FINITE TYPE LINK-HOMOTOPY INVARIANTS

Autor(en): Lin, Xiao-Song

Objekttyp: Article

Zeitschrift: L'Enseignement Mathématique

Band (Jahr): 47 (2001)
Heft 3-4: L'ENSEIGNEMENT MATHÉMATIQUE

PDF erstellt am:
23.07.2024

Persistenter Link: https://doi.org/10.5169/seals-65440

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

FINITE TYPE LINK-HOMOTOPY INVARIANTS

by Xiao-Song LiN *)

Abstract. An explicit polynomial in the linking numbers $l_{i j}$ and Milnor's triple linking numbers $\mu(r s t)$ on six component links is shown to be a well-defined finite type link-homotopy invariant. This solves a problem raised by B. Mellor and D. Thurston. An extension of our construction also produces a finite type link invariant which detects the invertibility for some links.

1. Introduction

The classification of links in 3-space up to link-homotopy [3] was published ten years ago. Since then, the question of whether one could extract linkhomotopy invariants from this classification has not been addressed properly. Recall that this classification starts with the classification of k component string links up to link-homotopy by a finitely generated torsion free nilpotent group $\mathcal{H}(k)$. Then link-homotopy classes are classified as orbits of this group $\mathcal{H}(k)$ under the "nilpotent action" of conjugations and partial conjugations. The group $\mathcal{H}(k)$ is of rank

$$
\sum_{n=2}^{k}(n-2)!\binom{k}{n}
$$

so an element of $\mathcal{H}(k)$ can be described uniquely by that many integers.
These integers are Milnor's μ-numbers ${ }^{1}$) with distinct indices. By a linkhomotopy invariant polynomial, or simply a link-homotopy invariant, we mean a polynomial in these μ-numbers which is invariant under the action of

[^0]conjugations and partial conjugations. There are trivial examples of such linkhomotopy invariant polynomials coming from polynomials of linking numbers. A link-homotopy invariant polynomial is non-trivial if it contains higher order μ-numbers.

The main result of this paper is that such a non-trivial link-homotopy invariant polynomial exists when $k \geq 6$.

The abelianization of $\mathcal{H}(k)$ is a free abelian group of rank $\binom{k}{2}$. This is where the classical linking numbers $l_{i j}, 1 \leq i<j \leq k$, fit in. The action of conjugations and partial conjugations on this quotient of $\mathcal{H}(k)$ is trivial. The next successive quotient of the lower central series of $\mathcal{H}(k)$ is a free abelian group of rank $\binom{k}{3}$, whose elements can be described by the collection of Milnor's triple linking numbers $\{\mu(r s t) ; 1 \leq r<s<t \leq k\}$. The conjugations and partial conjugations act on this quotient by translations whose translation vectors' coordinates are linear functions of the linking numbers $l_{i j}$. Thus, if the dimension of the subspace generated by these translation vectors is less than $\binom{k}{3}$ for generic values of the linking numbers, we may find a non-trivial vector perpendicular to all these translation vectors. Furthermore, the coordinates of this vector could be taken as polynomials in $l_{i j}$. Then the projection of a vector $\{\mu(r s t)\}$ to this perpendicular vector will be invariant under conjugations and partial conjugations. This is the general philosophy behind our construction of link-homotopy invariant polynomials.

The theory of finite type invariants is a general framework for the study of invariants of knots and links. See [1] for an introduction to this theory. Intuitively speaking, multiple crossing switchings on links in 3 -space give rise to a very natural filtration on the set of all links and a link invariant is said to be of finite type if it vanishes on all sufficiently deep strata of this filtration.

In a recent preprint [9], B. Mellor and D. Thurston have established the existence of link-homotopy invariants of finite type which are not polynomials of linking number when $k \geq 9$. Their proof is not constructive and therefore it is not clear whether their link-homotopy invariants are polynomials of μ numbers.

On the other hand, since μ-numbers are of finite type for string links ([7], [2]), it is easy to see that our link-homotopy invariant polynomials are of finite type for links. For $k \leq 5$, it is shown in [9] that the only finite type link-homotopy invariants are polynomials in the linking numbers. So our construction fits nicely with this work of Mellor and Thurston.

Recall that the only finite type knot concordance invariant is the Arf invariant [10]. Since link concordance implies link-homotopy, our work (as
well as the work of Mellor and Thurston, of course) shows the existence of non-trivial finite type link concordance invariants.

To extend the applicability of our general philosophy slightly, we find that the operation on the vector $\{\mu(r s t)\}$ induced by reversing the orientation of each component of a string link is to change it by a negative sign followed by a translation whose translation vector's coordinates are quadratic polynomials in $l_{i j}$. If the dimension of the subspace generated by this vector together with the translation vectors of conjugations and partial conjugations is still less than $\binom{k}{3}$ for generic values of the linking numbers, and this is the case indeed, we can construct a non-trivial link-homotopy invariant polynomial which is changed by a sign when the orientation of each component of a link is reversed. We say that such a link invariant detects the invertibility for links. Recall that the reversion of the orientation of every component of a link does not change the quantum invariant associated with an irreducible representation of a semisimple Lie algebra (see, for example, [8]). Thus our invariant is of finite type but is not determined by quantum invariants. The existence of a finite type knot invariant which detects the invertibility for knots is a major problem in the theory of finite type invariants (see, for example, [8] and [4]). We believe that finite type knot invariants can not detect the invertibility for knots.

It remains unclear whether we can have a complete set of link-homotopy invariant polynomials which determines uniquely link-homotopy classes of links. See [5] for an earlier attempt on this problem ${ }^{2}$). This problem could probably be translated to the problem of understanding the sublattice generated by the translation vectors of conjugations and partial conjugations. A better understanding of this sublattice might also be useful in answering the following question. If we let $\operatorname{deg}\left(l_{i j}\right)=1$ and $\operatorname{deg}(\mu(r s t))=2$, the link-homotopy invariant polynomial for $k=6$ we construct in Section 3, which detects the invertibility for links, is a linear combination of 113,700 monomials of degree 22 , homogeneous in both $l_{i j}$ and $\mu(r s t)$ and linear in $\mu(r s t)$. Is there a shorter link-homotopy invariant polynomial detecting the invertibility for links?

2. CONJUGATION AND PARTIAL CONJUGATION

We first recall the classification of ordered, oriented links up to linkhomotopy given in [3]. We will follow the notations of [3].

[^1]Let $\mathcal{H}(k)$ be the group of link-homotopy classes of ordered, oriented string links with k components. The components of a string link will be ordered by $1,2, \ldots, k$. Recall that a string link is a concordance of k marked points inside of the 2-disk D^{2} to itself in $D^{2} \times[0,1]$, such that it has no closed component. Two string links are link-homotopic if they are homotopic in such a way that at any moment of the homotopy, different components remain disjoint (but they are allowed to have self-intersections). Two string links can be put together to form a new string link and this gives rise to a group structure on the set of all link-homotopy classes of string links. This is the group $\mathcal{H}(k)$.

A pure braid is by definition a string link of the same number of components. So we have a natural map from the pure braid group $P(k)$ of k components to $\mathcal{H}(k)$. It is shown in [3] that this natural map $P(k) \rightarrow \mathcal{H}(k)$ is onto.

Deletion of the $i^{\text {th }}$ component of the string link gives rise to a group homomorphism $d_{i}: \mathcal{H}(k) \rightarrow \mathcal{H}(k-1)$. If $F(k)$ denotes the free group of rank k generated by $x_{1}, x_{2}, \ldots, x_{k}$, the reduced free group $R F(k)$ is the quotient of $F(k)$ by adding relations $\left[x_{i}, x_{i}^{g}\right]=1$ for all i and all $g \in F(k)$.

Lemma 2.1. There is a split short exact sequence of groups

$$
\begin{equation*}
1 \longrightarrow R F(k-1) \longrightarrow \mathcal{H}(k) \xrightarrow{d_{i}} \mathcal{H}(k-1) \longrightarrow 1 \tag{1}
\end{equation*}
$$

where $R F(k-1)$ is the reduced free group generated by $x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{k}$.
Notice that the split exact sequence (1) depends on the deleted component so that there are k such split exact sequences altogether. A split exact sequence determines a semi-direct product decomposition

$$
\mathcal{H}(k)=\mathcal{H}(k-1) \ltimes R F(k-1) .
$$

Conjugation in the group $\mathcal{H}(k)$ is defined as usual: A conjugation of $\sigma \in \mathcal{H}(k)$ by $\beta \in \mathcal{H}(k)$ is the element $\beta \sigma \beta^{-1} \in \mathcal{H}(k)$. A partial conjugation of $\sigma \in \mathcal{H}(k)$ is an element of the form $\theta h g h^{-1}$, where we write $\sigma=\theta g$ according to a decomposition $\mathcal{H}(k)=\mathcal{H}(k-1) \ltimes R F(k-1)$, for $\theta \in \mathcal{H}(k-1)$ and $g \in R F(k-1)$, and for an arbitrary $h \in R F(k-1)$.

To form the closure of a string link $\sigma \in \mathcal{H}(k)$, we may think of it as a pure braid in $P(k)$ and its closure will be the usual braid closure. The closure of $\sigma \in \mathcal{H}(k)$ is an ordered, oriented link of k components. It is not hard to see that every link-homotopy class of ordered, oriented links with k components can be realized as the closure of an element in $\mathcal{H}(k)$, and thus the closure of a pure braid in $P(k)$. One of the main results of [3] is the following classification theorem.

TheOrem 2.2. Let $\sigma, \sigma^{\prime} \in \mathcal{H}(k)$. Then the closures of σ and σ^{\prime} are link-homotopic as ordered, oriented links if and only if there is a sequence $\sigma=\sigma_{0}, \sigma_{1}, \ldots, \sigma_{n}=\sigma^{\prime}$ of elements of $\mathcal{H}(k)$ such that σ_{j+1} is either a conjugation or a partial conjugation of σ_{j}.

For a group G, we will denote by G_{n} the $n^{\text {th }}$ term of the lower central series of G, i.e. $G_{1}=G$ and $G_{n+1}=\left[G_{n}, G\right]$, the normal subgroup of G generated by elements of the form $[g, h]=g h g^{-1} h^{-1}$ for all $g \in G_{n}$ and $h \in G$. A group G is nilpotent of class n if $G_{n+1}=1$ but $G_{n} \neq 1$. We summarize some known facts about the group structures of $\mathcal{H}(k)$ in the following lemma.

Lemma 2.3. 1) $\mathcal{H}(k)$ is torsion free and nilpotent of class $k-1$.
2) Corresponding to a decomposition $\mathcal{H}(k)=\mathcal{H}(k-1) \ltimes R F(k-1)$, we have

$$
H(k)_{n}=\mathcal{H}(k-1)_{n} \ltimes R F(k-1)_{n} .
$$

3) $\mathcal{H}(k)_{n-1} / \mathcal{H}(k)_{n}$ is a free abelian group of rank $(n-2)!\binom{k}{n}$.

For $\sigma \in \mathcal{H}(k)$, its image in $\mathcal{H}(k) / \mathcal{H}(k)_{3}$ can be described by $\binom{k}{2}+\binom{k}{3}$ integers. These integers are linking numbers $l_{i j}$, for $1 \leq i<j \leq k$, and Milnor's triple linking numbers $\mu(r s t)$, for $1 \leq r<s<t \leq k$. We want to have them defined precisely and understand how they change when σ is changed by a conjugation or a partial conjugation.

Figure 1
The pure braid $\tau_{r s}$

We will denote by $\tau_{r s}=\tau_{s r}$, for $1 \leq r<s \leq k$, the pure braid depicted in Figure 1. Let $\sigma \in \mathcal{H}(k) / \mathcal{H}(k)_{3}$. For $1 \leq r<s<t \leq k$, after deleting
all components other than the r, s, t-th components, σ can be written in the following normal form

$$
\begin{equation*}
\sigma=\tau_{r s}^{\alpha} \tau_{r t}^{\beta} \tau_{s t}^{\gamma}\left[\tau_{r t}, \tau_{s t}\right]^{\delta}, \tag{2}
\end{equation*}
$$

where $\alpha=l_{r s}, \beta=l_{r t}, \gamma=l_{s t}$. By definition, we have $\delta=\mu(r s t)$ for $\sigma \in \mathcal{H}(k)$.

Lemma 2.4. In $\mathcal{H}(k) / \mathcal{H}(k)_{3}$, if $r^{\prime}, s^{\prime}, t^{\prime}$ is a permutation of r, s, t and ϵ is the sign of the permutation, then

$$
\left[\tau_{r^{\prime} t^{\prime}}, \tau_{s^{\prime} t^{\prime}}\right]=\left[\tau_{r t}, \tau_{s t}\right]^{\epsilon} .
$$

Furthermore, we have

$$
\left[\tau_{r t}^{\eta}, \tau_{s t}\right]=\left[\tau_{r t}, \tau_{s t}\right]^{\eta}
$$

This lemma is useful in the following calculation and its proof is straightforward.

To understand how $\mu(r s t)$ changes under the conjugation, we only need to calculate the conjugation of $\sigma \in \mathcal{H}(k) / \mathcal{H}(k)_{3}$ under the normal form (2) by $\tau_{r s}, \tau_{r t}, \tau_{s t}$. This calculation is straightforward:

$$
\begin{aligned}
\tau_{r s} \sigma \tau_{r s}^{-1} & =\tau_{r s} \tau_{r s}^{\alpha} \tau_{r t}^{\beta} \tau_{s t}^{\gamma}\left[\tau_{r t}, \tau_{s t}\right]^{\delta} \tau_{r s}^{-1} \\
& =\tau_{r s}^{\alpha} \tau_{r t}^{\beta} \tau_{s t}^{\gamma}\left[\tau_{r s}, \tau_{r t}\right]^{\beta}\left[\tau_{r s}, \tau_{s t}\right]^{\gamma}\left[\tau_{r t}, \tau_{s t}\right]^{\delta} \\
& =\tau_{r s}^{\alpha} \tau_{r t}^{\beta} \tau_{s t}^{\gamma}\left[\tau_{r t}, \tau_{s t}\right]^{\delta+\beta-\gamma} \\
\tau_{r t} \sigma \tau_{r t}^{-1} & =\tau_{r t} \tau_{r s}^{\alpha} \tau_{r t}^{\beta} \tau_{s t}^{\gamma}\left[\tau_{r t}, \tau_{s t}\right]^{\delta} \tau_{r t}^{-1} \\
& =\tau_{r s}^{\alpha} \tau_{r t}^{\beta} \tau_{s t}^{\gamma}\left[\tau_{r t}, \tau_{r s}\right]^{\alpha}\left[\tau_{r t}, \tau_{s t}\right]^{\gamma}\left[\tau_{r t}, \tau_{s t}\right]^{\delta} \\
& =\tau_{r s}^{\alpha} \tau_{r t}^{\beta} \tau_{s t}^{\gamma}\left[\tau_{r t}, \tau_{s t}\right]^{\delta-\alpha+\gamma} \\
\tau_{s t} \sigma \tau_{s t}^{-1} & =\tau_{s t} \tau_{r s}^{\alpha} \tau_{r t}^{\beta} \tau_{s t}^{\gamma}\left[\tau_{r t}, \tau_{s t}\right]^{\delta} \tau_{s t}^{-1} \\
& =\tau_{r s}^{\alpha} \tau_{r t}^{\beta} \tau_{s t}^{\gamma}\left[\tau_{s t}, \tau_{r s}\right]^{\alpha}\left[\tau_{s t}, \tau_{r t}\right]^{\beta}\left[\tau_{r t}, \tau_{s t}\right]^{\delta} \\
& =\tau_{r s}^{\alpha} \tau_{r t}^{\beta} \tau_{s t}^{\gamma}\left[\tau_{r t}, \tau_{s t}\right]^{\delta+\alpha-\beta}
\end{aligned}
$$

We summarize the calculation into the following lemma.

LEMMA 2.5. The change of $\mu(r s t)$ under a conjugation is given by
Conjugation by $\tau_{r s}: \quad \mu(r s t) \rightarrow \mu(r s t)+l_{r t}-l_{s t}$;
Conjugation by $\tau_{r t}: \quad \mu(r s t) \rightarrow \mu(r s t)-l_{r s}+l_{s t}$;
Conjugation by $\tau_{s t}: \quad \mu(r s t) \rightarrow \mu(r s t)+l_{r s}-l_{r t}$.

Furthermore, $\mu(r s t)$ will not change under a conjugation by $\tau_{i j}$ where $\{i, j\}$ and $\{r, s, t\}$ have at most one element in common.

The calculation of partial conjugations is slightly more complicated. We will start with partial conjugations by $\tau_{r t}$ and $\tau_{s t}$. These two operations are denoted by \mathbf{t}^{r} and \mathbf{t}^{s}, respectively. For $\sigma \in \mathcal{H}(k) / \mathcal{H}(k)_{3}$ under the normal form (2), we have:

$$
\begin{aligned}
& \sigma \xrightarrow{\mathbf{t}^{r}} \tau_{r s}^{\alpha} \tau_{r t} \tau_{r t}^{\beta} \tau_{s t}^{\gamma}\left[\tau_{r t}, \tau_{s t}\right]^{\delta} \tau_{r t}^{-1} \\
&=\tau_{r s} \alpha \tau_{r t}^{\beta} \tau_{s t}^{\gamma}\left[\tau_{r t}, \tau_{s t}\right]^{\delta+\gamma} ; \\
& \sigma \xrightarrow{\mathbf{t}^{s}} \tau_{r s}^{\alpha} \tau_{s t} \tau_{r t}^{\beta} \tau_{s t}^{\gamma}\left[\tau_{r t}, \tau_{s t}\right]^{\delta} \tau_{s t}^{-1} \\
&=\tau_{r s} \alpha \tau_{r t}^{\beta} \tau_{s t}^{\gamma}\left[\tau_{r t}, \tau_{s t}\right]^{\delta-\beta} .
\end{aligned}
$$

To calculate partial conjugations by $\tau_{r s}$ and $\tau_{t s}$, which are denoted by \mathbf{s}^{r} and \mathbf{s}^{t}, respectively, we need to rewrite σ as follows:

$$
\sigma=\tau_{r s}^{\alpha} \tau_{r t}^{\beta} \tau_{s t}^{\gamma}\left[\tau_{r t}, \tau_{s t}\right]^{\delta}=\tau_{r t}^{\beta} \tau_{r s}^{\alpha} \tau_{t s}^{\gamma}\left[\tau_{r s}, \tau_{t s}\right]^{-\delta-\alpha \beta} .
$$

Then, we have:

$$
\begin{aligned}
& \sigma \xrightarrow{\mathbf{s}^{r}} \tau_{r t}^{\beta} \tau_{r s} \tau_{r s}^{\alpha} \tau_{t s}^{\gamma}\left[\tau_{r s}, \tau_{t s}\right]^{-\delta-\alpha \beta} \tau_{r s}^{-1} \\
&=\tau_{r t}^{\beta} \tau_{r s}^{\alpha} \tau_{t s}^{\gamma}\left[\tau_{r s}, \tau_{t s}\right]^{-\delta-\alpha \beta+\gamma} \\
&=\tau_{r s}^{\alpha} \tau_{r t}^{\beta} \tau_{s t}^{\gamma}\left[\tau_{r t}, \tau_{s t}\right]^{\delta-\gamma} \\
& \sigma \xrightarrow{\mathbf{s}^{t}} \tau_{r t}^{\beta} \tau_{t s} \tau_{r s}^{\alpha} \tau_{t s}^{\gamma}\left[\tau_{r s}, \tau_{t s}\right]^{-\delta-\alpha \beta} \tau_{t s}^{-1} \\
&=\tau_{r t}^{\beta} \tau_{r s}^{\alpha} \tau_{t s}^{\gamma}\left[\tau_{r s}, \tau_{t s}\right]^{-\delta-\alpha \beta-\alpha} \\
&=\tau_{r s}^{\alpha} \tau_{r t}^{\beta} \tau_{s t}^{\gamma}\left[\tau_{r t}, \tau_{s t}\right]^{\delta+\gamma}
\end{aligned}
$$

Similarly, to calculate partial conjugations \mathbf{r}^{s} and \mathbf{r}^{t}, we first rewrite σ :

$$
\sigma=\tau_{r s}^{\alpha} \tau_{r t}^{\beta} \tau_{s t}^{\gamma}\left[\tau_{r t}, \tau_{s t}\right]^{\delta}=\tau_{s t}^{\gamma} \tau_{s s}^{\alpha} \tau_{t r}^{\beta}\left[\tau_{s r}, \tau_{t r}\right]^{\delta-\alpha \gamma+\beta \gamma}
$$

Then, we have

$$
\begin{aligned}
& \sigma \xrightarrow{\mathbf{r}^{s}} \tau_{s t}^{\gamma} \tau_{s r} \tau_{s r}^{\alpha} \tau_{t r}^{\beta}\left[\tau_{s r}, \tau_{t r}\right]^{\delta-\alpha \gamma+\beta \gamma} \tau_{s r}^{-1} \\
&=\tau_{s t}^{\gamma} \tau_{s r}^{\alpha} \tau_{t r}^{\beta}\left[\tau_{s r}, \tau_{t r}\right]^{\delta-\alpha \gamma+\beta \gamma+\beta} \\
&=\tau_{r s}^{\alpha} \tau_{r t}^{\beta} \tau_{s t}^{\gamma}\left[\tau_{r t}, \tau_{s t}\right]^{\delta+\beta} \\
& \begin{aligned}
\sigma \xrightarrow{\mathbf{r}^{t}} \tau_{s t}^{\gamma} \tau_{t r} & \tau_{s r}^{\alpha} \tau_{t r}^{\beta}\left[\tau_{s r}, \tau_{t r}\right]^{\delta-\alpha \gamma+\beta \gamma} \tau_{t r}^{-1} \\
& =\tau_{s t}^{\gamma} \tau_{s r}^{\alpha} \tau_{t r}^{\beta}\left[\tau_{s r}, \tau_{t r}\right]^{\delta-\alpha \gamma+\beta \gamma-\alpha} \\
& =\tau_{r s}^{\alpha} \tau_{r t}^{\beta} \tau_{s t}^{\gamma}\left[\tau_{r t}, \tau_{s t}\right]^{\delta-\alpha}
\end{aligned}
\end{aligned}
$$

We summarize the previous calculation into the following lemma.

LEMMA 2.6. The change of $\mu(r s t)$ under a partial conjugation is given by

$$
\begin{array}{ll}
\mathbf{t}^{r}: & \mu(r s t) \rightarrow \mu(r s t)+l_{s t} ; \\
\mathbf{t}^{s}: & \mu(r s t) \rightarrow \mu(r s t)-l_{r t} ; \\
\mathbf{s}^{r}: & \mu(r s t) \rightarrow \mu(r s t)-l_{s t} ; \\
\mathbf{s}^{t}: & \mu(r s t) \rightarrow \mu(r s t)+l_{r s} ; \\
\mathbf{r}^{s}: & \mu(r s t) \rightarrow \mu(r s t)+l_{r t} ; \\
\mathbf{r}^{t}: & \mu(r s t) \rightarrow \mu(r s t)-l_{r s} .
\end{array}
$$

Furthermore, a partial conjugation by \mathbf{i}^{j} will not change $\mu(r s t)$ if $\{i, j\}$ and $\{r, s, t\}$ have at most one element in common.

For a given string link $\sigma \in \mathcal{H}(k)$, we will think of the whole collection $\{\mu(r s t) ; 1 \leq r<s<t \leq k\}$ as an element in $\mathbf{Z}^{\left({ }_{3}^{k}\right)}$. Then the conjugations and partial conjugations act on $\mathbf{Z}\left({ }_{3}^{k}\right)$ by translations. We will abuse the notation by using the same symbol to denote both a translation operation and the corresponding translation vector. Thus, a translation operation $T: V \rightarrow V$ on a vector space V is given by $T(v)=v+T$, for all $v \in V$ and a fixed $T \in V$. If T_{1} and T_{2} are two translations, we have

$$
\left(T_{1} \cdot T_{2}\right)(v)=v+T_{1}+T_{2}, \quad \text { for all } v \in V
$$

The following two theorems follow directly from Lemmas 2.5 and 2.6.
THEOREM 2.7. The translation operation on $\left.\mathbf{Z}^{(k)}{ }_{3}^{k}\right)$ given by the conjugation of $\tau_{i j}$ is the same as the composition of the translation operations given by the partial conjugations \mathbf{i}^{j} and \mathbf{j}^{i}, i.e. it is equal to $\mathbf{i}^{j}+\mathbf{j}^{i}$.

THEOREM 2.8. The translation operations \mathbf{i}^{j} satisfy the following relations:

$$
\sum_{j \neq i} \mathbf{j}^{i}=0, \quad \sum_{j \neq i} l_{i j} \mathbf{i}^{j}=0
$$

for all $i=1,2, \ldots, k$.
String links are oriented in the sense that each component is given an orientation from the bottom to the top. See Figure 1. Reversing the orientation on each component of a string link defines a bijection

$$
\sigma \mapsto \bar{\sigma}: \mathcal{H}(k) \rightarrow \mathcal{H}(k)
$$

This bijection is an anti-homomorphism: $\overline{\sigma_{1} \sigma_{2}}=\bar{\sigma}_{2} \bar{\sigma}_{1}$. This bijection induces an operation on $\mathbf{Z}^{k}{ }_{3}^{k}$.

THEOREM 2.9. The operation on $\left.\mathbf{Z}^{(}{ }_{3}^{k}\right)$ induced by reversing the orientation of each component of a string link is to change each $\mu(r s t)$ to $-\mu(r s t)$ followed by the translation operation

$$
\mu(r s t) \longrightarrow \mu(r s t)-l_{r s} l_{r t}+l_{r s} l_{s t}-l_{r t} l_{s t} .
$$

Proof. Consider the normal form (2) of $\sigma \in \mathcal{H}(k) / \mathcal{H}(k)_{3}$ in the r, s, t-th components. The normal form for $\bar{\sigma}$ is obtained as follows:

$$
\begin{aligned}
\bar{\sigma} & =\left[\tau_{r t}, \tau_{s t}\right]^{-\delta} \tau_{s t}^{\gamma} \tau_{r t}^{\beta} \tau_{r s}^{\alpha} \\
& =\tau_{r s}^{\alpha} \tau_{r t}^{\beta} \tau_{s t}^{\gamma}\left[\tau_{r t}, \tau_{s t}\right]^{-\delta-\alpha \beta+\alpha \gamma-\beta \gamma} .
\end{aligned}
$$

Thus the operation on $\left.Z^{(k)}{ }_{3}^{k}\right)$ induced by $\sigma \mapsto \bar{\sigma}$ is given by

$$
\mu(r s t) \longrightarrow-\mu(r s t)-l_{r s} l_{r t}+l_{r s} l_{s t}-l_{r t} l_{s t} .
$$

3. CONSTRUCTION OF THE INVARIANT

By Theorems 2.2 and 2.7, we shall look for polynomials in $l_{i j}$ and $\mu(r s t)$ invariant under the translation operations on $\left.\{\mu(r s t)\} \in \mathbf{Z}^{k}{ }_{3}^{k}\right)$ induced by partial conjugations. There are $k(k-1)$ partial conjugations altogether and their induced translations subject to $2 k$ linear equations given in Theorem 2.8. If these equations are linearly independent for generic values of $\left\{l_{i j}\right\}$, the sublattice of $Z\binom{k}{3}$ generated by the translation vectors of the partial conjugations will be of dimension no larger than $k(k-1)-2 k=k^{2}-3 k$.

Lemma 3.1. For $k>3$, the $2 k$ equations in Theorem 2.8 are linearly independent for generic values of $\left\{l_{i j}\right\}$.

Proof. We write the two sets of equations in Theorem 2.8 as follows:

$$
\begin{gathered}
\mathbf{1}^{i}+\mathbf{2}^{i}+\cdots+\mathbf{j}^{i}+\cdots+\mathbf{k}^{i}=0, \quad j \neq i \\
l_{i 1} \mathbf{i}^{1}+l_{i 2} \mathbf{i}^{2}+\cdots+l_{i j} \mathbf{j}^{j}+\cdots+l_{i \mathbf{k}} \mathbf{k}^{k}=0, \quad j \neq i,
\end{gathered}
$$

for each $i=1,2, \ldots, k$.
For generic values of $\left\{l_{i j}\right\}$, using the first $k-1$ equations from the first set of k equations, we can solve for $\mathbf{k}^{1}, \mathbf{k}^{2}, \ldots, \mathbf{k}^{k-1}$. Similarly, we can solve
for $\mathbf{1}^{k}, \mathbf{2}^{k}, \ldots,(\mathbf{k}-\mathbf{1})^{k}$ from the first $k-1$ equations of the second set of k equations. The remaining vectors $\mathbf{i}^{j}, i, j \neq k$, have to satisfy another two equations obtained from the last equations in those two sets of k equations, respectively, by substituting \mathbf{k}^{i} and \mathbf{i}^{k} with their solutions in terms of \mathbf{i}^{j} for $i, j \neq k$. It it then easy to check that these two equations are linearly independent when $k>3$.

LEMMA 3.2. For $k=4,5$, we have $\binom{k}{3}=k^{2}-3 k$. For $k \geq 6$, we have $\binom{k}{3}>k^{2}-3 k$.

Proof. We have

$$
\binom{k}{3}-\left(k^{2}-3 k\right)=\frac{k}{6}\left(k^{2}-9 k+20\right)=\frac{k}{6}(k-4)(k-5) .
$$

THEOREM 3.3. For $k \geq 6$, there exists a polynomial in $l_{i j}$ and $\mu(r s t)$ which is a link-homotopy invariant of ordered, oriented links with k components. This link-homotopy invariant is of finite type.

Proof. In $\mathbf{Z}^{(k)}$, let \mathcal{P} be the sublattice generated by the translation vectors of partial conjugations. Then we have

$$
\operatorname{dim}(\mathcal{P}) \leq k^{2}-3 k<\binom{k}{3}
$$

Let $\Omega \in \mathbf{Z}^{(k)}$) be a non-zero vector perpendicular to \mathcal{P}. We can choose such an Ω so that its coordinates are polynomials in $\left\{l_{i j}\right\}$ and the inner product $\mathbf{i}^{j} \cdot \Omega$ is identically zero. This can be achieved by considering generic values of $\left\{l_{i j}\right\}$ first and solving a system of homogeneous equations (with more equations than unknowns) whose coefficients are polynomials in $l_{i j}{ }^{3}$). Then since $\mathbf{i}^{j} \cdot \Omega=0$ for generic values of $\left\{l_{i j}\right\}$, it has to be zéro identically. Let $\left.\mu=\{\mu(r s t)\} \in \mathbf{Z}^{k}{ }_{3}^{k}\right)$. The inner product $\mu \cdot \Omega$ is invariant under the translations by vectors in \mathcal{P}. This is a desired link-homotopy invariant of ordered, oriented links since

$$
\left(\mu+\mathbf{i}^{j}\right) \cdot \Omega=\mu \cdot \Omega
$$

for all $i, j=1,2, \ldots, k$.
The fact that the invariant $\mu \cdot \Omega$ is of finite type is a direct consequence of the fact that the linking numbers and the triple linking numbers are all finite

[^2]type invariants of string links ([7], [2]). If we have a singular link, we may put it into the form of the closure of a single string link. Since polynomials of finite type invariants are still of finite type, $\mu \cdot \Omega$ vanishes on singular string links with a sufficiently large number of double points. This implies that it is a finite type link invariant.

We now consider in some detail the case $k=6$. Let us order $\mu(r s t)$, $1 \leq r<s<t \leq 6$ in lexicographic order. So

$$
\begin{aligned}
\mu=(& \mu(123), \mu(124), \mu(125), \mu(126), \mu(134), \mu(135), \mu(136), \mu(145), \mu(146), \mu(156), \\
& \mu(234), \mu(235), \mu(236), \mu(245), \mu(246), \mu(256), \mu(345), \mu(346), \mu(356), \mu(456)) .
\end{aligned}
$$

Then the vectors of the translation operations $\mathbf{1}^{2}, \mathbf{1}^{3}, \mathbf{1}^{4}, \mathbf{1}^{5}, \mathbf{1}^{6}, \mathbf{2}^{1}, \mathbf{2}^{3}, \mathbf{2}^{4}$, $2^{5}, 2^{6}, 3^{1}, 3^{2}, 3^{4}, 3^{5}, 3^{6}, 4^{1}, 4^{2}, 4^{3}, 4^{5}, 4^{6}, 5^{1}, 5^{2}, 5^{3}, 5^{4}, 5^{6}, 6^{1}, 6^{2}$, $\mathbf{6}^{3}, \mathbf{6}^{4}, \mathbf{6}^{5}$ are the row vectors of the following 30×20 matrix, from top to bottom respectively:

l_{13}	l_{14}	l_{15}	l_{16}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$-l_{12}$	0		0	l_{14}	l_{15}	l_{16}	0	0	0	0	0	0	0	0	0	0	0	0	0
0	$-l_{12}$	0	0	$-l_{13}$	0		l_{15}	l_{16}	0	0	0	0	0	0	0	0	0	0	0
0	0	$-l_{12}$	0	0	$-l_{13}$	0	$-l_{14}$	0	l_{16}	0	0	0	0	0	0	0	0	0	0
0	0	0	$-l_{12}$	0	0	$-l_{13}$	0	$-l_{14}$	$-l_{15}$	0	0	0	0	0	0	0	0	0	0
$-l_{23}$	$-l_{24}$	$-l_{25}$	$-l_{26}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
l_{12}	0	0	0	0	0	0	0	0	0	l_{24}	l_{25}	l_{26}	0	0	0	0	0	0	0
0	l_{12}	0	0	0	0	0	0	0	0	$-l_{23}$	0	0	l_{25}	l_{26}	0	0	0	0	0
0	0	l_{12}	0	0	0	0	0	0	0	0	$-l_{23}$	0	$-l_{24}$	0	l_{26}	0	0	0	0
0	0	0	l_{12}	0	0	0	0	0	0	0	0	$-l_{23}$	0	$-l_{24}$	$-l_{25}$	0	0	0	0
l_{23}	0	0	0	$-l_{34}$	$-l_{35}$	$-l_{36}$	0	0	0	0	0	0	0	0	,	0	0	0	0
$-l_{13}$	0	0	0	0	0	0	0	0	0	$-l_{34}$	$-l_{35}$	$-l_{36}$	0	0	0	0	0	0	0
0	0	0	0	l_{13}	0	0	0	0	0	l_{23}	0	0	0	0	0	l_{35}	l_{36}	0	0
0	0	0	0	,	l_{13}	0	0	0	0	-	l_{23}	0	0	0	0	$-l_{34}$	0	l_{36}	0
0	0	0	0	0	0	l_{13}	0		0	0	0	l_{23}	0	0	0	0	$-l_{34}$	$-l_{35}$	0
0	l_{24}		0	134	0	0	$-l_{45}$	$-l_{46}$	0	0	0	,	0	0	0	0	0	0	0
0	$-l_{14}$	0	0	0	0	0	0	0	0	l_{34}	0	0	$-l_{45}$	$-l_{46}$	0	0	0	0	0
0	0	0	0	$-l_{14}$	0	0	0	0	0	$-l_{24}$	0	0	0		0	$-l_{45}$	$-l_{46}$	0	0
0	0	0	0	-	0	0	l_{14}	0	0	0	0	0	l_{24}	0	0	l_{34}	0	0	l_{46}
0	0	0	0	0	0	0	0	l_{14}	0	0	0	0	,	l_{24}	0		l_{34}	0	$-l_{45}$
0	0	l_{25}	0	0	l_{35}	0	l_{45}	0	$-l_{56}$	0	0	0	0	,	0	0		0	0
0	0	$-l_{15}$	0	0	0	0	0	0	0		l_{35}	0	l_{45}	0	$-l_{56}$	0	0	0	0
0	0	0	0	0	$-l_{15}$	0	0	0	0	0	$-l_{25}$	0		0	0	l_{45}	0	$-l_{56}$	0
0	0	0	0	0	0	0	$-l_{15}$	0	0	0	0	0	$-l_{25}$	0	0	$-l_{35}$	0	0	$-l_{56}$
0	0	0	0		0	0	0	0	l_{15}	0	0	0	,	0	l_{25}	,	0	l_{35}	l_{45}
0	0	0	l_{26}	0	0	136	0	146	l_{56}	0	0	0	0	0	0	0	0	0	0
0	0	0	$-l_{16}$	0	0	0	0	0	0	0	0	l_{36}	0	l_{46}	l_{56}	0	0	0	0
0	0	0	0	0	0	$-l_{16}$	0	0	0	0	0	$-l_{26}$	0	0	0	0	l_{46}	l_{56}	0
0	0	0	0	0	0	0	0	$-l_{16}$	0	0	0	0	0	$-l_{26}$	0	0			l_{56}
0	0	0	0	0	0	0	0	0	$-l_{16}$	0	0	0	0	0	l_{26}	0	0		$-l_{46}$

We shall pick out the 18 rows of this matrix corresponding to the translation operations of $\mathbf{1}^{2}, \mathbf{1}^{3}, \mathbf{1}^{4}, \mathbf{1}^{5}, \mathbf{2}^{1}, \mathbf{2}^{3}, \mathbf{2}^{4}, \mathbf{2}^{5}, \mathbf{3}^{1}, \mathbf{3}^{2}, \mathbf{3}^{4}, \mathbf{3}^{5}, \mathbf{4}^{1}, 4^{2}, \mathbf{4}^{3}$, $\mathbf{4}^{5}, \mathbf{5}^{1}, \mathbf{5}^{2}$, respectively. Calculation using Mathematica ${ }^{\circledR}$ shows that these 18 vectors are linearly independent generically.

Consider now the operation of reversing the orientation. The vector $R=\{R(r s t)\} \in \mathbf{Z}^{20}$ of the translation operation in Theorem 2.9 is given by

$$
R(r s t)=-l_{r s} l_{r t}+l_{r s} l_{s t}-l_{r t} l_{s t}
$$

One can verify that the vector R and the previous 18 vectors are linearly independent. Let \mathcal{M} be the 19×20 matrix formed by these 19 vectors. Let $\mathcal{M}^{(i)}$ be the 19×19 matrix obtained from \mathcal{M} by deleting the $i^{\text {th }}$ column from $\mathcal{M}, i=1,2, \ldots, 20$. Let

$$
\Omega_{i}=(-1)^{i-1} \operatorname{det}\left(\mathcal{M}^{(i)}\right)
$$

and $\Omega=\left(\Omega_{1}, \Omega_{2}, \ldots, \Omega_{20}\right)$.
THEOREM 3.4. $\mu \cdot \Omega$ is a finite type link-homotopy invariant of ordered, oriented links with 6 components. When the orientation of every component is reversed, this invariant is changed only by a sign.

Proof. Using the fact that the rows of the cofactor matrix A^{*} of a given matrix A are perpendicular to different rows of A, we see that Ω is perpendicular to all the vectors of translation operation induced by partial conjugations as well as the vector R. Certainly, $\Omega \neq 0$. So $\mu \cdot \Omega$ is a nontrivial link-homotopy invariant of ordered, oriented links with 6 components. It is of finite type since it is a polynomial in $l_{i j}$ and $\mu(r s t)$. Under the reversion of orientation, μ changes to $-\mu+R$. Since $R \cdot \Omega=0$, the invariant $\mu \cdot \Omega$ is only changed by a sign under the reversion of orientation.

To finish, let us furnish some data obtained using Mathematica. Let $\operatorname{deg}\left(l_{i j}\right)=1$, then Ω_{i} is a homogeneous polynomial of degree 20 in $l_{i j}$. Let L_{i} be the number of monomials in Ω_{i}, the sequence $\left\{L_{1}, L_{2}, \ldots, L_{20}\right\}$ is given as follows:

$$
\begin{aligned}
& \{5531,5555,5555,5531,5424,5769,5802,5734,5753,5432 \\
& 5432,5753,5802,5734,5769,5424,5928,5922,5922,5928\} .
\end{aligned}
$$

Thus $\mu \cdot \Omega$ is linear and homogeneous in $\mu(r s t)$ and has 113,700 monomials.

REFERENCES

[1] Bar-Natan, D. On the Vassiliev knot invariants. Topology 34 (1995), 423-472.
[2] - Vassiliev homotopy string link invariants. J. Knot Theory Ramifications 4 (1995), 13-32.
[3] Habegger, N. and X.-S. Lin. The classification of links up to link-homotopy. J. Amer. Math. Soc. 3 (1990), 389-419.
[4] Kuperberg, G. Detecting knot invertibility. J. Knot Theory Ramifications 5 (1996), 173-181.
[5] Levine, J. An approach to homotopy classification of links. Trans. Amer. Math. Soc. 306 (1988), 361-387.
[6] - Surgery on links and the $\bar{\mu}$-invariants. Topology 26 (1987), 45-61.
[7] Lin, X.-S. Power series expansions and invariants of links. In: Geometric Topology (Athens, GA, 1993), 184-202. AMS/IP Stud. Adv. Math., vol. 2.1. Amer. Math. Soc., 1997.
[8] - Finite type link invariants and the non-invertibility of links. Math. Res. Letters 3 (1996), 405-417.
[9] Mellor, B. and D. Thurston. On the existence of finite type link homotopy invariants. J. Knot Theory Ramifications 10 (2001), 1025-1039.
[10] NG, K. Y. Groups of ribbon knots. Topology 37 (1998), 441-458.
(Reçu le 26 février 2001)

Xiao-Song Lin
Department of Mathematics
University of California
Riverside, CA 92521
U.S.A.
e-mail: xl@math.ucr.edu

[^0]: *) Partially supported by the Overseas Youth Cooperation Research Fund of NSFC and a grant from NSF.
 ${ }^{1}$) Usually, they are called μ-invariants. But the word "invariant" is clearly abused here, so we decide to call them μ-numbers.

[^1]: ${ }^{2}$) See [6] for another approach to the similar problem for surgery equivalence of links. Notice that both approaches attempted to reduce the indeterminacies of the $\bar{\mu}$-invariants.

[^2]: ${ }^{3}$) This will be made explicit in the example following this proof.

