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convergence, which follows from the easy part of Vitali's work, whereas

complete integrability is not mentioned. Rudin, Real and Complex Analysis

[24], is an exception — in all three editions; however, in the first edition the

Vitali convergence theorem is given, by the third edition this has changed

to the Vitali-Hahn-Saks theorem. Dunford-Schwartz [6] has a comprehensive

account in Chapters III and IV. Unfortunately there is a slip in the statement

of Vitali's convergence theorem on p. 234.

3. The Vitali-Hahn-Saks Theorem

Vitali's convergence theorem is regarded as the origin of this theorem.

It was first stated and proved by H. Hahn [10] in 1922. Hahn's statement

and proof follow. (Both this result and Corollary 2 are referred to as "The
Vitali-Hahn-Saks Theorem". The result is obviously stronger than Vitali's

convergence theorem.)

Theorem (H. Hahn [10] Thm. XXI, pages 45-50). If m(E) < oo,

fn integrable on E, and for each measurable F Ç E, lim / fn exists and is
/z—>oc JF

finite, then J fn are uniformly absolutely continuous.

Proof Again, all the sets that occur in this proof will be measurable.

Suppose the integrals are not uniformly absolutely continuous. Then there

exists e > 0 with the property that for each Ne N and a > 0 there is

a measurable set Z with m(Z) < a and n0 > N with J \fno\ > £. By

considering the sets where fno > 0 and fno <0, we obtain for each Ne N,

a set M with m(M) < a and no > N with / /„p >
Im

Step 1. We show that there exists a sequence of pairwise disjoint sets

Mv and an increasing sequence of positive integers nv such that

>MV
fnu > - for all v e N.~ 2

We start by choosing a proper subset Zx of E and nx e N such that

fnx > I • We observe that there exists a > 0 sufficiently small so that
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if Z' c Zx with m(Zf) < a, then we still have / fni > -. Now by onr

assumption we obtain n2 > nx and a set Z2 with ra(Z2) < a but

Since m(Zx DZ2) < cr, we have L
\Zi nz2

fn, > - and
2 J j

Jz2
fn:

L
>

fn,
e

>r

In the same way we obtain n3 > n2 and a set Z3 of sufficiently small
measure so that

/ fn,
\z,n(z2uz3)

£ / /,2
£

>
2 ' >

2 ' / /*
Jz2\(z2nz3) Jz3

>

We continue in this way to obtain a strictly increasing sequence nv and sets
Zv, so that

L fn]
Z]\Z]n(z2u~-uzu)

Set

>
2 ' L fn,

z2 \z2 n(z3u--- uz„

£
>

2 '

Mi =z, \zi
7=2

oo

m2 z2 \ z2 n |^J z7

y=3

£

>2'

M„ zv\z„n (J z;.
y=^+i

The are pairwise disjoint and

proof of Step 1.

/ /*, > - for all z/, completing the

Step 2. We know that for each measurable set M,f, lim / fn exists and
JM

is finite; we shall show using Step 1, that lim / fn does not exist for some
n^°° JM

M - this will complete the proof of the Theorem. Let Mx and nx be as in
Step 1, we put Gi Mx and vx 1 so that wi. By absolute continuity

of Jfni, there exists px > 0 such that if m(Z) < px, then J fni

Since lim / /„ exists (and is finite), there exists Nx > nx such that
n-*°° JG1

S

<12-



VITALFS CONVERGENCE THEOREM 281

f fn~ [ fn
JGi J G\

< — if n > N\, n > N\

£
<

12
Now there exists or, 0 < o\ < pi, such that if m(Z) < g\, then J
Since the sets Mv are disjoint measurable subsets of E, and m{E) < oo, there

oo

exists z/2 such that nV2 > and m(Mu) < g\. Put G2 U M„2.

Now there exists P2, 0 < P2 < &i, such that if m(Z) < P2 then

Lfn- < —. Since
12

lim / fn exists, there exists N2 > nVl so that
n^°° Jg2

f fn~ f fn'
J Go J Go

< — if n > N2, n'
12 _

> G2 J G2

Again there exists 02, 0 < 02 < P2 such that if m(Z) < 02, then
« 00

In2 < I and there exists V3, with nV3 > N2 and m(Mv) < a2. Put

G3 U MV2 U MVz Proceeding in this way, we get :

Two sequences of positive integers nVj and Nj with

(I) nUl < N\ < nV2 < N2 < • • • < nVi < N{ < • •

Two sequences of positive numbers pj and gj with

(II) pi > (Ji > p2 > CT2 > * * * > Pi > Gi > • • •

These (together with the Mv and fn have the properties :

00

(III) ^ rn(M„ < er,- < pi,
V Vi+\

where Mv are as in Step 1 ;

(IV)

(V)

7=1

(VI)

Ju. £
<

12

Lm
c

< Î2

then

- / /«'
JGi

£
<

12

if m{Z) < pi,

if m(Z) < Gt.

if n > A/, n' > A/
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Recall from Step 1 that

(VII) /Jmu;
> - for all vt

Now put M (J MVi(recallthese sets are disjoint) and R, M\G,. Now
i= 1

(VIII) i - f „JM

/ -
JGi-i

> [ fnvi —

JMUi

(VI), / fNt-1 "-I
J G;i— l

[ fn„, + f ÏNi-i~[ fn„, ~ f fn
JGi-i •/«,- J Mltj

f Vi-1 _ [ fnH-[ ~ [ fJGi— i JGi— i JRi—i JRj

< j2-
Since m(/?;_i) < by (V)

/ Ä-1
JRi-i

< — ; and since m(R/) < Pi, by (IV) /, fnt < —. These

assertions together with (VII) show that (VIII) implies that

~ ljn"i -2~12 ~Ï2~TÏfOT 311 G N '

Hence / fn cannot have a finite limit as n — oo, contradicting our hypothesis
JM

and completing the proof of (Step 2 and) the theorem.

Remark. It is easy to prove also that J fn are uniformly bounded.

COROLLARY 1. Under the same hypothesis as in the theorem the set

function i/(F) lim / fn is absolutely continuous with respect to m and so
n-*°° JF

is countably additive and is the integral of an integrable function /.

Corollary 2 (Vitali-Hahn-Saks Theorem). If vn is a sequence of finite
countably additive set functions on a cr-algebra M of subsets of E and
lim vn(F) exists and is finite for all F G M, then this limit is countably

n—+ oo

additive on (E, M).
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Proof. Put m(F) V F where H is the total variation of
L Wn\\Fj)n=l

#

vn. Then m is a finite measure on E and each vn is absolutely continuous

with respect to m. By the Lebesgue-Radon-Nikodym Theorem z/n J fndm

for some integrable fn. Apply the theorem and Corollary 1.

Note. As remarked earlier, the above is the first proof of the Vitali-Hahn-

Saks Theorem. Note that no use is made in the proof of the Baire Category

Theorem. The proof is somewhat similar to Vitali's proof of his convergence

theorem, and even more so to de la Vallée Poussin's proof, although no

reference is made to Vitali or de la Vallée Poussin. Hahn does refer however

to the paper of B.H. Camp [2], which generalizes Vitali's result to several

variables; Camp does mention Vitali. Corollary 2 was first stated and proved

by Nikodym [22], [23], ten years after Hahn. The proof is direct, but Nikodym
remarks that it is analogous to Hahn's theorem for integrals; he also says that

his results are «en solidarité étroite avec des théorèmes de M.H. Hahn». He

does not remark that his result is an immediate corollary of Hahn's. This is

somewhat surprising, since he only needs to use a famous result that he had

just proved : the Lebesgue-Radon-Nikodym Theorem.

Hahn's proof precedes by ten years the Baire category proof of Saks

[25], who also gives Corollary 2. This proof was apparently also discovered

independently by Banach, and is included in the Polish edition of his book

on linear operators, Teorja Operacyj [1], but not in the much better known
French edition. Saks mentions Hahn's result, but not Vitali's. This proof is

given in many books. A very detailed account (including generalizations to
vector-valued measures) of the theorems of Vitali and Vitali-Hahn-Saks is given
in Chapters III and IV of Dunford-Schwartz [6], specifically on pages 122,

150 and 234 of Chapter III and pages 292-295, 306 and 389 of Chapter IV.

Page 389 also gives references to some interesting generalizations especially
of Corollary 2 by Dubrovsky and Cafiero. A proof of Corollary 2 above was

given in 1945 by Y. Dubrovsky [5]; it is somewhat similar to the proofs
of Hahn and Nikodym. This proof was simplified by Y.N. Dowker [4]. Her

argument is given on pages 32-35 of N. Friedman's little book on Ergodic
Theory [8]. No one mentions Hahn, though Dowker mentions Saks.
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