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DYNAMICS OF A DIFFERENTIAL SYSTEM

USING INVARIANT REGIONS

by F. P. da Costa*)

ABSTRACT. The long-time behaviour of a two dimensional system of ordinary
differential equations with singularities is studied using conveniently defined positively
invariant sets and auxiliary functions. The approach uses only elementary techniques
of phase plane analysis and provides a good geometric insight into the dynamical
behaviour of the system. It provides dynamical information analogous to what is
usually obtained via centre manifold techniques but does not require the flow to be
defined at the limit point.

1. Introduction

In this paper we present a study of the long-time behaviour of solutions

to the following two dimensional ordinary differential system arising from

coagulation theory :

{x
— v — x2

V v2
v — ax — 2xv — a—I

x x

where a > 0 is a constant, and (x,v) R+ x R. In this system the interesting
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feature of the dynamical behaviour is the convergence to a singular point of
the phase space, namely (0.0), and the details of this convergence. A study
of (1.1) was recently completed in [1] using a centre manifold analysis after a

convenient desingularization via a time-scale change. A somewhat different, but

related, nonautonomous system was also recently considered in [2, Eq. (14)].
In the present paper we study the behaviour of the solutions to (1.1) using

the same type of geometric approach, based on the monotonicity properties
of auxiliary functions, as well as on the positive invariance under the flow
of conveniently (and naturally) defined subsets of R+ x R. This approach,

bypassing the need to regularize (1.1), gives a much clearer geometric picture
of (1.1) thus allowing for a better insight into its dynamical behaviour and

furthermore, uses only elementary tools and could, in principle, be used in
situations where centre manifold analysis is definitely not applicable.

In the study of particles undergoing coagulation (see [1] for details), we

are led to the following system of differential equations:

where a is a positive constant, and x and y representing physical concentrations

must be non negative.
We start by looking at the gross features of the asymptotic behaviour of

solutions to (2.1).

Proposition 2.1. For every nonnegative solution {x,y) of (2.1) the

following holds true as t —> -boo : x(t) 0. y(t) --> -boo, and x(t)y(t) -4- a.

The proof of this result uses only elementary phase plane analysis tools :

the tubular flow theorem and the positive invariance under the flow of some
subsets of the phase plane. It has already been published in [1] but, since it
is very short and resorts to the same type of geometric arguments used later,

we shall include it in the next section, thus also making the current paper
more self-contained.

The behaviour described in Proposition 2.1 is not quite enough for the

envisaged application to coagulation systems, and information concerning the

rate of approach to the limits is crucial.

2. The ODE systems and the main result

(2.1)
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Proposition 2.2. For every nonnegative solution (x.y) of (2.1) we have:

(3 \1/3
(i) lim —t x(t) — 1

i """t oo \ (X I

(ii) lim (3a;2?) 1/3y(?)~l

(3 \2/'3
(iii) lim [ —? (a- — x(?)y(?)) ~ 1.

t—r ~j~ OO \ (fX j
In order to prove this proposition, which deals with the approach to the

limit point at infinity, it is convenient to map the limit point at infinity
to a point in the phase plane. In this case, and suggested by the result in
Proposition 2.1, it is natural to consider the variable v a—xy and to perform
the change of variables (x.y) (x.v) which, according to Proposition 2.1,

corresponds to mapping the limit point (0. -poo) to (0.0). Under this change of
variables system (2.1) becomes (1.1) and the region of interest, corresponding
to (x.y) G R+ x R+, is (x.v) R+ x (~oq,a). Observe that we know, from

Proposition 2.1 and the definition of v, that all solutions to (1.1) converge to
the origin as —> ~hoo. Also, statements (i) and (iii) have direct equivalents
for the new variables x (which is actually the same) and v, and (ii) can easily
be rephrased by noting that y — (a — -v)fx. So, the proof of Proposition 2.2

can be done by working directly with system (1.1) in a neighbourhood of the

singular point (0,0). This will be done in the next section using, as main

tools, geometric information provided by the positive invariance of certain
subsets of the phase plane and analytic information derived from the evolution
of some auxiliary functions.

3. Proofs

Proof of Proposition 2.1. As stated in the previous section, this proof
is based on very basic tools from qualitative theory. First observe that (2.1)
does not have equilibria. From the inequalities x — a- > 0 when x — 0, and

y — a- > 0 when y — 0 we immediately deduce the positive invariance of
r+ x r+ 0f the phase plane. Let Q be the connected subset of R+ x R+
whose boundary is {y ~ 0} U {x — 0} U {xy ~ a-}. Since we have y — 0
and x —x2 < 0 for points on {xy a-}, we conclude that Q is positively
invariant for the flow of (2.1) (see Figure 1).
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Figure 1

Region Q with a sketch of the flow in dQ

Consider first the initial data in the closure of Q and let Qi be the subset

of Q defined by

Qi I(x,y) Q : max jo, — xj < y < — j
Since the flow of (2.1) satisfies x — 0 and y — x2 > 0 on points of $Qi \dQ
we conclude that the set Qi is positively invariant. From the absence of
equilibria, the inequalities x > 0 and y > 0, valid in Q\Qi, and the

tubular flow theorem, we conclude that for any initial condition in Q the

corresponding orbit will eventually enter Qi (see Figure 2).

From this we immediately conclude that, as t ~~¥ ~hoo, we have x(t) 0

and y(t) +oo. Furthermore, for all initial data in Q, there exists a T

(depending on the initial condition) such that, for all t > T, the orbit is
in Qi, and so

t > T => — — x < y < — ^ a — x2 < xy < a.x x
Letting t -> -poo and using x(f) —> 0 as t —> -i-oo, we get

lim x(t)y(t) — a.
t~~'t ~j~0O

Consider now initial data (xo,yo) Q2 x R ' \ Q,. Fix K\ > xo,
K2 > yo and let Q.2(Ki,K2) Q2 0, ([0?^i] x [05 i=C2])-

By the analysis of the flow in dQ,2(K\,K2) and the tubular flow theorem

we conclude that the orbit will eventually enter Cq (see Figure 3) and so the

previous analysis applies. This concludes the proof.
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Figure 2

Region Qi with a sketch of the flow in dQ, &Q\ and in Q

Proof of Proposition 2.2. Considering the change of variables (x, y) m-

(x, v) introduced in the previous section, we rephrase part (iii) of Proposi-
tion 2.2 as lim (3ta) ' vif) — 1. From Proposition 2.1 we know that all

/-""J* ~j~ OO

orbits will eventually enter Qi, i.e., xy < a, for sufficiently large times
(depending on the orbit). So we need only to consider v (0, a). Define the set

A := R+ x (0,a). The analysis of the flow of (1.1) on dA immediately gives
the positive invariance of A.

For the study of the flow of (1.1) in A observe that

V o v " v^(x) - (t2 h I) - yA4 + (I)
Let vo(x) := x2. The analysis of the flow is presented in Figure 4, from which

we conclude that the set

A : — A Fl {{x, v) : v-(x) < v < uo(t)}

is positively invariant and that every orbit will eventually enter A for
sufficiently large times.

So, for sufficiently large times, solutions satisfy v {v^(x).vo(x)).
The upper bound does not give new information about the behaviour

of the solutions, since it just implies that xif) is eventually decreasing:

V < Vo(x) 44- V < X2 Vy- V X2 < 0 X < 0.
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Figure 3

Flow in the set Q.i(K\.Ki) surrounding an initial point (xo,>o) outside Q

On the other hand, the lower bound v > v-(x) is much more useful : we

start by observing that, for all sufficiently small x we can write, using the

binomial expansion,

V~(x) — x1 — —x4 -f- -\xs + 0(x12).
a or

and denoting by v\/a(x) the second term cut-off, namely v\>,,(x) x2— ^x4,
we have, for all sufficiently small x, v\>a(x) < v~~(x). Let us now compute
the slope of the orbits at points (x,v) (x, vi<a(x)j : from (1.1) we

have x \x4 and v — -^x7 and thus — —x3 < 0. Since
rt rt ax x a

v[,<y(x) 2x— > 0 for all x (0, ^f"), we conclude that the set

Mia jcvi-0 A : x < \j^> v\/a(x) < v < -I'oWj

is positively invariant and contains all positive semiorbits for sufficiently large
times (see Figure 5).
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VQ{X) X2

V-(X)

Figure 4

Flow of (1.1) in A and in A

Take any orbit of (1.1) and let to be a time such that (x(to),v(to)) £ A\>a.
Denote x(to) by xq Using the first equation of (1.1) and the bound v > v\/a(x)
we obtain the differential inequality x > -~^x4, which, after integration, yields

(3.1) x(t) > -, 'it > to.

s#» I#- mF'
Now, to complete the proof, we need to obtain an upper bound of the same

type. In fact, we are going to prove that, for all solutions (x(t), v(t)) and all

ß (0, there exists a tß > to such that, for all t > tß we have

(3.2) x(t) < it > tß > t0.j -

(xß3 + 3ß(t - tßßj

where Xß — x(tß). So fix ß (0. ~) Consider the curve Vß(x) x2 — ßx4.
The slopes of the orbits of (1.1) at points (x,vß(x)) are obtained from x —

Vß(x)—x2 — —ßx4 and v — ax*~2xvß(x)**,a— — (1—aß)r'+ß2x1,
and are given by

dv v 1 - aß _ 3 n+—- — — ox —A -fOO as X -A u '

ax x ßx

Since the slope of Vß(x) is v'ßx) — 2x — 4ßx3, and v'ßx) -a 0 as x -a 0+,

we conclude that, for sufficiently small x, % > v'ß(x). Observe that, since

{graphOi'ir)}^^^ is a foliation of A\/a we have, locally, when ^ > v'ßx),
a situation like the one depicted in Figure 6. Note that the intersections of
the orbits with the graphs of the functions va are transversal.
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Figure 5

Flow of (1.1) on dAif'a defined in the proof

We need to determine the points in A\/a at which ^ is equal to Vß(x).
From the results above, these points are given by

1 a3 _ î dv _ îßx — —- — Vß(x) — 2x — 4pb;

and hence

öb; ' dx

a 1 ± \/1 — 3(1 — aß)
X> ~~~~ ~z

33

Consequently, if 1 — 3(1 — aß) < 0 ß < I we conclude that ^ > v'ß(x)

always. For ß — there is a single value of x, namely x — for which

^ v'ß(x), with ^ for all other values of v. Finally, it is not

difficult to see that, if ß (|^5 p) we have ^ > ^(v) for v e (0, **(/?))
where

Denote by -v*(v) the curve in Aiy(> for which ^ — v'ßx). From what was
done above,

(a -f 2x2) — s/(a + 2x2)2 12*4
'i-' (*) — jr —
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smalier values of ß

Vfl(x) - X2

arger values of ß

orbits of (1.1)

Figure 6

Local picture when ^ > v^(x)

with x G (0, and the set A\ja can be partitioned into the disjoint union

Aiia »? A1/a U {graphed)} UA+a }

Alia n {v < v*(x)} and A+<t Ay# (1 {v > v*(x)}. For

eveiy point (x(t).v(t)) of any orbit in Ai/<>:, we can consider the value of the

where A
1/oe

function ß — ß(f) X2-
We conclude from the above results that ß(f) is

monotonie decreasing in AJ,<t and monotonie increasing in A'[/:f. In Figure 7

we collect the information obtained so far concerning the behaviour of ß(t)
along solutions in A\/a-

From these results we easily conclude that every orbit in A\, will
eventually enter A"^',a for sufficiently large time, and remain there afterwards.

Hence, along solutions, the value of ß(t) is eventually increasing. Our goal
is to prove that ß(t) f 1 fa as f —» 4-co. By the definition of ß(t) and (1.1)
we obtain the following evolution equation for ß :

8 2x

and so

(3.3) 8 — 2x8

3- .Ï1B+

m a
X X

In A^a the function 8(f) is increasing and bounded above by 1 /a ; hence

ß(f) converges as t —> ~t~oo and also lim 8(f) — 0. Since x(f) ~ï 0 as
OO

I _> 4-oo, the limit inferior as t —> -too of the left-hand side of (3.3) is zero.
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Figure 7

Behaviour of ß(t) along solutions of (1.1) in A\;'a :

ß(t) is increasing in A^*,^ and decreasing in A'jy,. ;

in the figure are also shown the graphs of functions Vß for several values of ß

Because ß(f) is convergent, vfx is positive, and afx —> -i-oo as î -4 -boo,
we thus conclude from (3.3) that

(3.4) lim ß(f) — lim -— w — — lim —
t—*+oo t~*Aoc 3-u -f Cl' X O: X

where in the last equality we used our knowledge that v(t) —> 0 as t -¥ -f-oo.

Suppose now that ß(t) does not converge to 1 /a but to some smaller number,
1 _ £, for some s > 0. Then, from (3.4),

1 1 v v
e ~ _ pni _ — i _ ea < i _

But, from the positive invariance of and the fact that v*(x) > v\/a(x)
we conclude that, in At,l/«'

9 1 a 7' 1 V
v > x * ~2 > 1 -a =» hm -j > 1 •

This contradiction implies that we must have ß(f) -a l ja as t —> -boo.
Now it is straightforward to obtain inequality (3.2): Pick any ß arbitrarily

close to, and smaller than, 1 fa. Without loss of generality, consider any initial
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data in A\ja. The corresponding positive semi-orbit will enter A'^,rt. after a

sufficiently long time. Once there, ß(t) is increasing along the solution and

converges to 1 ja. Thus there must exist a t% > to such that ß(t?ß — ß and,

for (x(f). v(t")") a point of the orbit, we have v(t) < v?ßx(f)) for all t > t~,

where v?ßx) — a2 — ßx4. Substituting this bound in the equation for x(f)
in (1.1), integrating the differential inequality thus obtained, and changing ß
to ß, we obtain the desired result (3.2).

From (3.1) and (3.2) we can write

(3.5) 7< x(t) < -yTj Vf > tß > to

;(*H*>)) ' (xf A 3ß(t~ - tß)j

Multiplying (3.5) by {-?) ' and taking lim and lim we obtain
/~»+OC Î—» +OC

/ 3 \ !/'3 / 3 \ 1/(3
1

1 < liin —t x(t) < lim —t x(t) < —-
t—*ß-oc \ (x j t-¥-i-oc y (x j aß

and since ß < 1 ja is arbitrary, we conclude that

/ 3 \ 1/3

lim { —t x(t) 1 joo \ (y,

which proves (i). Returning to the bound v\ja < v < Vß < vo, valid, along

any given orbit, for all sufficiently large t, we have

x2(t) — — x4(t) < v(t) < xz(f) — dx4(t) < x2(f).
a

Using (3.5) we obtain, for all t > tß > to,

4/3
:(t - to)) Cl

(xß3 + 3ß(t - tß)j

< vit) <
(xß3 A 3ß(t - tß)j

2/3 '

Multiplying by f-t)2/3 and taking lim and lim we conclude, asa t~4+oo /—>+oc

above, by the arbitrariness of ß < I/a, that

3 \2/3
lim { —t v(t) — 1

t—A ~| co \ (y
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which establishes (iii). Finally, to prove (ii), observe that for the original
variable y(t) we have y — <-^L and thus, as t -4 +00,

7 .I-* 1 (^)2/3ko 1

(3ah) ' y(t) - ——773 a 1 o
1

>

&)h3m &t3ma&)2*3
which concludes the proof.
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