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54 P. ETINGOF AND E. STRICKLAND

differential operator Sm of the form öm(x)öm(dx)+l.o.t., with öm(x) ELex aTs

such that

LqSm — Sm,c[(fk)

for every q e C[f)] C[#i,... ,qn]. From this, if we set f(k,x) Sme^k,x\

we get

(7) Lq41 Smq(d) eq(k)ip,

q S C[q\,...,qn\.

We claim that equation (7) must in fact hold for all q G Qm. Indeed, near a

generic point x, the functions f(wk,x) are obviously linearly independent and

satisfy (7) for symmetric q. Thus, they are a basis in the space of solutions

(we know that this space is |W| -dimensional). Consider the matrix of Lq in
this basis for any q G Qm. Since is a polynomial multiplied by e^k'x\

this matrix must be diagonal with eigenvalues q{k), as desired.

Example 3.1. As we have seen in the previous section, for W Z/2
and f) C,

Sm (.xd — 2m + l)(xd — 2m— 1) • • • (.xd — 1).

3.2 Berest's formula for Lq

We are now going to give an explicit construction of the operators Lq for

any qeQm.
Let us identify, using our W-invariant scalar product, f) with (}*, and let

us choose a orthonormal basis x\f... ,xn in ()*. If x £§*, we will write Dx

for the Dunkl operator relative to the vector in I) corresponding to x under

our identification. Thus
n

i= 1

PROPOSITION 3.2 (Berest [Be]). If q e Qm is a homogeneous element of
degree d, then

(âdL)d+1q 0.

Proof It is enough to prove that

((ad L)d+lq)ip(k,x) 0.

Indeed, it follows from the definition of f>{k,x) that in the ring V(U) this

implies : ((adL)d+lq) Sm 0, so that (adL)^+1 q 0, since V(U) is a domain.
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Given qGQm,we will denote by ifthe operator Notice

that since ip(k,x) ip(x,k),we have q(x)ii>. Thus we deduce, for

p,q,r G Qm,

Lgr(x)Lptp- Lqr(x)p(k)ipp(ipp(k)LqLf^ p{

It follows that

(ad L)d+lqip (-l)d+\ad^T.
i= 1

Since Lq is a differential operator of degree d, we get ad(^"=1 kf)d+llS® — 0,

as desired.

Notice now that the operator (adL)dq(x) commutes with L. Its symbol is

given by (ad A)dq(x) 2dd\q{d). So we deduce the following

Corollary 3.3 (Berest's formula, [Be]). If q G Qm is homogeneous of
degree d, then

Lq

Proof This is clear from Proposition 2.8, once we remark that (adL)dq{x)
has the required homogeneity.

We want to give a representation theoretical interpretation of what we have

just seen. Consider the three operators

V" X2 L
(8) F=2''

It is easy to check that [//,E] 2E, [H,F] —IF. We deduce that
the elements E,F,H span an 51(2) Lie subalgebra of V(U). Thus 5{(2)
acts by conjugation on V(U). We can then reformulate Proposition 3.2 as

follows :

PROPOSITION 3.4. Any polynomial q e Qm of degree d is a lowest weight
vector for the si(2) -action of weight —d and generates a finite dimensional
module (necessarily of dimension d + 1 for which Lq is a highest weight
vector.
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Proof. An easy direct computation shows that

H=[£,F] -y>A + C,
i= 1

1

where C is a constant. Thus if q is homogeneous of degree d, we have

[H, Lq] dLq.
This and the fact that [L, Lq] 0, implies that Lq is a highest weight vector

of weight d. Also since F is a polynomial, we deduce that ad Fd+lLq 0,
so that Lq generates a (d + 1)-dimensional irreducible 0[(2)-module.

One last property about these operators is given by

PROPOSITION 3.5 ([FV]). For any q G Qm, the operator Lq preserves Qm.

Proof Let us begin by proving that L preserves Qm.

Take / G Qm, so that for any s G X, / — sf — af7h+lt, t G C[ï)].
Let us start by showing that Lf is a polynomial. Clearly Lf öf1q, with

q G C[f)], and 6* Yls:ms^oas- Since L is IT-invariant, Lf-s(Lf) L(f- sf)
is clearly divisible by a^ms~l if ms > 0. In particular, it is always

regular along the reflection hyperplane of 5. On the other hand, since

Lf — s(Lf) — 8fl(q + sq), we deduce that q + sq is divisible by as if
ms > 0. But then q ((q + sq) + (q — sq))/2 is divisible by as if ms> 0,
hence it is divisible by 6*, so that Lf lies in C[[}].

We have already remarked that L(f— sf) is divisible by a^ms~l if ms> 0.
In fact

L(f — sf) (La^+1)t +

where t is a suitable polynomial.
But since

EQp-ms(as>,as)-£—
QL?>

s'ÇX S

^ Q,
2m

—2msi(2ms+1) V" (as>,
OLs'

s'ÇpL,s'^s

we deduce that L(/ — sf) is divisible by a]ms. On the other hand, since

L(f — sf) — Lf — s(Lf), this polynomial is either zero or it must vanish to odd

order on the reflection hyperplane of s. We deduce that it must be divisible

by a%ms+1, proving that Lf G Qm.
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We now pass to a general Lq, q £ Qm- We may assume that q is

homogeneous of, say, degree d. By Corollary 3.3 we have that Lq is a non

zero multiple of adL)d(q).Sinceboth q and L preserve Qm, our claim

follows.

3.3 Differential operators on Xm

Now let us return to the algebra of differential operators D(Xm). Notice

that V{Xm) contains two commutative subalgebras (both isomorphic to Qm).

The first is Qm itself, the second is the subalgebra Q,l consisting of the

differential operators of the form Lq with q £ Qm. It is possible to prove

Theorem 3.6 ([BEG]). V(Xm) is generated by Qm and Qfm.

Notice that by Corollary 3.3 we in fact have that V(Xm) is generated by

Qm and by L.

Example 3.7. If W Z/2, f| C we get that V(Xm) is generated by

the operators

Theorem 3.6 together with Proposition 3.4, imply

COROLLARY 3.8 ([BEG]). V(Xm) is locally finite dimensional under the

action of the Lie algebra 51(2) defined in (8).

This Corollary implies that our 5[(2) action on V(Xm) can be integrated

to an action of the group SL(2). In particular we have

for all q £ Qm - This transformation is a generalization of the Fourier transform,
since it reduces to the usual Fourier transform on differential operators on f)

when m — 0.

Example 3.9. If W Z/2, f) C, we get that the monomials

{x2l}\j{x2l+2m+l} are (up to constants) all lowest weight vectors for the 51(2)

action on V(Xm). xn has weight —n. We deduce that V(Xm) is isomorphic as a

51(2)-module to the direct sum of the irreducible representations of dimension

n + 1 for n even or n — 2(m + /) + each with multiplicity one.
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