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THE NONAMENABILITY OF SCHREIER GRAPHS

FOR INFINITE INDEX QUASICONVEX
SUBGROUPS OF HYPERBOLIC GROUPS

by Ilya Kapovich

Abstract. We show that if if is a quasiconvex subgroup of infinite index in a

nonelementary hyperbolic group G then the Schreier coset graph for G relative to H
is nonamenable.

1. Introduction

A connected graph of bounded degree X is nonamenable if X has nonzero

Cheeger constant or, equivalently, if the spectral radius of the simple random

walk on X is less than one (see Section 2 below for more precise definitions).
Nonamenable graphs play an increasingly important role in the study of
various probabilistic phenomena, such as random walks, harmonic analysis,
Brownian motion, and percolations on graphs and manifolds (see for example
[2, 5, 6, 7, 15, 17, 18, 24, 30, 43, 44, 62, 71, 72]), as well as in the study
of expander families of finite graphs (see for example [52, 66, 67]).

It is well-known that a finitely generated group G is nonamenable if and

only if the Cayley graph of G with respect to some (any) finite generating
set is nonamenable. The notion of a word-hyperbolic group was introduced
by M. Gromov [40] and has played a central role in Geometric Group Theory
for the last fifteen years. Word-hyperbolic groups are nonamenable unless

they are virtually cyclic. Thus the Cayley graphs of word-hyperbolic groups
provide a large and interesting class of nonamenable graphs. In this paper we
investigate nonamenability of Schreier coset graphs corresponding to subgroups
of hyperbolic groups.
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We recall the definition of a Schreier coset graph:

Definition 1.1. Let G be a group and let tt: A —> G be a map where A
is a finite alphabet such that tt(A) generates G (we refer to such an A as a

marked finite generating set or just a finite generating set of G). Let H < G

be a subgroup of G. The Schreier coset graph (or the relative Cay ley graph)
T(G, H: A) for G relative to H with respect to A is an oriented labeled graph
defined as follows :

1. The vertices of F T(G,H,A) are precisely the cosets of H in G, that
is Vr:= {Hg\ge G}.

2. The set of positively oriented edges of r(G,#,A) is in one-to-one

correspondence with the set VT x A. For each pair (Hg,a) G Vr x A
there is a positively oriented edge in r(G,//,A) from Hg to Hgit(a)
labeled by the letter a.

Thus the label of every path in r(G,/7,A) is a word in the alphabet
AUA-1. The graph T(G,H,A) is connected since ir(A) generates G. Moreover,

r(G,/J,A) comes equipped with a natural simplicial metric obtained by giving

every edge length one.

We can identify the Schreier graph T(G,#,A) with the 1-skeleton of the

covering corresponding to H < G of the presentation complex of G based

on any presentation of the form G (A | R). If M is a closed Riemannian

manifold and H < G — irfiM), then the Schreier graph T(G,H,A) is quasi-
isometric to the covering space of M corresponding to H. If H is normal

in G and G\ — G/H is the quotient group, then T(G,H,A) is exactly the

Cayley graph of the group G\ with respect to A. In particular, if H 1

then T(G, 1,A) is the standard Cayley graph of G with respect to A, denoted

r(G,A).
A subgroup H of a word-hyperbolic group G is said to be quasiconvex

in G if for any finite generating set A of G there is e > 0 such that

every geodesic in T(G,A) with both endpoints in H is contained in the

e -neighborhood of H in T(G,A). Quasiconvex subgroups are closely related

to geometric finiteness in the Kleinian group context [69]. They enjoy a number

of particularly good properties and play an important role in hyperbolic group
theory and its applications (see for example [3, 4, 8, 31, 34, 35, 36, 37, 38,

42, 45, 46, 48, 51, 53, 55, 61, 70]).

Our main result is the following :
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Theorem 1.2. Let G be a nonelementary word-hyperbolic group with a

marked finite generating set A. Let H < G be a quasiconvex subgroup of
infinite index in G. Then the Schreier coset graph T(G,H,A) is nonamenable.

The study of Schreier graphs arises naturally in various generalizations
of J. Stallings' theory of ends of groups [23, 29, 60, 61, 63]. The case

of virtually cyclic (and hence quasiconvex) subgroups of hyperbolic groups
is particularly important to understand in the theory of JSJ-decomposition
for hyperbolic groups originally developed by Z. Sela [65] and later by
B. Bowditch [11] (see also [59, 23, 28, 64] for various generalizations of
the JSJ-theory). A variation of the Fplner criterion of nonamenability (see

Proposition 2.3 below), when the Cheeger constant is defined by taking the

infimum over all finite subsets containing no more than a half of all the

vertices, is used to define an important notion of expander families of finite
graphs. Most known sources of expander families involve taking Schreier coset

graphs corresponding to subgroups of finite index in a group with the Kazhdan

property (T) (see [52, 66, 67] for a detailed exposition on expander families
and their connections with nonamenability).

Since nonamenable graphs of bounded degree are well-known to be

transient with respect to the simple random walk, Theorem 1.2 implies
that T(G,H,A) is also transient. M. Gromov [40] stated (see R. Foord [27]
and I. Kapovich [49] for the proofs) that for any quasiconvex subgroup H
in a hyperbolic group G with a finite generating set A, the coset graph
T(G,H,A) is a hyperbolic metric space. A great deal is known about random
walks on hyperbolic graphs, but most of these results assume some kind of
nonamenability. Thus Theorem 1.2 together with hyperbolicity of T(G,H,A)
and a result of A. Ancona [2] (see also [72]) immediately imply :

COROLLARY 1.3. Let G be a nonelementary word-hyperbolic group with
a finite generating set A. Let H < G be a quasiconvex subgroup of infinite
index in G and let Y be the Schreier coset graph T(G,H,A). Then:
1. The trajectory of almost every simple random walk on Y converges in the

topology of Y U dY to some point in dY (where dY is the hyperbolic
boundary).

2. The Martin boundary of a simple random walk on Y is homeomorphic
to the hyperbolic boundary dY, and the Martin compactification of Y
corresponding to the simple random walk on Y is homeomorphic to the
hyperbolic compactification Y U dY.
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Let us illustrate Theorem 1.2 for the case of a free group. Let F — F(a, b)
be free of rank two and let H < F be a finitely generated subgroup of
infinite index (which is therefore quasiconvex [68]). Set A {a,b} Then the

Schreier graph Y T(F,H,A) looks like a finite graph with several infinite
tree-branches attached to it (the "branches" are 4-regular trees except for the

attaching vertices). In this situation it is easy to see that Y has positive Cheeger
constant and so Y is nonamenable. Alex Lubotzky and Andrzej Zuk pointed
out to the author that if G is a group with the Kazhdan property (T), then

for any subgroup H of infinite index in G the Schreier coset graph for G
relative to H is nonamenable. There are many examples of word-hyperbolic
groups with Kazhdan property (T) (see for instance [73]) and in view of
Theorem 1.2 it would be particularly interesting to investigate if they can

possess non-quasiconvex finitely generated subgroups.

Nonamenability of graphs is closely related to cogrowth:

COROLLARY 1.4. Let G — (x\,...,Xk I ri,..., rm) be a nonelementary

word-hyperbolic group and let FI < G be a quasiconvex subgroup of infinite
index. Let an be the number of freely reduced words in A — {yi, ,Xk}±l
of length n representing elements of H. Let bn be the number of all words

in A of length n that represent elements of H. Then

lim sup < 2k — 1

ft—>oo

and

lim sup s/bn < 2k.
ft->oo

In [10, 50] Theorem 1.2 and Corollary 1.4 play a useful role in obtaining
results about "generic-case" complexity of the membership problem as well
as about some interesting measures on free groups.

It is easy to see that the statement of Theorem 1.2 need not hold for finitely
generated subgroups which are not quasiconvex. For example, a remarkable

construction of E. Rips [58] states that for any finitely presented group Q

there is a short exact sequence

1 G-y Q-y 1,

where G is nonelementary torsion-free word-hyperbolic and where K can be

generated by two elements (but K is usually not finitely presentable). If Q

is chosen to be infinite amenable, then [G \ K] oo and the Schreier graph

for G relative to K is amenable. Finitely presentable and even hyperbolic
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examples of such subgroups are also possible. For instance, if F is a free

group of finite rank and (j>: F —>• F is an atoroidal automorphism, then the

mapping torus group of </>

M$ (F,tIt~lft - <f>(f) for all /
is word-hyperbolic [8, 13]. In this case M^/F — Z and hence the Schreier

graph for M$ relative to F is amenable.

The author is grateful to Laurent Bartholdi, Philip Bowers, Christophe

Pittet and Tatiana Smirnova-Nagnibeda for many helpful discussions regarding

random walks, to Pierre de la Harpe and Peter Brinkmann for their careful

reading of the paper and numerous valuable suggestions and to Paul Schupp

for encouragement.

2. NONAMENABILITY FOR GRAPHS

Let X be a connected graph of bounded degree. We define the spectral

radius p(X) of X as

p(X) := lim sup s/p^ix.y)
n-^oo

where y, y are two vertices of X and p{n\x,y) is the probability that an

n-step simple random walk starting at x will end up at y. It is well-known
that p(X) < 1 and that the definition of p(X) does not depend on the choice

of x,y.

Definition 2.1 (Amenability for graphs). A connected graph X of
bounded degree is said to be amenable if p(X) 1 and nonamenable if
p(X)< 1.

It is also well-known that nonamenability of X implies that X is transient,
that is that for a simple random walk on X the probability of ever returning
to the basepoint is less than 1 (see for example Theorem 51 of [16]). We

refer the reader to [16, 71, 72] for comprehensive background information
about random walks on graphs and for further references on this topic.

Convention 2.2. Let X be a connected graph of bounded degree with
the simplicial metric d. For a finite nonempty subset S C VX we will denote

by ISI the number of elements in S.
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If S is a finite subset of the vertex set of X and k > 1 is an integer,
we will denote by AfxiS) A4CS) the set of all vertices v of X such that

d(v, S) <k. Also, we will denote 3X5 95 := A/i(5) — 5.
The number

|£Sr»|

^(X) := inf{——- I 5 is a finite nonempty subset of the vertex set of X}
\S\

is called the Cheeger constant or the isoperimetric constant of X.

There are many alternative definitions of nonamenability :

PROPOSITION 2.3. Let X be a connected graph of bounded degree with
the simplicial metric d. Then the following conditions are equivalent:
1. The graph X is nonamenable.

2. (Fplner Criterion) We have i(X) > 0.

3. (Gromov's Doubling Condition) There is some k > 1 such that for any
finite nonempty subset S Ç VX we have

|A4(S)| > 2|S|.

4. For any integer q > 1 there is some k > 1 such that for any finite
nonempty subset S Ç VX we have

|A4(S)| >

5. For some 0 < a < 1 we have p^n\x,y) o(an) for any x,y G VX.

6. Let W(X) be the pseudogroup of "bounded perturbations of the identity
that is W(X) consists of all bijections f between subsets of VX such that

sup d(x, fix)) < oo
x£dom((f))

Then 1T(X) admits a "paradoxical decomposition that is there exist

nonempty subsets Ti,T2 of VX and fi\ : Y\ —>• VX, f>2'- T2 VX such

that fuf2e W(X), VX=Y1UY2 and fifYfy= ffiY^ VX.

7. ("Grasshopper Criterion") There exists a map f : VX —y VX such that

sup fix)) < 00

and such that for any x G VX we have |<^-1(v)| > 2.

8. There exists a map f: VX -> VX such that

sup d(x, fix)) < 00

and such that for any x G VX we have |0-1(x)| —2.
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9. The bottom of the spectrum for the combinatorial Laplacian operator on

X is > 0 (see [21] for the precise definitions).

10. We have (X) 0 (see [9] for the precise definition of the uniformly
finite homology groups Hf

11. We have H(Qlp)(X) 0 for any 1 < p < oo (see [24] for the precise

definition of H\lp)

All of the above statements are well-known, but we will still provide some

sample references. The fact that (1), (2), (5) and (6) are equivalent is stated

in Theorem 51 of [16]. The fact that (3), (4), (6), (7) and (8) are equivalent
follows from Theorem 32 of [16]. The equivalence of (2) and (9) is due to
J. Dodziuk [21]. J. Block and S. Weinberger [9] established the equivalence
of (2) and (10). Finally, G. Elek [24] proved that (2) is equivalent to (11).

One can characterize amenability of regular graphs in terms of cogrowth.

Definition 2.4. Let A be a connected graph of bounded degree with a

base-vertex xo. Let an an(X,xf) be the number of reduced edge-paths of
length n from xo to xo. Let bn — bn(X, xo) be the number of all edge-paths
of length n from xo to xo. Set

a(X) := lim sup yfan and ß(X) := lim sup\fbn
«—>"00 «—>oo

Then we will call a(X) the cogrowth rate of X and we will call ß(X) the
non-reduced cogrowth rate of X. These definitions are independent of the
choice of xo.

It is easy to see that for a d-regular connected graph X we have

a(X) < d- 1 and ß(X) < d. Moreover, p(X) The following result
was originally proved by R. Grigorchuk [39] and J. Cohen [19] for the Cayley
graphs of finitely generated groups and by L. Bartholdi [5] for arbitrary regular
graphs.

Theorem 2.5 ([5]). Let X be a connected d-regular graph with d> 3.
Set a a(X), ß ß(X) and p p(X). Then

\ if I <a< T
+ vfbj) < 1.

In particular p < 1 a < d — 1 ß < d.
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3. Hyperbolic metric spaces

We refer the reader to [1, 4, 14, 20, 25, 32, 40] for the basic information
about Gromov-hyperbolic metric spaces. We briefly recall the main definitions.

If (X, d) is a geodesic metric space and xjel, we shall denote by [x,y]
a geodesic segment from x to y in X.

Definition 3.1 (Gromov product). Let (A, d) be a metric space and

suppose We set

Qc,y)z '.= ^ [c/(z, x) + d(z,y) - d(x,y)].

Note that (x,y)z (y,x)z.

Definition 3.2 (Hyperbolic metric space [1]). Let (X,d) be a geodesic
metric space. We say that (X, d) is 5 -hyperbolic (where 6 > 0) if for any

we have :

(x,y)p > min{(x,z)p, (y,z)p}-S.

The space X is said to be hyperbolic if it is Ô -hyperbolic for some Ö > 0.

There are many equivalent definitions of hyperbolicity, for example :

PROPOSITION 3.3 ([1, 20, 32]). Let (X,d) be a geodesic metric space.
Then the following conditions are equivalent.

1. The space X is hyperbolic.

2. There exists a constant Sf > 0 such that if x,y,z E X and y' E [x,y],
z' E [x,z] are such that d(x,yf) d{x,z!) < (y, z)x then d(y[, z!) < 5'.

3. (Thin Triangles Condition) There exists 6" > 0 such that for any

x,j,zG X, for any geodesic segments [x,y], [x, z] and [y, z] and for any
point p E [x,y] there is a point q E [x, z] U [y, z] such that d(p,q) < 5".

Definition 3.4 (Word-hyperbolic group). A finitely generated group G

is said to be word-hyperbolic if for some (and hence for any) finite generating
set A of G the Cayley graph T(G,A) is hyperbolic.

Definition 3.5 (Gromov product for sets). Let (A, d) be a metric space.

Let x eX and Q,Q!ÇX.DefineQ,Q')x := sup{(^, G
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4. Quasiconvex subgroups of hyperbolic groups

Detailed background information on quasiconvex subgroups of hyperbolic

groups can be found in [1, 4, 20, 31, 38, 34, 32, 51, 54, 68] and other sources.

Convention 4.1. Suppose G is a finitely generated group with a fixed

finite generating set A. Let X r(G,A) be the Cayley graph of G with

respect to A. We will denote the word-metric corresponding to A on I by

dA. Also, for g G G we will denote \g\A := dA(l,g). For a word w in

the alphabet AUA-1 we will denote by w the element of G represented

by w.

Definition 4.2 (Quasiconvexity). For e > 0 a subset Z of a metric space

(X,d) is e-quasiconvex if, for any Z\,Z2 £ Z and any geodesic [zi,Z2] in X,
the segment [zi,Z2] is contained in the closed e-neighborhood of Z. A subset

Z Ç X is quasiconvex if it is e -quasiconvex for some e > 0.

If G is a finitely generated group and A is a finite generating set of G,
a subgroup H < G is quasiconvex in G with respect to A if H Ç T(G,A) is

a quasiconvex subset.

It turns out [20, 32, 4, 31] that for subgroups of word-hyperbolic groups
quasiconvexity is independent of the choice of a finite generating set for
the ambient group. Thus a subgroup H of a hyperbolic group G is termed

quasiconvex if H Ç T(G,A) is quasiconvex for some finite generating set A
of G.

We summarize some well-known basic facts regarding quasiconvex
subgroups and provide some sample references :

PROPOSITION 4.3. Let G be a word-hyperbolic group with a finite
generating set A. Let X — F(G,A) be the Cayley graph of G with the
word-metric dA induced by A. Then:

1. If H < G is a subgroup, then either H is virtually cyclic (in which case H
is called elementary,) or H contains a free subgroup F of rank two which
is quasiconvex in G (in this case H is said to be nonelementary) [20, 32].

2. Every cyclic subgroup of G is quasiconvex in G [1, 20, 32].

3. If H < G is quasiconvex then H is finitely presentable and word-
hyperbolic [1, 20, 32].
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4. Suppose H < G is generated by a finite set Q inducing the word-metric
dç> on H. Then H is quasiconvex in G if and only if there is a C > 0

such that for any h\, h2 G H

dQ(hi, h2) < CdA{hi, h2)

(see [20, 32, 4, 31]).

5. The set C of all A-geodesic words is a regular language that provides a

bi-automatic structure for G. Moreover, a subgroup H < G is quasiconvex

if and only if H is C-rational, that is the set Ch — {w G C f W E H} is

a regular language [31].

6. IfHuH2 < G are quasiconvex, then H\ fl H2 < G is quasiconvex [68],

7. [51, 46] Let C < B < G where B is quasiconvex in G (and hence B
is hyperbolic) and C is quasiconvex in B. Then C is quasiconvex in
G [51, 46].

8. Let C < B < G where C is quasiconvex in G and where B is word-

hyperbolic. Then C is quasiconvex in B [51, 46].

9. Suppose H < G is an infinite quasiconvex subgroup. Then H has finite
index in its commensurator Commc(H) (see [51]), where Commc(H) :=
{g G G I [H : g~l Hg DH] < oo and [g~lHg : g~lHg H H] < oo}.

Part 1 of the above proposition implies that a nonelementary subgroup of
a hyperbolic group is nonamenable.

5. Proof of the main result

Let G be a nonelementary word-hyperbolic group with a finite generating
set A. Let X T(G,A) be the Cayley graph of G with the word metric dA.

Let 5 > 1 be an integer such that the space (T(G,A),dA) is ö-hyperbolic. Let

H < G be a quasiconvex subgroup of infinite index in G. These conventions,
unless specified otherwise, will be fixed for the remainder of the paper.

We shall need the following useful fact:

LEMMA 5.1. There exists an integer constant K K(G,H,A) > 0 with
the following properties.

Assume g G G is shortest with respect to dA in the coset class Hg. Then

for any h G H we have (g,h)\ < K (and hence (g,H)\ < K).
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Proof The conclusion of Lemma 5.1 follows directly from the proofs
of Lemma 4.1 and Lemma 4.5 of [4]. We will present the argument for
completeness. For the hyperbolic space X T(G,A) choose 8' > 0 as in

part 2 of Proposition 3.3. Let e > 0 be such that H is an e-quasiconvex
subset of X.

Let g E G be a shortest element of Hg, so that for any h E H we have

Ihg\A < \g\A. We claim that (h,g)i < e + 5' for any h E H.
Suppose not, that is (h,g)\ > e + 8' for some h G H. Consider two

geodesic segments [1 ,g] and [1 ,h] in X and let t G [1,/z], s G [l, g] be

such that dA(\,s) dA{\,t) (h,g)\. Thus dA(s,t) < 8' by the choice of 8'.
Since H is e-quasiconvex in X, there is h' G H such that dA(t,h!) < e. Then

\(h'rlg\A — dA{h\g) < dA(h',t) + dA(t, s) + dA(s,g)

< e + 8 + \g\A - (h,g)i < \g\A

which contradicts the assumption that g is shortest in Hg.

Lemma 5.2. LetT\,T2 > 0 be some positive numbers. Let g G be
such that g,H)i< Tx and \g\A > Tx+ be such that
I f\A<T2. Then (gf,H)x< Tx+ 5.

Proof. Note that \g\A (g,gf)x+ (1 Since (1 <
I/Ia < T2, we conclude that

(öSö/)i \g\A ~ (l?9f)g > T\ + T2 + (5 — T2 T1 + 5.

Therefore for any h E H we have

?i + £ > (ff, % + <5 > min{(g, g/)!, (g/, Ä)t}

and hence (g/,/i)i < Tj + Sbecause (3,5/), > 7) + 5. Since h 6 was
arbitrary, this means that (#/,//)! < 7i + 8.

Lemma 5.3. Suppose gug2GG are such that Hgx Hg2. Then there
is h Ç H such that hgx — g2 and that

\Ma—

Proof. Since Hg, Hg2, there is he H with hgx g2. Hence

\h\A(h,g2)i+(l,hgi)h (h,g2)x+(h-\gi)x < i +(g1,tf)1.
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Proof of Theorem 1.2. Let K K(G,H,A) > 0 be the constant provided
by Lemma 5.1. Put Y T(G,H,A). Thus Y is a connected 2m-regular infinite
graph, where m is the number of elements in A. Denote the simplicial metric
on Y by dY.

Let N be the number of all elements g G G with \g\A < 2K + 28. In
particular Y has at most N vertices within distance 2K + 28 of the coset

HI G VY.

Since G is nonelementary word-hyperbolic and thus nonamenable, the

Cayley graph X T(G, A) is nonamenable. By part 4 of Proposition 2.3 there
is a constant k' > 0 such that for any finite nonempty subset S of G the

-neighborhood of S in X has at least 4N\S\ vertices. Let Afi be the number
of elements of G of length at most K+8+k'. Choose k" > 1 such that for any
vertex Hg G VY with dY{Hl,Hg) < K + 8 + k' the k" -neighborhood of Hg
has at least 4N\ vertices. Such k" exists since by assumption [G : H] oo
and hence the graph Y is infinite. Set k\— max{k' ,k"}.

Suppose now that F c VY is a finite nonempy subset. Write F Fi LI Fi
where F\ is the intersection of F with the closed ball of radius K + 8 •+ k'
in Y.

If IFi I > |Fj/2, then |F| < 2N\ and the k-neighborhood of F in F
has at least 4A^i > 2|F| vertices. Suppose now that |Fi| < |F|/2, so that

\F2\ > |F|/2. Then

F2 {Hgu...,Hgt}

where \F2\ t and where each gt G G is shortest in Hgt with \gt\A >
K + S + kf. By Lemma 5.1 (gi,H)i < K. By Lemma 5.2 for any / G G with

\f\A < k! and for each I 1,..., t we have {gf,H)\ <K + 8.

Let S {#i,..., gt} and let Sf be the set of all vertices of X
contained in the -neighborhood of S in X. By the choice of k! we have

|y I > 4N\S\ — 4N\F21. On the other hand, Lemma 5.3 implies that if g, g' G S'

are such that Hg Hg' then hg — g' for some h e H with \h\A < 2K + 28.

By the choice of N this means that the set F' := {Hg | g G S'} contains at

least

\S'\/N 4N\F2\/N 4|F2| > 2|F|

distinct elements. However, F' is obviously contained in the ^-neighborhood
of F in Y.

We have verified that for any finite nonempy subset F Ç VY the

£-neighborhood of F in F contains at least 2|F| vertices. By the Doubling
Condition (part 3 of Proposition 2.3) this implies that F is nonamenable.
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We can now obtain Corollary 1.4 stated in the Introduction.

Corollary 5.4. Let G (xu...,xk \ n,..., rm) be a nonelementary

word-hyperbolic group and let H < G be a quasiconvex subgroup of infinite

index. Let an be the number of freely reduced words in A {xi, ,xk}±l
of length n that represent elements of H. Let bn be the number of all words

in A of length n that represent elements of H. Then

lim sup ifaf < 2k — 1

ft—>- oo

and

lim sup \fbn < 2k.
ft—>• oo

Proof Note that k > 2 since G is nonelementary. Put A {xi,... ,xk}
and F T(G,H,A). We choose x0 := HI G VT as the base-vertex of Y. Note

that y is 2&-regular by construction. Also, for any vertex x of Y and any
word w in AUA-1 there is a unique path in Y with label w and origin x.
The definition of Schreier coset graphs also implies that a word w represents

an element of H if and only if the unique path in Y with origin xo and label

w terminates at xo. Therefore an(Y) equals the number of freely reduced

words in the alphabet A {xi,... ,x^}±1 of length n that represent elements

of H. Similarly, bn(Y) equals the number of all words in A of length n

representing elements of H. By Theorem 1.2, Y is nonamenable. Hence by
Theorem 2.5, a(Y) < 2k — 1 and ß(Y) <2k, as required.
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