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THE BASIC GERBE OVER A COMPACT SIMPLE LIE GROUP

by Eckhard Meinrenken

Abstract. Let G be a compact, simply connected simple Lie group. We give a

construction of an equivariant gerbe with connection on G, with equivariant 3-curvature

representing a generator of Hq(G, Z). Among the technical tools developed in this

context is a gluing construction for equivariant bundle gerbes.

L Introduction

Let G be a compact, simply connected simple Lie group, acting on itself

by conjugation. It is well-known that the cohomology of G, and also its

equivariant cohomology, is trivial in degree less than three and that //3(G, Z)
and Hq(G, Z) are canonically isomorphic to Z. The generator of H3(G, Z)
is represented by a unique bi-invariant differential form rj G Q? (G), admitting

an equivariantly closed extension rjc E G^(G) in the complex of equivariant
differential forms. Our goal in this paper is to give an explicit, finite-
dimensional description of an equivariant gerbe over G, with equivariant
3-curvature t\q

A number of constructions of gerbes over compact Lie groups can be

found in the literature, using different models of gerbes and valid in various

degrees of generality. The differential geometry of gerbes was initiated by

Brylinski's book [8], building on earlier work of Giraud. In this framework

gerbes are viewed as sheafs of groupoids satisfying certain axioms. Brylinski
gives a general construction of a gerbe with connection, for any integral closed

3-form on any 2-connected manifold M. The argument uses the path fibration
PqM —> M, and is similar to the well-known construction of a line bundle
with connection out of a given integral closed 2-form on a simply connected
manifold. In a later paper [9], Brylinski gives a finite-dimensional description of
the sheaf of groupoids defining the basic gerbe for any compact Lie group G.
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A less abstract picture, developed by Chatterjee-Hitchin [10, 18, 19], describes

gerbes in terms of transition line bundles similar to the presentation of line
bundles in terms of transition functions. A detailed construction of transition
line bundles for the basic gerbe over G SU(A) (as well as for the much

more complicated case of finite quotients of G SU(N)) was obtained by
Gawçdzki-Reis [13].

In this paper, we will extend the Gawçdzki-Reis approach from SU(7V) to
other simply connected simple Lie groups G. A fundamental difficulty in the

more general case is that, in contrast to the case G SU(A), the pull-back
of a generator of Hq(G, Z) to a conjugacy class C c G may not vanish. In
this case it is impossible to describe the basic gerbe in terms of a G-invariant
cover and G-equivariant transition line bundles. Compare with the case of
G-equivariant line bundles over G-manifolds M : Such a line bundle may be

described in terms of a G-invariant cover and G-invariant transition functions

only if its pull-back to any G-orbit is equivariantly trivial.
One way of getting around this problem is to extend the Chatterjee-Hitchin

theory to the equivariant case, as in [9, Appendix A]. A lift of the group action
to a given gerbe is obtained by specifying the isomorphisms between the gerbe
and its pull-back under the action of group elements g G G. Unfortunately,
the conditions for such isomorphisms to define a group action become rather

complicated. A second possibility, adopted in this paper, is to use Murray's
theory of bundle gerbes [24].

To explain our approach in more detail, let us first discuss the simplest case

of G SU(d+1), where it is equivalent to the construction in Gawçdzki-Reis.
The eigenvalues of any matrix A G SU(d +1) can be uniquely written in the

form

exp(27riAi(A)),..., exp(27riAj+1(A))

where Ai(A),..., A</+i(A) G R satisfy A;(A) 0 and

Ai(A) > A2(A) > > WA) > Ai(A) - 1.

Define an open cover V\,..., Vd+\ of G, where Vj consists of those

matrices A for which the yth inequality becomes strict. Over the set Greg of
regular elements, where all inequalities are strict, we have d+ 1 line bundles

Li,... ,Ld,Ld+1 defined by the eigenlines for the eigenvalues exp(27r/A7-(A)).

For i < j, the tensor product L;+i 0 • • • 0 Lj —» Greg extends to a line bundle

Lij -> Vi H Vj. (One may view L# as the top exterior power of the sum of
eigenspaces for the eigenvalues in the given range.) For i <j < k we have a

canonical isomorphism Ly 0 Ljk Lik over the triple intersection V/ H Vj H Vk.
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The Lij, together with these isomorphisms, define a gerbe over SU(d + 1),

representing the generator of Z/3(SU(<i-b 1),Z).
More generally, consider any compact, simply connected, simple Lie group

G of rank d. Up to conjugacy, G contains exactly d+ 1 elements with semi-

simple centralizer. (For G SU(d +1), these are the central elements.) Let

Cu • • •, Cd+1 C G be their conjugacy classes. We will define an invariant open

cover V], V^+i of G, with the property that each member of this cover

admits an equivariant retraction onto the conjugacy class Cj C Vj. It turns

out that every semi-simple centralizer has a distinguished central extension by

U(l). This central extension defines an equivariant bundle gerbe on Cj, hence

(by pull-back) an equivariant bundle gerbe over Vj. We will find that these

gerbes over Vj glue together to produce a gerbe over G, using a gluing rule

developed in this paper.
The organization of the paper is as follows. In Section 2 we review the

theory of gerbes and pseudo-line bundles with connections, and discuss 'strong

equivariance' under a group action. Section 4 describes gluing rules for bundle

gerbes. Section 3 summarizes some facts about gerbes coming from central

extensions. In Section 5 we give the construction of the basic gerbe over G

outlined above, and in Section 6 we study the 'pre-quantization of conjugacy
classes'.
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2. Gerbes with connections

In this section we review gerbes on manifolds, along the lines of Chatterjee-
Hitchin and Murray.

2.1 Chatterjee-Hitchin gerbes

Let M be a manifold. Any Hermitian line bundle over M can be described
by an open cover Ua, and transition functions Xab- Uar\Ub -» U(l) satisfying
a cocycle condition (5x)abc XbcXCcXab 1 on triple intersections. The
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