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38 P. ETINGOF AND E. STRICKLAND

REMARK. In fact, since W is a finite Coxeter group, a celebrated result
of Chevalley says that the algebra C[h]" is not only a finitely generated
C-algebra but actually a free (=polynomial) algebra. Namely, it is of the
form Clqy,...,q,], where the g; are homogeneous polynomials of some
degrees d;. Furthermore, if we denote by H the subspace of C[h] of harmonic
polynomials, i.e. of polynomials killed by W -invariant differential operators
with constant coefficients without constant term, then the multiplication
map

Ch1" ® H — C[h]

is an isomorphism of C[h]" - and of W-modules. In particular, C[h] is a free
C[5]"-module of rank |W]|.

1.3 THE VARIETY X,, AND ITS BUECTIVE NORMALIZATION

Using Proposition 1.3, we can define the irreducible affine variety
Xn = Spec(Qy,). The inclusion Q,, C C[h] induces a morphism

m:bh— X,

which again by Proposition 1.3 is birational and surjective. (Notice that in
particular this implies that X,, is singular for all m # 0.)
In fact, not only is 7 birational, but a stronger result 1s true.

PROPOSITION 1.4 (Berest, see [BEG]). 7 is a bijection.

Proof. By the above remarks, we only have to show that 7 is injective.
In order to achieve this, we need to prove that quasi-invariants separate points
of b, i.e. that if z,y € h and z # y, then there exists p € @, such that
p(z) # p(y). This is obtained in the following way. Let W, C W be the
stabilizer of z and choose f € C[h] such that f(z) # 0, f(y) = 0. Set

pwy= [] et ][ faw.
SEZX ,57F7 weW,

We claim that p(x) € Q,,. Indeed, let s € ¥ and assume that s(z) # z.
We have by definition p(x) = a,(x)*™"1p(x), with p(x) a polynomial. So

p(x) — p(sx) = a;(0)*™ M p(x) — a(s2)™™ T p(sx) = ()™ T (Bx) + plsx)) -

If on the other hand, sz = z, i.e. s € W,, then s preserves the set
W\ W,, and hence preserves HséZﬂ(W\Wz) a,(x)?™t1 (as it acts by —1 on the

products [T oy os(0)*™+! and [[icpqw, as@)?™*). Since [,y fwx) is
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W, -invariant, we deduce that p(x) —p(sx) = 0, so that in this case p(x) — p(sx)
also is divisible by o(x)*™ T,

To conclude, notice that p(z) # 0. Indeed, for a reflection s, a; vanishes
exactly on the fixed points of s, so that HSEZ,SZ 22 ay(z)?mt £ 0, Also for all
w e W, flwz) =f(z) #0. On the other hand, it is clear that p(y) =0. [

EXAMPLE 1.5. Take W = Z/2. As we have already seen, O, has a
basis given by the monomials {x* | i > 0} U {x**! | i > m}. From this we
deduce that setting z = x* and y = x*"t!, 0,, = Cly,zl/(* —2%"*!) = C[K],
where K is the plane curve with a cusp at the origin, given by the equation
y2 = 72"t1 The map 7: C — K is given by n(t) = (#*"',#*), which is
clearly bijective.

1.4 FURTHER PROPERTIES OF X,

Let us get to some deeper properties of quasi-invariants. Let X be an
irreducible affine variety over C and A = C[X]. Recall that, by the Noether
Normalization Lemma, there exist fi,...,f, € C[X] which are algebraically
independent over C and such that C[X] is a finite module over the polynomial

ring C[fi,...,f,]. This means that we have a finite morphism of X onto an
affine space.

DEFINITION 1.6. A (and X) is said to be Cohen-Macaulay if there exist
fi,-..,fn as above, with the property that C[X] is a locally free module over

Clfi,...,fx]. (Notice that by the Quillen-Suslin theorem, this is equivalent to
saying that A is a free module.)

REMARK. If A is Cohen-Macaulay, then for any fi,...,f, which are
algebraically independent over C and such that A is a finite module over the

polynomial ring C[fj,...,f,], we have that A is a locally free C[fi,...,f.]-
module, see [Fis], Corollary 18.17.

THEOREM 1.7 ([EG2], [BEG], conjectured in [FV]). Q,, is Cohen-
Macaulay.

Notice that, using Chevalley’s result that C[h]" is a polynomial ring, it
will suffice, in order to prove Theorem 1.7, to prove:

THEOREM 1.8 ([EG2, BEG], conjectured in [FV]). Q,, is a free C[h]V -
module.
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