Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 49 (2003)

Heft: 3-4: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: HYPERBOLICITY OF MAPPING-TORUS GROUPS AND SPACES

Autor: Gautero, François

Kapitel: 5. PRELIMINARY WORK

DOI: https://doi.org/10.5169/seals-66690

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Siehe Rechtliche Hinweise.

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. <u>Voir Informations légales.</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. See Legal notice.

Download PDF: 18.04.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

consider copies \mathcal{R}_i , $i = 0, 1, 2, \ldots$ of \mathcal{R} . We glue them to \mathcal{R} as illustrated in Figure 2, that is by creating an infinite sequence of pockets of increasing size.

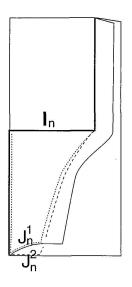


FIGURE 2 (A pocket)

We now attach copies of the negative half-plane of \mathcal{R} , along the horizontal lines with integer y-coordinate of the copies \mathcal{R}_i of \mathcal{R} considered above. In order to get a forest-stack whose strata are trees, we now identify a vertical half-line in each of the copies of the negative half-plane, ending at the horizontal line along which this copy was glued, to the corresponding vertical half-line in \mathcal{R} . In this way, we get a forest-stack whose strata are trees and whose semi-flow is as anounced. This forest-stack is not Gromov-hyperbolic because in each pocket (see Figure 2) the horizontal interval I_n admits two preimages J_n^1 , J_n^2 so that there are two telescopic geodesics joining the endpoints of I_n . These are the concatenation of J_n^1 and J_n^2 with the two vertical segments joining their endpoints to the endpoints of I_n . Since, by construction, there are pockets of arbitrarily large size, these two telescopic geodesics can be arbitrarily far from one another, so that the forest-stack is not Gromov-hyperbolic.

5. Preliminary work

We consider a forest-stack $(\widetilde{X}, f, \sigma_t, \mathcal{H})$ equipped with a horizontal metric \mathcal{H} such that the semi-flow $(\sigma_t)_{t \in \mathbb{R}^+}$ is strongly hyperbolic. Definition 4.3 introduces three *constants of hyperbolicity*, denoted by λ , t_0 , M in the

sequel. The other constants of hyperbolicity, which appear in the bounded-dilatation and bounded-cancellation properties, are denoted by λ_+, λ_-, K . Any horizontal geodesic g with horizontal length greater than M satisfies at least one of the following two properties:

- The pulled-tight image $[g]_{nt_0}$ of g after nt_0 , $n \ge 1$, is λ^n times longer than g. In this case the horizontal geodesic g is dilated in the future, or more briefly dilated, after t_0 .
- g admits a geodesic preimage g_{-nt_0} under σ_{nt_0} which is λ^n times longer than g. In this case, the horizontal geodesic g is dilated in the past after t_0 .

More generally, we will say that g is dilated in the future after kt_0 (resp. dilated in the past after kt_0), $k \ge 1$, if the same inequalities hold only for any $n \ge k$, after replacing λ^n by $\lambda^{(n+1-k)}$, and g by $[g]_{r+(k-1)t_0}$ for the dilatation in the future and by $g_{-(k-1)t_0}$ for the dilatation in the past.

When the dilatation occurs in the past, only one geodesic preimage is required to have horizontal length λ times the horizontal length of the horizontal geodesic g considered. Thus it might happen, a priori, that the other geodesic preimages of g remain short when returning to the past. Lemma 5.1 below shows that the constants of hyperbolicity can be chosen so that such a situation does not occur. This is a consequence of the bounded-cancellation property.

- LEMMA 5.1. Let $(\widetilde{X}, f, \sigma_t, \mathcal{H})$ be a forest-stack. Assume that $(\sigma_t)_{t \in \mathbb{R}^+}$ is (strongly) hyperbolic, with constants of hyperbolicity λ , t_0 , M. Then,
- 1) There exist $t_0' = j t_0$, for some positive integer j, and $M' \ge M$ such that any horizontal geodesic $g \in f^{-1}(r)$ dilated in the past after t_0' , with $|g|_r \ge M'$, satisfies $|g_{-nt_0'}|_{r-nt_0'} \ge 2^n |g|_r$ for any geodesic preimage $g_{-nt_0'}$, $n \ge 1$.
- 2) The semi-flow $(\sigma_t)_{t \in \mathbb{R}^+}$ is (strongly) hyperbolic with constants of hyperbolicity λ , t'_0 , M', λ'_+ , λ'_- , K' for any $t'_0 = j t_0$, $j \geq 1$ any positive integer, and any real numbers $M' \geq M$, $\lambda'_+ \geq \lambda_+$, $\lambda'_- \geq \lambda_-$, $K' \geq K$. Furthermore, if the semi-flow satisfies (1) for some constants t'_0 , M', then it satisfies (1) for any $t''_0 = j t'_0$, where j is any positive integer, and any real number $M'' \geq M'$.

Proof. (2) is obvious. Let us check (1). We choose $t_0' \ge t_0$, $t_0' = jt_0$ with j an integer, such that $\lambda^{t_0'} > 2$. We consider any horizontal geodesic

 $g \in f^{-1}(r)$ with $|g|_r \ge M$. We assume that g is dilated in the past after t_0' . Since the semi-flow is strongly hyperbolic, for each $n \ge 1$, in each connected component of $f^{-1}(r-nt_0')$, there is at least one geodesic preimage $g_{-nt_0'}$ of g with $|g_{-nt_0'}|_{r-nt_0'} \ge \lambda^{nt_0'}|g|_r$. We need an estimate of the horizontal length of the other geodesic preimages of g in this stratum. Lemma 5.2 below is easily deduced from the bounded-cancellation property:

LEMMA 5.2. With the assumptions and notation of Lemma 5.1, let $g \in f^{-1}(r)$ be some horizontal geodesic. If g_{-t}^1 and g_{-t}^2 , t > 0, are two geodesic preimages of g under σ_t which belong to a same connected component of their stratum, then $\left| \left| g_{-t}^1 \right|_{r-t} - \left| g_{-t}^2 \right|_{r-t} \right| \leq C_{5.2}(t)$ for some constant $C_{5.2}(t)$.

Thus, by Lemma 5.2, for any $n \geq 1$, any geodesic preimage $g_{-nt'_0}$ satisfies $|g_{-nt'_0}|_{r-nt'_0} \geq \lambda^{nt'_0}|g|_r - C_{5.2}(nt'_0)$. For n=1, if $|g|_r > \frac{C_{5.2}(t'_0)}{\lambda'_0-2}$, then $|g_{-t'_0}|_{r-t'_0} > 2|g|_r$. Thus, if $|g|_r > \max(M, \frac{C_{5.2}(t'_0)}{\lambda'_0-2})$ then any geodesic preimage $g_{-t'_0}$ has horizontal length greater than $2|g|_r$. In particular $|g_{-t'_0}|_{r-t'_0} \geq M$ because $|g|_r > M$. By definition of a hyperbolic semi-flow, $g_{-t'_0}$ is dilated either in the future or in the past. This cannot be the case in the future since $|g_{-t'_0}|_{r-t'_0} > |g|_r$. An easy induction on n completes the proof. It suffices to set $t'_0 = (E[\max(1, \frac{\ln 2}{\ln \lambda})] + 1)t_0$ and $M' = \max(M, \frac{C_{5.2}(t'_0)}{\lambda'_0-2}) + 1$.

We will assume that the constants of hyperbolicity t_0 and M are chosen to satisfy the conclusion of Lemma 5.1. Moreover the constants of hyperbolicity t_0 , M, λ_+ , λ_- , K are chosen large enough that computations make sense. In the sequel, we say that a path g is C-close to a path g' if g and g' are C-close with respect to the Hausdorff distance relative to the specified metric (the telescopic metric if none is specified). The indices of the constants refer to the lemma or proposition in which they first appear.

5.1 ABOUT DILATATION IN CANCELLATIONS

Let us recall that a *cancellation* is a horizontal geodesic whose endpoints are identified under some σ_t , t > 0.

LEMMA 5.3. Let $g \in f^{-1}(r)$ be any horizontal geodesic which is dilated in the future after nt_0 for some integer $n \geq 1$. There exists a constant $C_{5.3}(n) \geq M$, which increases with n, such that if g is contained in a cancellation, then $|g|_r \leq C_{5.3}(n)$.

Proof. Let c be the cancellation containing g. Let $c = c_1 \cup c_2$, with $[c_1]_{r+t} = [c_2]_{r+t}$ for some t > 0. We assume momentarily that $c_1 \cap c_2$ is an endpoint of g. The bounded-cancellation property implies that the horizontal length of a cancellation 'killed' in time t_0 (i.e. a cancellation whose pulled-tight projection after t_0 is a point) is a constant $C(t_0)$. This constant does not depend on the horizontal length of g.

Let us consider the pulled-tight image $[g]_{r+t_0}$. Let $p \subset [g]_{r+t_0}$ be the maximal subpath outside the pulled-tight image of c. This subpath p is the image of a cancellation killed at time t_0 . From the observation above and the bounded-dilatation property, $|p|_{r+t_0} \leq \lambda_+^{t_0} C(t_0)$. The same arguments lead to the upper bound $(\lambda_+^{nt_0} + \lambda_+^{(n-1)t_0} + \ldots + \lambda_+^{t_0})C(t_0)$ for the horizontal length of the subpath of $[g]_{r+nt_0}$ outside $[c]_{r+nt_0}$. Since g is dilated in the future after nt_0 , we have $|[g]_{r+nt_0}|_{r+nt_0} \geq \lambda_-^{t_0}|g|_r$. From the last two inequalities, if

$$|g|_r > \frac{(\lambda_+^{nt_0} + \lambda_+^{(n-1)t_0} + \dots + \lambda_+^{t_0})C(t_0)}{\lambda_-^{t_0} - 1},$$

then the horizontal length of the subpath q of $[g]_{r+nt_0}$ in $[c]_{r+nt_0}$ is greater than $|g|_r$. If $|g|_r \ge M$, then $|q|_{r+nt_0} \ge M$ is dilated in the future after t_0 since by convention M satisfies the conclusion of Lemma 5.1. We thus obtain, for any $j \ge n$, the existence of a geodesic with horizontal length greater than $|g|_r$ in $[c]_{r+jt_0}$. This is impossible.

Let us now consider the case where $c_1 \cap c_2$ is not an endpoint of g. After some time t > 0, the situation will be the one described above, that is a cancellation $c' = c'_1 \cup c'_2$ with $c'_1 \cap c'_2$ an endpoint of $[g]_{r+t}$. The arguments above, together with the bounded-cancellation and bounded-dilatation properties, lead to the conclusion. \square

We will often encounter situations in which the pulled-tight projection of a horizontal geodesic p_1 is identified with the pulled-tight projection of another horizontal geodesic p_2 in the same stratum. In this case p_1 , p_2 are not necessarily contained in cancellations. But if they lie in the same connected component of their stratum, both are contained in the union of two cancellations. Lemma 5.4 below will allow us to deal with similar situations.

LEMMA 5.4. Let p be a horizontal geodesic which admits a decomposition in r subpaths p_i such that for some constant $L \geq 0$, for any $i = 1, \ldots, r$, either $|[p_i]_{r+nt_0}|_{r+nt_0} \leq |p_i|_r$ or $L \geq |[p_i]_{r+nt_0}|_{r+nt_0} > |p_i|_r$. Then there exists a constant $C_{5.4}(n,r,L)$, which is increasing in each variable, such that if p is dilated in the future after nt_0 , then $|p|_r \leq C_{5.4}(n,r,L)$.

Proof. We set n=1 in order to simplify the notation; the general case is treated in the same way. Up to permuting the indices, $|[p_i]_{r+t_0}|_{r+t_0} > |p_i|_r$ for $i=1,\ldots,j$. Since p is dilated in the future after t_0 ,

$$jL + \sum_{i=i+1}^{r} |p_i|_r \ge \lambda^{t_0} \sum_{i=1}^{r} |p_i|_r.$$

Therefore $|p|_r \leq \frac{jL}{\lambda^{i_0}-1}$. \square

5.2 STRAIGHT TELESCOPIC PATHS

DEFINITION 5.5. A *straight* telescopic path is a telescopic path S such that if x, y are any two points in S with $x \in O^+(y) \cup O^-(y)$ then the subpath of S between x and y is equal to the orbit-segment of the semi-flow between x and y.

If S is a path containing a point x, let $S_{x,t} \subset S$ be the maximal subpath of S containing x, whose pulled-tight projection $[S_{x,t}]_{f(x)+t}$ on $f^{-1}(f(x)+t)$ is well defined. The point $\sigma_t(x)$ does not necessarily belong to $[S_{x,t}]_{f(x)+t}$. However there exists a unique point in $[S_{x,t}]_{f(x)+t}$ which minimizes the horizontal distance between $\sigma_t(x)$ and $[S_{x,t}]_{f(x)+t}$. This point is denoted by \overline{x}_t . Lemma 5.6 below gives an upper bound, depending on t, for the telescopic distance between x and \overline{x}_t .

LEMMA 5.6. Let S be any straight telescopic path. If t is any non negative real number, there exists a constant $C_{5.6}(t) \ge t$, which increases with t, such that any point $x \in S$ is at telescopic distance smaller than $C_{5.6}(t)$ from the point \overline{x}_t (see above).

Proof. If $\sigma_t(x) \in [S_{x,t}]_{f(x)+t}$, we set $C_{5.6}(t) = t$. Since S is straight, if $\sigma_t(x) \notin [S_{x,t}]_{f(x)+t}$, x belongs to a cancellation c whose endpoints lie in the past orbits of \bar{x}_t . The bounded-cancellation property gives an upper bound on the horizontal length of c. This leads to the conclusion. \square