differential forms and integral geometry. Funct. Anal. Appl. 3 (1969), 101-114.
[5] Grinberg, E. Spherical harmonics and integral geometry on projective spaces. Trans. Amer. Math. Soc. 279 (1983), 187-203.
[6] Guillemin, V. and S. Sternberg. Geometric Asymptotics. Math. Surveys and Monographs no. 14. Amer. Math. Soc., 1990.
[7] Helgason, S. The Radon transform on Euclidean spaces, compact two-point homogeneous spaces and Grassmann manifolds. Acta Math. 113 (1965), 153-180.
[8] - Differential Geometry, Lie Groups and Symmetric Spaces. Academic Press, 1978.
[9] - Groups and Geometric Analysis. Academic Press, 1984.
[10] - The totally-geodesic Radon transform on constant curvature spaces. In: Integral Geometry and Tomography. Contemp. Math. 113 (1990), 141149.
[11] - Geometric Analysis on Symmetric Spaces. Math. Surveys and Monographs no. 39. Amer. Math. Soc., 1994.
[12] - Radon transforms and wave equations. Lecture Notes in Math. 1684 (1998), 99-121.
[13] - Integral geometry and multitemporal wave equations. Comm. Pure Appl. Math. 51 (1998), 1035-1071.
[14] - The Radon Transform. $2^{\text {nd }}$ edition, Birkhäuser, 1999.
[15] Kobayashi, S. and K. Nomizu. Foundations of Differential Geometry. Vol. II. Wiley, 1969.
[16] RADON, J. Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten. Ber. Verh. Sächs. Akad. Wiss. Leipzig, Math. Nat. Kl. 69 (1917), 262-277.

