Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 49 (2003)

Heft: 3-4: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: HYPERBOLICITY OF MAPPING-TORUS GROUPS AND SPACES

Autor: Gautero, François

Kapitel: 8. Approximation of straight quasi geodesics in fine position

DOI: https://doi.org/10.5169/seals-66690

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Siehe Rechtliche Hinweise.

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. <u>Voir Informations légales.</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. See Legal notice.

Download PDF: 18.04.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

8. APPROXIMATION OF STRAIGHT QUASI GEODESICS IN FINE POSITION

PROPOSITION 8.1. Let h be a horizontal geodesic. Let g be a straight (J,J')-quasi geodesic, between the orbits of the endpoints of h. There exists a constant $C_{8.1}(|h|_r,J,J')$ such that, if g is in fine position with respect to h, then g is $C_{8.1}(|h|_r,J,J')$ -close to the orbit-segments between its endpoints and those of h. Moreover $C_{8.1}(L,J,J') \leq C_{8.1}(M,J,J')$ if $0 \leq L \leq M$, and $C_{8.1}(L,J,J') > C_{8.1}(L',J,J')$ if $L > L' \geq M$.

Proof. We consider any maximal (in the sense of inclusion) +-hole b in g, with $\min_{x\in b} f(x) \geq f(h) + C_{6.7}(J,J')t_0$. By Lemma 6.7, the horizontal geodesic I between its endpoints is dilated in the past after $C_{6.7}(J,J')t_0$ if $|I|_{f(I)} \geq C_{6.7}(J,J')$. Since g and h are in fine position, this implies that $|I|_{f(I)} \leq \max(|h|_r, C_{6.7}(J,J'))$. If $f(h) \leq f(I) \leq f(h) + C_{6.7}(J,J')t_0$, the bounded-dilatation property gives $|I|_{f(I)} \leq \lambda_+^{C_{6.7}(J,J')t_0}|h|_r$.

With the same notation, assume now that b is a maximal —-hole with $f(I) \leq f(h) - C_{6.7}(J,J')t_0$. The pulled-tight image of I in the stratum of h is not necessarily contained in h. However, if it is not, then we can write $I = I_1 I_2 I_3$ such that I_1 and I_3 are contained in cancellations, and the pulled-tight image of I_2 in the stratum of h is contained in h. This follows from the fact that h and g are in fine position. If $|I|_{f(I)} \geq C_{6.7}(J,J')$ then, by Lemma 6.7, I is dilated in the future after $C_{6.7}(J,J')t_0$. On the other hand, $|[I_2]_{f(h)}|_{f(h)} \leq |h|_r$, and either $|I_i|_{f(I)} \leq C_{5.3}((C_{6.7}(J,J')t_0)$ or $|[I_i]_{f(I)+C_{6.7}(J,J')t_0}|_{f(I)+C_{6.7}(J,J')t_0} \leq |I_i|_{f(I)}$ for i=1 or i=3. Indeed $|[I_i]_{f(I)+C_{6.7}(J,J')t_0}|_{f(I)+C_{6.7}(J,J')t_0} > |I_i|_{f(I)} > C_{5.3}((C_{6.7}(J,J')+1)t_0)$ contradicts Lemma 5.3 since the left inequality implies that $[I_i]_{f(I)+C_{6.7}(J,J')t_0}$ is dilated in the future after t_0 , thus I_i would be dilated in the future after $(C_{6.7}(J,J')+1)t_0$. By Lemma 5.4 we get: If $|I|_{f(I)} \geq C_{6.7}(J,J')$, then

$$|I|_{f(I)} \le C_{5.4}(C_{6.7}(J,J'),3,\max(|h|_r,C_{5.3}((C_{6.7}(J,J')+1)t_0))).$$

It remains to consider the case where $f(h) \ge f(I) \ge f(h) - C_{6.7}(J, J')t_0$. The bounded-cancellation property gives an upper bound for $|I|_{f(I)}$.

We have thus proved that, for any maximal +-hole b in g which lies above h, or any maximal --hole b in g which lies below h, the horizontal distance between the endpoints of b is bounded above by some constant $A(|h|_r, J, J')$. Lemmas 7.3 and 7.1 then provide a constant

$$B(|h|_r,J,J') = C_{7.1}(C_{7.3}((A(|h|_r,J,J'),J,J'),C_{7.3}((A(|h|_r,J,J'),J,J'),J,J'),C_{7.3}((A(|h|_r,J,J'),J,J'),J,J'))$$

such that after replacing maximal --holes in g by the horizontal geodesics between their endpoints, we get a straight $(B(|h|_r, J, J'), B(|h|_r, J, J'))$ -quasi

geodesic, with the same endpoints, in fine position with respect to h, which is $C_{7.3}(A(|h|_r,J,J'),J,J')$ -close to g and which is a stair or the concatenation of two stairs. Lemma 6.4, together with Lemma 5.4 applied as above, then provide $C_{6.4}(B(|h|_r,J,J'),B(|h|_r,J,J'))$ and

$$D(|h|_r, J, J') = C_{5.4}(1, 3, C_{6.4}(B(|h|_r, J, J'), B(|h|_r, J, J'))$$

such that this, or these, stair(s) are $D(|h|_r, J, J')$ -close to the orbit-segments between h and their endpoints. We conclude that g is $C_{7.3}(A(|h|_r, J, J'), J, J') + D(|h|_r, J, J')$ -close to these orbit-segments. The last point of the proposition is obvious. \square

9. PUTTING PATHS IN FINE POSITION

PROPOSITION 9.1. Let h be a horizontal geodesic. Let g be a straight (J,J')-quasi geodesic, which joins the future or past orbits of the endpoints of h. There exist a constant $C_{9.1}(J,J')$ and a $(C_{9.1}(J,J'),C_{9.1}(J,J'))$ -quasi geodesic G which is $C_{9.1}(J,J')$ -close to g, which has the same endpoints as g, and which is in fine position with respect to h.

Proof. We consider a maximal subpath g' of g whose endpoints lie in the future or past orbits of some points in h, and such that no other point of g' satisfies this property. Consider any maximal —-hole b in g', and let I denote the horizontal geodesic between the endpoints of b.

CASE 1. Either I is contained in a cancellation or I is the concatenation of two horizontal geodesics, each contained in a cancellation.

Lemma 6.7 gives $C_{6.7}(J,J')$ such that, if $|I|_{f(I)} \ge C_{6.7}(J,J')$ then I is dilated in the future after $C_{6.7}(J,J')t_0$. Lemma 5.3 gives $C_{5.3}(C_{6.7}(J,J'))$ such that the horizontal length of any horizontal geodesic contained in a cancellation and dilated in the future after $C_{6.7}(J,J')t_0$ is at most $C_{5.3}(C_{6.7}(J,J'))$. By Lemma 5.4 we get an upper bound $C_{5.4}(C_{6.7}(J,J'),2,C_{5.3}(C_{6.7}(J,J')))$ on the horizontal length of I.

CASE 2. There exists another horizontal geodesic in another connected component of the same stratum whose pulled-tight projection agrees with that of I after some finite time.

We consider the maximal geodesic preimage I' of I under $\sigma_{C_{6.7}(J,J')t_0}$ which connects two points of b. It admits a decomposition into subpaths I'_{α}