CIRCULANT MODULAR HADAMARD MATRICES

Autor(en): Eliahou, Shalom / Kervaire, Michel
Objekttyp: Article
Zeitschrift: L'Enseignement Mathématique

Band (Jahr): 47 (2001)
Heft 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

PDF erstellt am:
23.07.2024

Persistenter Link: https://doi.org/10.5169/seals-65430

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

CIRCULANT MODULAR HADAMARD MATRICES

by Shalom Eliahou*) and Michel Kervaire

1. Introduction

Besides Hadamard's conjecture proper, one of the major open problems concerning Hadamard matrices is Ryser's conjecture, according to which there are no circulant Hadamard matrices of size greater than 4 ; cf. [R].

In the light of Ryser's conjecture, it might prove interesting to consider the weaker notion of a circulant modular Hadamard matrix, and ask for what moduli and sizes such matrices happen to exist.

On the one hand, one hopes that non-existence results may shed some light on Ryser's conjecture. On the other hand, computer experimentation reveals the existence of families of modular circulant Hadamard matrices of given sizes and moduli with intriguing patterns. In the present note we exhibit one such infinite family with a large modulus m.

Notation. Let $X=\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)$ be a sequence of even size n, with $x_{i}= \pm 1$ for all $i=0, \ldots, n-1$. We denote the k-th periodic correlation coefficient of X by

$$
\gamma_{k}(X)=\sum_{i=0}^{n-1} x_{i} x_{i+k}
$$

where the subscripts are read modulo n, for every $k(0 \leq k \leq n-1)$.

Clearly, $\gamma_{k}(X)$ is the dot product of X with its k-th left shift $\sigma_{k}(X)$, where $\sigma_{k}(X)=\left(x_{k}, x_{k+1}, \ldots, x_{k+n-1}\right)$, again with indices read modulo n. Observe that $\gamma_{0}(X)=n$ and that $\gamma_{n-k}(X)=\gamma_{k}(X)$ for $k=1, \ldots, n-1$.

[^0]A circulant matrix $\operatorname{circ}(X)$ is associated to X. The rows of $\operatorname{circ}(X)$ are the shifts $\sigma_{-k}(X), k=0, \ldots, n-1$ of the sequence X.

Of course, the conjunction of the conditions $\gamma_{k}(X)=0$ for all $k=1, \ldots, \frac{n}{2}$ is equivalent to $H=\operatorname{circ}(X)$ being a circulant Hadamard matrix, while $\gamma_{k}(X) \equiv 0 \bmod m$ for all $k=1, \ldots, \frac{n}{2}$ means that $H=\operatorname{circ}(X)$ is an m-modular circulant Hadamard matrix.

There are two trivial examples of circulant modular Hadamard matrices with a large modulus. One is the constant all-one matrix $J=\operatorname{circ}(1, \ldots, 1)$. The matrix J is an n-modular circulant Hadamard matrix (CHM for short) of size n.

The other example is $J^{\prime}=\operatorname{circ}(-1,1, \ldots, 1)=J-2 I$, where I is the identity matrix of size n. Here, $J^{\prime} \cdot\left(J^{\prime}\right)^{t}=n I+(n-4)(J-I)$, whence J^{\prime} is an ($n-4$)-modular CHM of size n.

In order to exhibit interesting examples of circulant modular Hadamard matrices, we shall require that some of the correlations $\gamma_{k}(X)$ be actually zero, not only zero modulo m.

Using the notation $H(z)=\sum_{i=0}^{n-1} x_{i} z^{i} \in \mathbf{Z}[z] /\left(z^{n}-1\right)$ as usual, the correlations $\gamma_{k}=\gamma_{k}(X)$ arise as coefficients in the identity

$$
\begin{equation*}
H(z) H\left(z^{-1}\right)=n+\sum_{k=1}^{\frac{n}{2}-1} \gamma_{k}\left(z^{k}+z^{-k}\right)+\gamma_{\frac{n}{2}} z^{\frac{n}{2}} \in \mathbf{Z}[z] /\left(z^{n}-1\right) \tag{1}
\end{equation*}
$$

where $\mathbf{Z}[z] /\left(z^{n}-1\right)$ may be viewed as the group ring $\mathbf{Z} C_{n}$ of the cyclic group of order n generated by z.

The special position of $\gamma_{\frac{n}{2}}$ in this formula suggests that it be treated separately, as in the following (tentative) definition.

DEFINITION. Let $H=\operatorname{circ}(X)$ be an m-modular circulant Hadamard matrix of even size n. We say that H is of type 1 if $\gamma_{n / 2}(X)=0$. We say that H is of type 2 if $\gamma_{k}(X)=0$ for all $k \neq 0, \frac{n}{2}$.

Ryser's conjecture amounts to saying that, in size greater than 4, there is no circulant modular Hadamard matrix which is simultaneously of types 1 and 2.

Even though the constraints for type 2 seem to be much stronger than the one for type 1, this may not necessarily be so. Consider, for example, the case of size $n=20$ and modulus $m=16$. Let

$$
X=(1,1,1,-1,1,-1,-1,-1,-1,1,1,-1,-1,1,-1,1,1,1,1,-1) .
$$

Then, quite surprisingly perhaps, $\operatorname{circ}(X)$ is a 16 -modular CHM of type 2 , as X satisfies the equalities $\gamma_{k}(X)=0$ for all $k \neq 0,10$, and $\gamma_{10}(X)=-16$.

However, it follows from formula (1) above that there is no 16 -modular CHM of type 1 in size 20. Indeed, for $n=20$, substituting $z=1$ in formula (1) with $\gamma_{10}=0$ yields $H(1)^{2}=20+2 \sum_{k=1}^{9} \gamma_{k}$.

The condition $\gamma_{k} \equiv 0 \bmod 16$ for $k=1, \ldots, 9$ would imply $(H(1) / 2)^{2} \equiv 5$ $\bmod 8$, contradicting the fact that 5 is not a square modulo 8 . Hence, the condition $\gamma_{10}(X)=0$ alone forbids the other correlation coefficients of X, at positive indices k, to vanish simultaneously modulo 16 .

The same argument shows that for q odd with $q \not \equiv 1 \bmod 8$, there is no 16 -modular CHM of length $4 q$ satisfying $\gamma_{2 q} \equiv 0 \bmod 32$.

In this note, we exhibit (in the next section) a 4-parameter family of ($p-1$)-modular circulant Hadamard matrices of type 1 and of size $4 p$ for every prime number p such that $p \equiv 1 \bmod 4$.

As to circulant modular Hadamard matrices of type 2, it turns out that they can be obtained from a well known paper of Delsarte, Goethals and Seidel [DGS]. This is explained in Section 3.

2. A FAMILY OF $(p-1)$-MODULAR

 circulant Hadamard matrices of size $4 p$.Let p be a prime satisfying $p \equiv 1 \bmod 4$. We are going to prove the existence of $(p-1)$-modular circulant Hadamard matrices of type 1 and size $4 p$. We give explicitly below the first row $\left(x_{0}, x_{1}, \ldots, x_{4 p-1}\right)$ of such a matrix as a polynomial $H(z)=\sum_{i=0}^{4 p-1} x_{i} z^{i} \in \mathbf{Z} C_{4 p}=\mathbf{Z}[z] /\left(z^{4 p}-1\right)$, where all coefficients x_{i} equal ± 1 and $H(z) H\left(z^{-1}\right) \equiv 4 p$ modulo $(p-1) \mathbf{Z} C_{4 p}$. In order to write down $H(z)$ we need some notation.

Let $S_{0} \subset[1, p-1] \cup[p+1,2 p-1]$ be the set of squares modulo $2 p$, which are prime to p. Note that if s is a square $\bmod p$, then s is also a square mod $2 p$. Indeed, if there exists c such that $c^{2}=s+k p$ and k is odd, then $(c+p)^{2}=c^{2}+2 c p+p^{2}=s+2 c p+(k+p) p \equiv s \bmod 2 p$.

Let $S_{1}=([1, p-1] \cup[p+1,2 p-1]) \backslash S_{0}$ be the set of non-squares mod $2 p$, prime to p. We have $\left|S_{0} \cap[1, p-1]\right|=\left|S_{0} \cap[p+1,2 p-1]\right|=\frac{p-1}{2}$, so that $\left|S_{0}\right|=p-1$. Similarly, $\left|S_{1} \cap[1, p-1]\right|=\left|S_{1} \cap[p+1,2 p-1]\right|=\frac{p-1}{2}$ and $\left|S_{1}\right|=p-1$ also.

Let $f_{0}(z)$ and $f_{1}(z)$ be the Hall polynomials of S_{0} and S_{1} respectively. That is, $f_{i}(z)=\sum_{s \in S_{i}} z^{s} \in \mathbf{Z} C_{4 p}$ for $i=0,1$. We shall need $f_{i}\left(z^{2}\right)=\sum_{s \in S_{i}} z^{2 s}$ and $f_{i}\left(-z^{2}\right)=\sum_{s \in S_{i}}(-1)^{s} z^{2 s}$. Our objective is the proof of the following theorem.

THEOREM 1. Let f_{0} and f_{1} be as defined above and let $\varepsilon_{0}, \varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}$ be 4 independent parameters with values $\varepsilon_{0}, \varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}= \pm 1$. The polynomial $H(z) \in \mathbf{Z} C_{4 p}=\mathbf{Z}[z] /\left(z^{4 p}-1\right)$ given by
$H(z)=\varepsilon_{0}\left(1+f_{0}\left(z^{2}\right)+z^{2 p}\right)+\varepsilon_{1} f_{0}\left(z^{2}\right) z^{p}+\varepsilon_{2} f_{1}\left(-z^{2}\right)+\varepsilon_{3}\left(1+f_{1}\left(-z^{2}\right)-z^{2 p}\right) z^{p}$
has all its coefficients of the monomials $1, z, z^{2}, \ldots, z^{4 p-1}$ equal to ± 1 and satisfies the identity

$$
H(z) H\left(z^{-1}\right)=4 p+(p-1) R(z)
$$

for some polynomial $R(z) \in \mathbf{Z}[z] /\left(z^{4 p}-1\right)$ given below in formula (11) in which the coefficient of $z^{2 p}$ is zero.

The exponents of z in H and R are to be read modulo $4 p$. We use (abusively) the term "polynomial" for the elements of $\mathbf{Z}[z] /\left(z^{4 p}-1\right)$. The assertion on the coefficients of H is easy to verify by direct observation and is left to the reader.

The parameter ε_{0} is clearly the coefficient of the constant term in the displayed expression for $H(z)$. The coefficient of z in $H(z)$ is ε_{1} on the condition that $p \equiv 1 \bmod 8$. Indeed, in this case 2 is a square $\bmod p$. Also $3 p+1$ is a square $\bmod 2 p$ and therefore $\frac{3 p+1}{2} \in S_{0}$. Thus, the term $z=z^{2 \frac{3 p+1}{2}+p}$ appears in $\varepsilon_{1} f_{0}\left(z^{2}\right) z^{p}$. If $p \equiv 5 \bmod 8$, then $\frac{3 p+1}{2} \in S_{1}$ and z appears in $H(z)$ with the coefficient $(-1)^{\frac{3 p+1}{2}} \varepsilon_{3}=+\varepsilon_{3}$. The first appearance of ε_{2} in $H(z)$ depends on the minimum of S_{1}, a number for which there is no known formula.

For the proof of the theorem we separate a preliminary part, which only depends on symmetry properties of the set S_{0}, from the final calculation, which properly depends on the hypothesis that S_{0} is constructed from the set of quadratic residues $\bmod p$.

We first derive the properties of $H(z) H\left(z^{-1}\right)$ coming from the symmetries of the set S_{0} and its complement $S_{1}=([1, p-1] \cup[p+1,2 p-1]) \backslash S_{0}$. We denote by $\varphi:[1, p-1] \cup[p+1,2 p-1] \rightarrow[1, p-1] \cup[p+1,2 p-1]$ the flip defined by the formula $\varphi(x)=2 p-x$.

Whenever the set S_{0} is stable under φ, the existence of $\varphi: S_{0} \rightarrow S_{0}$, and hence $\varphi: S_{1} \rightarrow S_{1}$, implies the following properties of the sums $\sum_{s \in S_{i}} z^{2 s}$ as well as $\sum_{s \in S_{i}}(-1)^{s} z^{2 s}$ for the sets S_{i} with $i=0,1$:

$$
\begin{equation*}
\sum_{s \in S_{i}} z^{-2 s}=\sum_{s \in S_{i}} z^{2 s}, \quad \sum_{s \in S_{i}}(-1)^{s} z^{-2 s}=\sum_{s \in S_{i}}(-1)^{s} z^{2 s} . \tag{2}
\end{equation*}
$$

This follows simply by applying the involution φ.
For instance,

$$
\begin{aligned}
\sum_{s \in S_{i}}(-1)^{s} z^{2 s} & =\sum_{s \in S_{i}}(-1)^{\varphi(s)} z^{2 \varphi(s)} \\
& =\sum_{s \in S_{i}}(-1)^{(2 p-s)} z^{2(2 p-s)} \\
& =\sum_{s \in S_{i}}(-1)^{s} z^{-2 s},
\end{aligned}
$$

since $z^{4 p}=1$. This means that $f_{0}\left(-z^{2}\right)$ and $f_{1}\left(-z^{2}\right)$ are both self-reciprocal polynomials: $f_{0}\left(-z^{2}\right)=f_{0}\left(-z^{-2}\right)$ and $f_{1}\left(-z^{2}\right)=f_{1}\left(-z^{-2}\right)$. The proof for the other formula (without the sign) is essentially the same.

We also have a "baker's flip" ρ, mapping $[1, p-1] \cup[p+1,2 p-1]$ onto itself, defined by

$$
\rho(x)= \begin{cases}p-x & \text { if } x \in[1, p-1] \\ 3 p-x & \text { if } x \in[p+1,2 p-1] .\end{cases}
$$

If S_{0} and S_{1} are stable under ρ, the existence of the automorphisms $\rho: S_{i} \rightarrow S_{i}$ for $i=0,1$ implies the following formulas:

$$
\begin{equation*}
\left(1-z^{2 p}\right) \sum_{s \in S_{i}} z^{2 s}=0, \quad\left(1+z^{2 p}\right) \sum_{s \in S_{i}}(-1)^{s} z^{2 s}=0 . \tag{3}
\end{equation*}
$$

Here we apply ρ on $S_{i} \cap[1, p-1]$, and on $S_{i} \cap[p+1,2 p-1]$. We have

$$
\begin{aligned}
\sum_{s \in S_{i}}(-1)^{s} z^{2 s} & =\sum_{s \in S_{i}}(-1)^{\rho(s)} z^{2 \rho(s)} \\
& =\sum_{s \in S_{i} \cap[1, p-1]}(-1)^{p-s} z^{2(p-s)}+\sum_{s \in S_{i} \cap[p+1,2 p-1]}(-1)^{3 p-s} z^{2(3 p-s)} .
\end{aligned}
$$

Remembering that $z^{4 p}=1$, we obtain

$$
\begin{aligned}
\sum_{s \in S_{i}}(-1)^{s} z^{2 s} & =-z^{2 p} \sum_{s \in S_{i}}(-1)^{s} z^{-2 s} \\
& =-z^{2 p} \sum_{s \in S_{i}}(-1)^{(2 p-s)} z^{2(2 p-s)} \\
& =-z^{2 p} \sum_{s \in S_{i}}(-1)^{s} z^{2 s}
\end{aligned}
$$

using the automorphism φ as above. Again, the proof for the formula without the sign is the same.

As a corollary, we get

$$
\begin{equation*}
f_{i}\left(-z^{2}\right) f_{j}\left(z^{2}\right)=\left(\sum_{s \in S_{i}}(-1)^{s} z^{2 s}\right)\left(\sum_{t \in S_{j}} z^{2 t}\right)=0 \tag{4}
\end{equation*}
$$

obtained by observing that $\left(1+z^{2 p}\right)$ and $\left(1-z^{2 p}\right)$ both kill the above product. The first factor is killed by $1+z^{2 p}$. The second one by $1-z^{2 p}$. It follows that $2=\left(1+z^{2 p}\right)+\left(1-z^{2 p}\right)$ annihilates the left-hand side of (4), which must be 0 since 2 is not a zero-divisor in $\mathbf{Z} C_{4 p}$.

We can begin the calculation of some terms in $H(z) H\left(z^{-1}\right)$. Under the hypothesis $p \equiv 1 \bmod 4$ of the theorem, -1 is a square $\bmod p$ and -1 is also a square $\bmod 2 p$. Therefore, $p-1 \in S_{0}$ and it follows that S_{0}, S_{1} are stable by both involutions ρ, φ. The formulas (2), (3) and (4) apply.

As a consequence, we obtain that the coefficients of $\varepsilon_{0} \varepsilon_{2}, \varepsilon_{1} \varepsilon_{2}, \varepsilon_{0} \varepsilon_{3}$ and $\varepsilon_{1} \varepsilon_{3}$ in $H(z) H\left(z^{-1}\right)$ all vanish. For instance, in the coefficient of $\varepsilon_{0} \varepsilon_{3}$ in $H(z) H\left(z^{-1}\right)$, which is

$$
2\left(1+\left(\sum_{s \in S_{0}} z^{2 s}\right)+z^{2 p}\right)\left(1+\left(\sum_{s \in S_{1}}(-1)^{s} z^{2 s}\right)-z^{2 p}\right)\left(z^{p}+z^{-p}\right)
$$

the products of $1+z^{2 p}$ with $1-z^{2 p}$ and $\sum_{s \in S_{1}}(-1)^{s} z^{2 s}$ are 0 . Furthermore, the products of $\sum_{s \in S_{0}} z^{2 s}$ with $1-z^{2 p}$ and with $\sum_{s \in S_{1}}(-1)^{s} z^{2 s}$ also vanish.

The coefficients of the other terms $\varepsilon_{0} \varepsilon_{2}, \varepsilon_{1} \varepsilon_{2}$ and $\varepsilon_{1} \varepsilon_{3}$ are seen to be 0 by the same arguments based on formulas (2), (3) and (4). The coefficient of $\varepsilon_{2} \varepsilon_{3}$ is

$$
\left(z^{p}+z^{-p}\right)\left(\sum_{s \in S_{1}}(-1)^{s} z^{2 s}\right)\left(1+\sum_{s \in S_{1}}(-1)^{s} z^{2 s}-z^{2 p}\right) .
$$

Although of a somewhat different nature, it also vanishes by formula (3), observing that $z^{p}+z^{-p}=z^{p}\left(1+z^{2 p}\right)$.

The only remaining terms in $H(z) H\left(z^{-1}\right)$ are

$$
\begin{aligned}
H(z) H\left(z^{-1}\right)=(1+ & \left.f_{0}\left(z^{2}\right)+z^{2 p}\right)^{2}+\left(1+f_{1}\left(-z^{2}\right)-z^{2 p}\right)^{2}+\left(f_{1}\left(-z^{2}\right)\right)^{2} \\
& +\left(f_{0}\left(z^{2}\right)\right)^{2}+2 \varepsilon_{0} \varepsilon_{1}\left(1+f_{0}\left(z^{2}\right)+z^{2 p}\right) f_{0}\left(z^{2}\right)\left(z^{p}+z^{-p}\right)
\end{aligned}
$$

We end up with an expression $H(z) H\left(z^{-1}\right)=C+C_{0,1} \varepsilon_{0} \varepsilon_{1}$.
An easy calculation using formula (3) and the simple remarks $\left(1+z^{2 p}\right)^{2}=$ $2\left(1+z^{2 p}\right),\left(1-z^{2 p}\right)^{2}=2\left(1-z^{2 p}\right)$, yields

$$
C=2\left\{\left(f_{0}\left(z^{2}\right)\right)^{2}+2 f_{0}\left(z^{2}\right)+\left(f_{1}\left(-z^{2}\right)\right)^{2}+2 f_{1}\left(-z^{2}\right)\right\}+4,
$$

and similarly

$$
C_{0,1}=2\left(\left(f_{0}\left(z^{2}\right)\right)^{2}+2 f_{0}\left(z^{2}\right)\right)\left(z^{p}+z^{-p}\right),
$$

which require the computation of the two squares $\left(f_{0}\left(z^{2}\right)\right)^{2}=\left(\sum_{s \in S_{0}} z^{2 s}\right)^{2}$ and $\left(f_{1}\left(-z^{2}\right)\right)^{2}=\left(\sum_{s \in S_{1}}(-1)^{s} z^{2 s}\right)^{2}$.

We shall actually need to calculate all four quantities $\left(f_{0}\left(z^{2}\right)\right)^{2},\left(f_{1}\left(z^{2}\right)\right)^{2}$, $\left(f_{0}\left(-z^{2}\right)\right)^{2},\left(f_{1}\left(-z^{2}\right)\right)^{2}$. For brevity, we use the notation

$$
X_{i}=f_{i}\left(z^{2}\right)=\sum_{s \in S_{i}} z^{2 s}, \quad Y_{i}=f_{i}\left(-z^{2}\right)=\sum_{s \in S_{i}}(-1)^{s} z^{2 s},
$$

for $i=0,1$.
Note first that $X_{0}+X_{1}=\sum_{\nu=0}^{2 p-1} z^{2 \nu}-\left(1+z^{2 p}\right)=T-\left(1+z^{2 p}\right)$, where we have set $T=\sum_{\nu=0}^{2 p-1} z^{2 \nu}$. Similarly, $Y_{0}+Y_{1}=\sum_{\nu=0}^{2 p-1}(-1)^{\nu} z^{2 \nu}-\left(1-z^{2 p}\right)=$ $U-\left(1-z^{2 p}\right)$, where $U=\sum_{\nu=0}^{2 p-1}(-1)^{\nu} z^{2 \nu}$.

Observe that $z^{2} T=T$ and $z^{2} U=-U$. It follows that

$$
\begin{equation*}
X_{0}^{2}+2 X_{0} X_{1}+X_{1}^{2}=\left(T-\left(1+z^{2 p}\right)\right)^{2}=2(p-2) T+2\left(1+z^{2 p}\right) . \tag{5}
\end{equation*}
$$

We also have $\left(X_{0}-X_{1}\right) T=\left|S_{0}\right| T-\left|S_{1}\right| T=0$, and thus

$$
\begin{equation*}
X_{0}^{2}-X_{1}^{2}=\left(T-\left(1+z^{2 p}\right)\right)\left(X_{0}-X_{1}\right)=-2\left(X_{0}-X_{1}\right), \tag{6}
\end{equation*}
$$

remembering formula (3).
The main point is the calculation of $\left(X_{0}-X_{1}\right)^{2}$, which is reminiscent of the familiar calculation with Gauss sums.

Let $(\bar{p}): \mathbf{Z} \rightarrow\{ \pm 1\}$ be the quadratic character at the prime p extended to the integers as usual: $\left(\frac{x}{p}\right)=0$ if x is divisible by $p,\left(\frac{x}{p}\right)=+1$ if x, prime to p, is a quadratic residue modulo p (i.e., $x \equiv y^{2}$ modulo p for some y) and $\left(\frac{x}{p}\right)=-1$ if x is prime to p and not a quadratic residue modulo p. We are assuming $p \equiv 1 \bmod 4$, and hence $\left(\frac{-1}{p}\right)=1$.

Notice that $X_{0}-X_{1}=\sum_{x=0}^{2 p-1}\left(\frac{x}{p}\right) z^{2 x}=\left(\sum_{x=0}^{p-1}\left(\frac{x}{p}\right) z^{2 x}\right)\left(1+z^{2 p}\right)$ since $\left(\frac{x+p}{p}\right)=\left(\frac{x}{p}\right)$ for all x. For all integers x, y we have $\left(\frac{x y}{p}\right)=\left(\frac{x}{p}\right)\left(\frac{y}{p}\right)$ and thus

$$
\left(X_{0}-X_{1}\right)^{2}=2\left(\sum_{x=0}^{p-1} \sum_{y=0}^{p-1}\left(\frac{x y}{p}\right) z^{2(x+y)}\right)\left(1+z^{2 p}\right) .
$$

Now, observe that $z^{2(t+p)}\left(1+z^{2 p}\right)=z^{2 t}\left(1+z^{2 p}\right)$ for any integer t. It follows that, identifying the set of integers [1,p-1] with $\mathbf{F}_{p}^{*}=\mathbf{F}_{p} \backslash\{0\}$ by the natural projection $\mathbf{Z} \rightarrow \mathbf{F}_{p}$, we have

$$
\left(X_{0}-X_{1}\right)^{2}=2\left(\sum_{x, y \in \mathbf{F}_{p}^{*}}\left(\frac{x y}{p}\right) z^{2(x+y)}\right)\left(1+z^{2 p}\right) .
$$

The crucial point is that the right-hand side is well defined, without ambiguity even though the expression $\sum_{x, y \in \mathbf{F}_{p}^{*}}\left(\frac{x y}{p}\right) z^{2(x+y)}$ in itself is only defined modulo $\left(z^{2 p}-1\right)$.

For fixed $x \in \mathbf{F}_{p}^{*}$, as y runs over \mathbf{F}_{p}^{*}, so does $-y x$; therefore

$$
\begin{aligned}
\left(X_{0}-X_{1}\right)^{2} & =2\left(\sum_{x, y \in \mathbf{F}_{p}^{*}}\left(\frac{-x^{2} y}{p}\right) z^{2 x(1-y)}\right)\left(1+z^{2 p}\right) \\
& =2\left(\frac{-1}{p}\right)\left(\sum_{x, y \in \mathbf{F}_{p}^{*}}\left(\frac{y}{p}\right) z^{2 x(1-y)}\right)\left(1+z^{2 p}\right) .
\end{aligned}
$$

Summing over x for $y=1$ and then for $y \in \mathbf{F}_{p}^{*} \backslash\{1\}$, we get

$$
\left(X_{0}-X_{1}\right)^{2}=2\left(\frac{-1}{p}\right)\left\{(p-1)+\sum_{y \in \mathbf{F}_{p}^{*} \backslash\{1\}}\left(\frac{y}{p}\right) \sum_{x \in \mathbf{F}_{p}^{*}} z^{2 x}\right\}\left(1+z^{2 p}\right) .
$$

Since $\sum_{y \in \mathbf{F}_{p}^{*}}\left(\frac{y}{p}\right)=0$, we have $\sum_{y \in \mathbf{F}_{p}^{*} \backslash\{1\}}\left(\frac{y}{p}\right)=-1$. Using $\left(\frac{-1}{p}\right)=+1$, and coming back to a summation over [$1, p-1$],

$$
\begin{aligned}
\left(X_{0}-X_{1}\right)^{2} & =2\left\{(p-1)-\sum_{x=1}^{p-1} z^{2 x}\right\}\left(1+z^{2 p}\right) \\
& =2(p-1)\left(1+z^{2 p}\right)-2\left(T-\left(1+z^{2 p}\right)\right)=2 p\left(1+z^{2 p}\right)-2 T .
\end{aligned}
$$

This gives us

$$
\begin{equation*}
X_{0}^{2}-2 X_{0} X_{1}+X_{1}^{2}=2 p\left(1+z^{2 p}\right)-2 T . \tag{7}
\end{equation*}
$$

Combining this result with the equations (5) and (6), we see that

$$
\begin{aligned}
X_{0}^{2}+2 X_{0} X_{1}+X_{1}^{2} & =2(p-2) T+2\left(1+z^{2 p}\right), \\
X_{0}^{2}-X_{1}^{2} & =-2\left(X_{0}-X_{1}\right), \\
X_{0}^{2}-2 X_{0} X_{1}+X_{1}^{2} & =-2 T+2 p\left(1+z^{2 p}\right) .
\end{aligned}
$$

It is now easy to deduce from these equations the result:

$$
\begin{equation*}
X_{0}^{2}+2 X_{0}=X_{1}^{2}+2 X_{1}=\frac{p-1}{2}\left(T+1+z^{2 p}\right) . \tag{8}
\end{equation*}
$$

Of course we would also like to have a similar formula for Y_{0}, Y_{1}. The analogue of equation (5) is

$$
Y_{0}^{2}+2 Y_{0} Y_{1}+Y_{1}^{2}=\left(U-\left(1-z^{2 p}\right)\right)^{2}=2(p-2) U+2\left(1-z^{2 p}\right),
$$

on observing that $z^{2} U=-U$, so that $z^{2 s} U=(-1)^{s} U$ and $U^{2}=2 p U$. It is easy, though somewhat boring, to imitate with Y_{0} and Y_{1} the derivation of the formulas (5), (6) and (7). The needed assertion, that $\left(\frac{x}{p}\right)(-1)^{t} z^{2 t}\left(1-z^{2 p}\right)$ only depends on the class of $t \bmod p$, is valid and the argument goes through.

The analogue of the above equation (8) is

$$
\begin{equation*}
Y_{0}^{2}+2 Y_{0}=Y_{1}^{2}+2 Y_{1}=\frac{p-1}{2}\left(U+1-z^{2 p}\right) . \tag{9}
\end{equation*}
$$

However, we can simply embed the ring $\mathbf{Z} C_{4 p}$ into $\mathbf{Z}[\mathbf{i}] C_{4 p}$, the group ring of $C_{4 p}$ over the Gaussian integers $\mathbf{Z}[\mathbf{i}], \mathbf{i}=(\sqrt{-1})$, and then apply to the calculations of X_{0}, X_{1} the automorphism σ of the ring $\mathbf{Z}[\mathbf{i}][z] /\left(z^{4 p}-1\right)$ induced by $\sigma(z)=(\sqrt{-1}) z$. The substitution of $(\sqrt{-1}) z$ for z is compatible with $z^{4 p}=1$ and $\sigma\left(X_{i}\right)=Y_{i}, \sigma(T)=U$ and $\sigma\left(z^{2 p}\right)=-z^{2 p}$. The result is indeed formula (9) above.

Using $T+U=2 \sum_{\nu=0}^{p-1} z^{4 \nu}$, and plugging these expressions into the formula for $H(z) H\left(z^{-1}\right)=C+C_{0,1} \varepsilon_{0} \varepsilon_{1}$, we get

$$
C=(q-1)(T+U+2)+4=4 p+2(p-1) \sum_{\nu=1}^{p-1} z^{4 \nu}
$$

and
$C_{0,1}=\frac{p-1}{2}\left(T+\left(1+z^{2 p}\right)\right)\left(z^{p}+z^{-p}\right)=(p-1)\left(\sum_{\nu=1}^{2 p} z^{2 \nu-1}\right)+(p-1)\left(z^{p}+z^{3 p}\right)$.
Finally, $H(z) H\left(z^{-1}\right)=4 p+(p-1) R(z)$, where

$$
\begin{equation*}
R(z)=2 \sum_{\nu=1}^{p-1} z^{4 \nu}+\left\{\sum_{\nu=1}^{2 p} z^{2 \nu-1}+z^{p}+z^{3 p}\right\} \varepsilon_{0} \varepsilon_{1} \tag{10}
\end{equation*}
$$

Equivalently, this "remainder" $R(z)$ can be written

$$
\begin{equation*}
R(z)=2 \sum_{\nu=1}^{\frac{p-1}{2}}\left(z^{4 \nu}+z^{-4 \nu}\right)+\left\{\sum_{\nu=1}^{p}\left(z^{2 \nu-1}+z^{-(2 \nu-1)}\right)+z^{p}+z^{-p}\right\} \varepsilon_{0} \varepsilon_{1} \tag{11}
\end{equation*}
$$

The (periodic) correlations of $H(z)$ in degrees $\equiv 2 \bmod 4$ are strictly zero. This includes in particular the correlation of degree $2 p$. Hence, the modular Hadamard matrix associated with the sequence (polynomial) of the Theorem is indeed of type 1 as asserted. The correlations in degrees $\equiv 0 \bmod 4$ are $2(p-1)$. Note that the correlation in degree p is $2(p-1) \varepsilon_{0} \varepsilon_{1}$ because $z^{p}+z^{-p}$ also appears in the sum $\sum_{\nu=1}^{p}\left(z^{2 \nu-1}+z^{-(2 \nu-1)}\right)$ for $\nu=\frac{p+1}{2}$.

REMARK. It seems probable, from computer-assisted experimentation, that $p-1$ may be the maximum modulus for a modular circulant Hadamard matrix of type 1 and size $4 p$. However, the power of 2 dividing $p-1$ is certainly not always maximal as the power of 2 dividing the modulus of a modular CHM of type 1 and size $4 p$. There are many values of p (where p is prime and satisfies $p \equiv 9 \bmod 16$) for which a variant of the formula for $H(z)$ in the above Theorem yields a 16 -modular CHM. The first few such values of p are $p=73,89,233, \ldots$. On the other hand, it seems for example that indeed no 16 -modular, type 1 CHM of size $4 p$ exists for $p=41$.

We hope to come back on the general question of 16 -modular circulant Hadamard matrices of type 1 in a future publication.

3. Circulant modular Hadamard matrices of type 2

In this section we produce circulant modular Hadamard matrices of type 2 and size $n=2(q+1)$, where q is an arbitrary odd prime power. The existence of such objects is a corollary of a theorem from the 1971 paper [DGS].

We are grateful to Roland Bacher for valuable discussions about some unpublished work of his which helped in obtaining the following result.

THEOREM 2. For every $n=2(q+1)$, where q is an odd prime power, there exists a binary sequence $X=\left(x_{0}, \ldots, x_{n-1}\right)$ with $x_{i}= \pm 1$ for all i $(0 \leq i \leq n-1)$, such that $\gamma_{k}(X)=0$ for all $k \neq 0, \frac{n}{2}$. In other words, $\operatorname{circ}(X)$ is a circulant modular Hadamard matrix of type 2 and size n.

Proof. Set $x_{\frac{n}{2}}=x_{0}=1$ and $x_{\frac{n}{2}+i}=-x_{i}$ for all $i=1,2, \ldots, \frac{n}{2}-1$. The sequence $X=\left(x_{1}, x_{2}, \ldots, x_{n-1}\right)$ is therefore determined by its subsequence $Y=\left(x_{1}, x_{2}, \ldots, x_{\frac{n}{2}-1}\right)$.

We have $\gamma_{0}(X)=n, \gamma_{\frac{n}{2}}(X)=4-n$, and

$$
\gamma_{k}(X)=2\left(\alpha_{k}(Y)-\alpha_{\frac{n}{2}-k}(Y)\right)
$$

for all $k=1,2, \ldots, \frac{n}{2}-1$ as easily checked, where α_{k} is the k th aperiodic correlation coefficient. Of course, $\gamma_{n-k}(X)=\gamma_{k}(X)$ for all $k=1,2, \ldots, \frac{n}{2}-1$.

In order to prove the theorem, it therefore suffices to exhibit a binary sequence $Y=\left(x_{1}, x_{2}, \ldots, x_{\frac{n}{2}-1}\right)$ of length $\frac{n}{2}-1=q$, satisfying the equation $\alpha_{k}(Y)-\alpha_{\frac{n}{2}-k}(Y)=0$ for every $k=1,2, \ldots, \frac{n}{2}-1$.

For this purpose, we recall the notion of a negacyclic matrix, introduced by Delsarte, Goethals and Seidel in their paper [DGS].

By definition it is simply a matrix of the form

$$
\left(\begin{array}{ccccc}
u_{0} & u_{1} & \ldots & \ldots & u_{r} \\
-u_{r} & u_{0} & u_{1} & \ldots & u_{r-1} \\
-u_{r-1} & -u_{r} & u_{0} & \ddots & u_{r-2} \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
-u_{1} & -u_{2} & \ldots & -u_{r} & u_{0}
\end{array}\right)
$$

which we will denote by $N C\left(u_{0}, u_{1}, \ldots, u_{r}\right)$.
Explicitly, the entries $c_{i, j}$ of the matrix $N C\left(u_{0}, u_{1}, \ldots, u_{r}\right)$ are

$$
c_{i, j}= \begin{cases}u_{j-i} & \text { if } 0 \leq i \leq j \leq r, \\ -u_{r-i+j+1} & \text { if } 0 \leq j<i \leq r .\end{cases}
$$

It is very easy to see that the binary sequence $Y=\left(x_{1}, x_{2}, \ldots, x_{\frac{n}{2}-1}\right)$ satisfies $\alpha_{k}(Y)-\alpha_{\frac{n}{2}-k}(Y)=0$ for every $k=1,2, \ldots, \frac{n}{2}-1$ if and only if the negacyclic matrix $C=N C\left(0, x_{1}, \ldots, x_{\frac{n}{2}-1}\right)$ is a conference matrix, that is if $C \cdot C^{t}=\left(\frac{n}{2}-1\right) I$.

Now, Delsarte, Goethals and Seidel have explicitly constructed negacyclic conference matrices of every size of the form $q+1$, where $q=p^{f}$ with p an odd prime and f a positive integer, in Section 7 of [DGS]. These negacyclic conference matrices are equivalent to the usual Paley conference matrices based on the quadratic character $\chi: \mathbf{F}_{q}^{*} \rightarrow\{ \pm 1\}$ of the finite field \mathbf{F}_{q}.

Note. After having submitted the present paper for publication, we came across the Thèse d'Habilitation of Philippe Langevin (Toulon). There, a concept which is closely related to our type 2 sequences is studied. P. Langevin uses the terminology "almost perfect sequences" and his treatment also relies on [DGS].

Thus, we now find it preferable to drop the type $1 /$ type 2 terminology and rather call enhanced modular the modular matrices of type 1 . We intend to use this new designation in future publications on the subject.

BIBLIOGRAPHY

[DGS] Delsarte, P., J. M. Goethals and J. J. Seidel. Orthogonal matrices with zero diagonal, II. Canad. J. Math. 23 (1971), 816-832.
[R] RYSER, H. J. Combinatorial Mathematics. Carus Monograph 14. Math. Assoc. of America, 1963.
(Reçu le 18 juillet 2000)
Shalom Eliahou
Département de MathématiquesLMPA Joseph LiouvilleUniversité du Littoral Côte d'OpaleBâtiment Poincaré50, rue Ferdinand Buisson, B.P. 699F-62228 CalaisFrancee-mail: eliahou@lmpa.univ-littoral.fr
Michel Kervaire
Département de Mathématiques
Université de Genève
2-4, rue du Lièvre
B.P. 240
CH-1211 Genève 24
Suisse
e-mail: Michel.Kervaire @math.unige.ch

[^0]: ${ }^{*}$) During the preparation of this paper, the first author partially benefited from a research contract with the Fonds National Suisse pour la Recherche Scientifique.

