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iii) Let X and Y be the Moore spaces Af(Z/3, 2q+11) - S2q+n U3 e2q+n

and Af(Z/3, 2g - 1) S2'7-1 U3 ^ respectively. In [Adams], Adams shows

that for <7 large enough, there exists a map A: X I12F —> Y such that the

induced map A* : K(Y) —» K(X) is an isomorphism (take p m — 3, / — 1

and r 6 in Theorem 1.7 and in Lemmas 12.4 and 12.5 of [Adams]).

Therefore, A is a £-isomorphism between simply connected finite CW-

complexes, but it is not a homotopy equivalence. The mapping cone CA is

a non-contractible finite CW-complex with K(CA) 0. (It is non-contractible

because its homology is non-trivial.)

iv) In [GrMo], pp. 203-206, a CW-complex X (S1 V S2) U e3 is defined,

with the property that the inclusion i : 51 X of the 1 -skeleton induces

an isomorphism in integral homology (and on the level on fundamental groups) ;

however, i is not a homotopy equivalence since 1r2(X) f2 0. Consequently, by

the universal coefficient theorem (see Corollary V.l.2 in [Bred]), i induces

an isomorphism in integral cohomology, and, by a direct application of the

Atiyah-Hirzebruch spectral sequence, also in K-theory. In particular, i is a

K-equivalence, but not an equivalence. (As CA in the preceding example, the

quotient space X/X[l] has vanishing K, however it is the closed 3-ball and

is therefore contractible.)

Let us finally mention that in [Matt], the positive cone, the c-cone and the

7-cone are also studied from the rational point of view, and rational ^-theory
is considered.

6. The cones of the products Sn x S2m 1

In this section, we will compute the cones for the products S2n x S2m~l

and S2n~l x S2m~l.

We begin with S2n x S2m~l. Since K{S2m~l) 0 and K\S2n) - 0, the

answer immediately follows from Proposition 5.5.

THEOREM 6.1. The projection p : S2n x S2m~l —> S2n induces an

isomorphism of positive cones, and, for S2n x S2'n~l, the j-cone and the

c-cone coincide with the positive cone:

K+(S2n) ^ K+(S2n x S2m_1) KAS2n x S2m~l).
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We now turn to the product S2n 1

x S2m 1. From the six-term exact
sequence of the pair (S2n~l x S2m~\ S2n~l V S2m~l), with quotient the smash
product S2n 1 A S2m~l homeomorphic to s2mJr2n~2, we get an isomorphism

q* : K(S2m+2n~2) —> K(S2n~l x S2m~l)

induced by the quotient map q: S2n~l xS2m~l —> s2m+2n~2. By Theorem 4.1,
the space Y S2n+2m~2 satisfies the hypothesis of Proposition 5.5 and we
deduce the

Theorem 6.2. The map q: S2n~l x S2m~l —> S2m+2n~2 induces an
isomorphism of positive cones, and, for S2n~l x S2m~l, the 7-cone and the
c-cone coincide with the positive cone :

K+{S2m+2n~2) h K+(S2n~l x S2m~l) £70S2n_1 x s2m~l).

Remark 6.3. According to Blackadar ([Bla2], 6.10.2), the positive cone
of the n-torus (Sl)n has been partially computed by Villadsen.

7. The 7-coNE of S2n x S2m and the positive cone of S2 x S2n

The positive cone was rather easy to compute for a product of an odd-
dimensional sphere by any sphere, whereas the case of a product of two
even-dimensional spheres is much more involved. On the other hand, the

7-cone of such a product is in the scope of the present notes. We perform
this calculation by computing the c-cone and appealing to Proposition 3.3.

By the Künneth theorem, we have an isomorphism

K(S2n) ® K(S2m)—- K(S2" x £ ®

where^ p and q are the projections onto the factors. Writing K(S2n) Z • x\
and K(S2m) Z • x2, and letting yx := p*(x1) and y2 := q*(x%), we deduce
that

K(S2" xS2m)=Z • ^ ® Z • y2 © Z •

The product structure on K(S2" x S2'") is given by 0 and y\ 0.
One has yiy2 ir*(y),where n:S2nxS2m —> S2n AS2"1 S2n+2m and is a
suitable generator of K{S2n+2m).Leti:S2n^ S2n x S2"1 and S2m ^ S2n x S2'"

be the inclusions. One has i*(y\)xi and x2, and (by Theorem 4.1
and a double application of Proposition 5.1), for any e Z \ {0}, one has
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