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ON THE AREA OF A POLYGON INSCRIBED IN A CIRCLE

by Y. Matsumoto, Y. Matsutani, M. Oda, T. Sakai and T. Shibuya

ABSTRACT. We prove that if n > 5, the area of the general cyclic n-gon cannot
be calculated from its side lengths, using only arithmetic operations and &-th roots.
To prove this, we apply Galois theory.

1. Introduction

The area of a triangle is given by Heron's formula (before 75 A.D.) in
terms of its side lengths ai,02,03 :

(1) \/s(s - ai)(s ~~ a2)(s - <23),

where 5 — (a\ A a2 + 03) j2. Obviously, the area of a quadrilateral is not
determined by its side lengths a\,a2,03,04 only, but if it is inscribed in a

circle, Brahmagupta's formula (628 A.D.) gives the area:

(2) \f(s- aiXs - a2)(s ~~ a3)(s - 04),

where s ~ (a\ + a2 +<23 A See [2], Thus the area of a triangle or of a

cyclic quadrilateral can be calculated from its side lengths by combining the

four arithmetic operations of addition, subtraction, multiplication, and division,
together with the operation of taking square roots. Here and in the sequel, a

cyclic polygon is a convex polygon whose vertices all lie on the same circle.

The purpose of this paper is to prove

Theorem 1. If n > 5, there is no formula which expresses the area of
the general cyclic n-gon in terms of its side lengths, using only arithmetic

operations and k-th roots.
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As a consequence, if n is greater than four, there exists no formula like

(1) or (2) for the area of a cyclic «-gon. We prove this theorem by applying
Galois theory.

Blaschke [1] proved that the area of an «-gon with given side lengths

a\ a.2•.•. an attains a maximum if and only if the polygon is cyclic, and

it is easy to see that the maximum value is independent of the order of

a\,&2?• An- To find an explicit formula for the area of a cyclic «-gon in
terms of its side lengths would be an interesting problem.

The authors are grateful to Professor Koichi Yano; without his question
about the maximum area of polygons with given side lengths, the present
investigation would never have been undertaken. The authors are also grateful
to the referees for their careful reading and useful comments and suggestions.

Note added on May 10th, 2006. We recently learned that V. V. Varfo-

lomeev [6] has proved that the area of a cyclic «-gon is algebraic over
the field Q(cq.... ,an) generated by the side lengths a\, ,an, and that in
another paper [7], he has studied the Galois group of the same equation as

our (3) (equation (8) in [6]) over the field Q(ai,... ,as) of rational functions
of the sides of a cyclic pentagon and has proved that it is isomorphic to the

symmetric group S-]. His result, together with the Geometric Theorem in the

same paper, immediately implies our Theorem 1 (at least for n — 5), though
this theorem is not stated explicitly in [7]. The merit of the present paper
would be that our approach is much more elementary than his.

2. Proof of Theorem 1 for n — 5

In this section, we will prove Theorem 1 for n — 5. The proof for n > 6

will be given in §5.

Let ABCDE be a cyclic pentagon, as in Figure 1. Let a, b, c,d} e be the

side lengths of the pentagon as shown in Figure 1. Let a be the length of the

diagonal AC, and let S be the area of the pentagon.

Lemma 1. The diagonal length x satisfies a polynomial equation of
degree 4 whose coefficients are rational junctions (over the rational field Q)
of S, a. b. c,d,e.
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Figure 1

Cyclic pentagon ABCDE

Lemma 2. The diagonal length x is a solution ofthe following polynomial
equation of degree 7 ;

(3) cdex1 + (cd2 + d2e2 + e2 c - Sb2)x

+ cde{(c2 + d2 + e2) — 2(a + b2)} x5

+ {cd2e2 + 2ab2(c + d2 + e2) - 2(a + b2)(cd2 + d2e2 + e2c)}xA

+ cde{(a2 + b2)2 + 4a2 b2 — 2(a + b2)(c2 + d2 + e2)}x2

+ {(a + b2)2(cd2 + d2e + e c) - 2c Se (a + b2) - ab2(c + d2 + e2)2}^2

+ cde(c + d2 + e)(a - b2)2 x + cd2e2(a - b2)2 0.

In the special case a — b, x is a solution of the following equation of
degree 5 :

(4) cdex5 + (c2d2 + d2 e2 + e2c — a')x + cde{(c2 + d2 + e2) — 4a\x
+ {c2d2e2 + 2a (c + d2 + e2) - 4a2(c2d2 + d2e2 + ec))x
+ Aa2cde{2al — (c2 + S + e2)} x

+ a {4a (cd2 + Se2 + e c) - 4c Se - a(c + S + e2)2 } 0

Let us consider for example a cyclic pentagon with side lengths a — b — 1,

c — 2, d — 3, e — 4. (Such a cyclic pentagon exists. See Appendix A,
Proposition 4.) Then equation (4) becomes

24A5 -f" 243A4 + 600a3 - 342A2 - 2592A -2169-0
Dividing out the common factor 3, we obtain
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(5) 8a5 + 81A4 -h 200A3 - 1 14A2 - 864A -723 ~0.

Lemma 3. The Galois group of equation (5) over Q is S$, the symmetric

group of degree 5. In particular, no root of this equation belongs to radical
extensions of Q.

Proof of Theorem 1 for n — 5. We will prove Theorem 1 for n — 5,

taking Lemmas 1, 2, 3 momentarily for granted. Suppose that the area S

could be calculated from the side lengths a.b.c,d,e using only arithmetic

operations and k-th roots. Then by Lemma 1, a could also be calculated
likewise from the side lengths, because any polynomial equation of degree 4
can be solved by radicals. This would imply that the diagonal a is in a

radical extension of the field Q(a.b,c,d,e). In particular, equation (5) could
be solved by radicals. However, this contradicts Lemma 3. Therefore, Theorem
1 is proved for n — 5.

3. Proofs of Lemmas 1 .and 2

ProofofLemma 1. The area S of the cyclic pentagon ABCDE of Figure 1

is the sum of the areas of the triangle ABC and the cyclic quadrilateral ACDE.

Applying formulas (1) and (2), we have

S — area(AABC) -f area(DACDE)

i s/{(a-t b)2 - a2}{a2 - (a - b)2}

+ i s/{(x 4- c)2 ~{d~ e)2}{(d + e)2 - (a - c)2}

Hence,

14S — sjf'a -f b)2 — a2}{a2 — {a — b)2} ^

{(X + ci - (d - ef}{{d + ef - (a - c)2}

From this, we have

(6) 2(a2 pb2 — c2 —d2 — e2)x2 — 8cde x + 1652 — a4 — b4 4- c4 + d4 + e4

— 2{—db2 -h c2d2 -F d2e2 + e2c2) — 8S\f—x4 + 2(a2 -f b2)x2 — (a2 — b2)2

The required equation of degree 4 for a is obtained by squaring both sides

of (6).
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Proof of Lemma 2. Let y denote the length of diagonal AD of the cyclic
pentagon ABCDE in Figure 1. Consider the quadrilateral ABCD, and let 0

be the angle ZABC. Then ZADC — it — 0.

We have

x2 — S + if — 2ab cos 0 — y2 + c2 — 2yc cos(tt — 0).

Eliminating cos$, we get

(T) j ___

(a2 + ^)cy + (c2 + y2)ab

ab + cy

Similarly, considering the quadrilateral ACDE, we have

f (yZ-j- c2)de + (d2 + e2)cx
m r - ——,,cx i-de

Eliminating y from (7) and (8), we obtain equation (3).

4. Proof of Lemma 3

The following proposition is well known. For a proof, we refer the reader

to [4] (Part II, Chap. 3, §5).

Proposition 1. Let P(x) be a polynomial of degree 5 with rational
coefficients. Suppose that P(x) is irreducible over Q and that the equation

(9) P(x) - 0

has three real roots and a pair of imaginary roots. Then the Galois group of
equation (9) over Q is isomorphic to the symmetric group S5.

Therefore, in order to prove Lemma 3, it suffices to prove the following
two lemmas.

Lemma 4. The polynomial on the left hand side of equation (5) is

irreducible over Q.

Lemma 5. Equation (5) has three real roots and a pair of imaginary
roots.
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Both lemmas can be checked instantly by appealing to "technological
tools". We used Mathematica. Though our use was modest compared to that
in [5], we found them very useful. We will give here, however, quite elementary
proofs.

Proof of Lemma 4. Let Q(x) denote the polynomial on the left hand side

of equation (5). To simplify the polynomial, we define R(x) by setting

(10) R(x) Q(x- 2).

Obviously, Q(x) is irreducible over Q if and only if R(x) is. We shall prove
the irreducibility of R(x). By calculation,

R(x) - Sx5 -f a4 - 128a3 - 10a2 + 40a -11.

As is well known, a polynomial with integral coefficients is irreducible over Q
if and only if it is irreducible over Z.

First of all, we prove

Claim 1. The following factorization mod 8 is impossible :

(11) R(x) (Af m)T(x) mod 8

where m is an integer, and T(x') is a polynomial with integral coefficients.

Here, by /(a) g(a) mod 8, we mean that corresponding coefficients of
(the polynomials) /(a) and g(x) are congruent modulo 8.

Proof. We have

(12) i?(x) a4 — 2a2 — 3 mod 8.

If we had a factorization mod 8 of the form (11), then from (12) m would
be an odd integer and therefore, w2 1 mod 8. Also from (11), R(—m) 0

mod 8. However, this is impossible, because

R(-m) (~m)4 - 2(-m)2 - 3=1-2-3=4 mod 8.

This proves Claim 1.

Now we prove that R(x) is irreducible over Z
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Case 1. If R(x) were divisible in Z[x] by a linear polynomial, there

would be integers a, b. c, d, e, k, I such that

R(x) —\ (ax -f- b)(cx4 + dx5 ~'t ex2 ~l~ kx -t I

By comparing coefficients on both sides:

x5 : ac — 8,
x4 : ad + be — 1,
x3 : ae -f bd — —128,

x2 : ak -f be —10,

x : al -tbk — 40,
x° : W-Hl.

We shall show that this system of six equations cannot be solved in integers.
We may assume that a > 0. Since ad+bc — 1, we have gcd(a,c) — 1. Since

ac — 8, we have either a — 8, c 1 or a 1, c ~ 8. However, the latter case

is excluded by Claim 1. Thus a 8 and c — 1. Then t&i -f be 1 becomes

8<i + — 1, whence b ~ 1 mod 8. Since b divides 11 and b ~ 1 mod 8,

we have b — 1. Then from 8<i~r & — 1 we have d — 0, and ae-tbd — —128

gives g —16. Now ak-j-be — —10 becomes 8k — 16 —10. This yields
k —I, a contradiction.

Case 2. If i?(x) were divisible in Z[x] by a quadratic polynomial, there

would be integers a, b, c, d, e, k, I such that

(13) R(x) -- (ax2 -f-bx-t c)(dx? x- ex2 -i-kx-j-l).

By comparing coefficients on both sides:

x5 : ad — 8,
x4 : ae + bd — 1,

x3: + be + erf — —128,

x2 : a/ -f- -f eg —10.

x : W -f c/t — 40,
x° : g/ — 11.

We shall show that this system of six equations cannot be solved in integers.
We may assume that a > 0. Since ae-j-bd — 1, we have gcd(a,d) — 1. Since

ad — 8, we have either a — 8, d — 1 or a 1, d 8. The former case

is impossible. This is proved as follows : In this case, ae -[-bd — 1 would
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become 8e + b — 1, which implies b ~ 1 mod 8. Substituting a — 8, d — 1

and b ~ 1 mod 8 in (13), we would have

R(x) (xt cXx5 + -t kx + I) mod 8,

which is excluded by Claim 1. Thus a — 8. d — 1 is impossible as asserted,

and we have a — 1, d — 8.

Now the above system implies that

e + Sb 1,
£ 4. 4- 8c — —128,

| 4- £)£ 4- ce — _10

bl -f ck — 40 j

ci - -11.

Since cZ — gHü.1, there are four possiblities for the pair (c.l) :

(c,/) 1,-11), (—1,11), (11. — 1), (-11,1).

In each case, c pi — 10 or c pi — —10.

Claim 2. If c p I — 10, then b ~ 2 mod 4. If c pi —, —10, then b ~ 0

mod 4.

Proof. Calculating mod 8, we have

e ts 1,

k pb~0,
I 4- fr£4~ C —2,

bip ck ~0.

According as c + / 10 or cpl — —10, the third equation yields bk —4 or
bk~0. The second equation implies that bk ~ —b2. Thus b 2,6 mod 8

or & ~ 0,4 mod 8, according as c p / 10 or c -f- / — —10. This proves
Claim 2.

Let ik(x) denote the quadratic factor x2 p bx p c in (13) with a — 1.

Substituting x — ±2 in ip(x) and R(x), we have

#(-2) 4 - 2& + c, f(2) =44-2bpc,
and
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i?(—2) - 653, R(2) —723.

Thus #(—2) — 4— 2b-i-c (resp. #(2) 4-f2fc+c) must divide 653 (resp. 723).
Note that 653 is a prime number. Thus

(14) 4 - 2b + c - 1, -1, 653, or - 653.

Also note that
653 5 mod 8.

We consider four cases according to the values of c and I.

Case (i) (c,Z) - (1,-11).
Since c-t-l — —10, we have b 0 mod 4 by Qaim 2. Then 4—2&4-1 5

mod 8, and from (14), we have 4 — 2& -f- 1 — 653. Therefore, 2b —648,
and -?/)(2) — —643. But 643 does not divide 723.

Case (ii) (c,Z) (-1,11).
Since c-t-l — 10, we have b ~ 2 mod 4 by Qaim 2. Then 4--2b—l ~ —I

mod 8, and from (14), we have 4 — 2b — I — — l. Therefore, 2b — 4, and

•?/>(2) — 7. But 7 does not divide 723.

Case (iii) (c,Z) (11,-1).
Since c-t-l 10, we have 2 mod 4 by Qaim 2. Then 4—2&+11 3

mod 8, and from (14), we have 4— 2b -f 11 =5 —653. Therefore, 2b — 668,
and ip(2) — 683. But 683 does not divide 723.

Case (iv) (c, /) ~ (—11,1).
Since c-t-l =4 — 10, we have & 0 mod 4 by Qaim 2. Then 4—2ib—11 1

mod 8, and from (14), we have 4 — 2b — 11 1. Therefore, 2b —8, and

#(2) — —15. But 15 does not divide 723.

We have proved that the factorization (13) is impossible. Case 2 is done.

Now suppose that R(x) were reducible over Z. Then, since R(x) is of
degree 5, it would be divisible in Z[x] by a linear or a quadratic factor.

However, both factorizations are impossible by Cases 1 and 2. This completes
the proof of Lemma 4.

Proof of Lemma 5. Let R(x) be the polynomial defined by (10). Since

R(x) has the same number of real roots as Q(x), it suffices to prove that R(x)
has exactly 3 real roots. The derivative

R'(x) 4(1 Ox4 + £ - 96a2 - 5a + 10)
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is a polynomial of degree 4, and

lim R'(x) -f-oo, i?'(-1) < 0., #(0) > 0., i?'(l) < 0, lim R'(x) - -Poo
X~"~b~~~0O x~~^~\~oo

Hence R'(x) has only real roots, one in each of the intervals

Woor^l), (—1,0), (0,1), (1, -poo).

We now consider R(x) on each of these intervals. Since

lim R(x) —oo, i?(-l) > 0, R(0) < 0, i?(l) < 0, lim R(x) - -Poo,
X""~ï ~~~ oo x—^ ~j~ oo

R(x) has an odd number of roots in (—oo.—1), in (—1.0) and in (1,-poo).
It follows from Rolle's theorem and what we know about the roots of R'(x),
that R(x) has exactly one root in each of these intervals. And R(x') has no

root in (0,1), because

R(x) <0 for 0 < x < 1.

Indeed, by writing

R(x) - Sx'ix2 ** 1) -P (a4 - 1) - IOx2 -P 40x(l - Sx2) - 10,

we see that

R(x) < 40x(l - 3a2) - 10 for 0 < a < 1.

And a(1 — 3a2) attains its maximum on the interval [0.1] at a — k, whence

40 1 80
R(x) < — (1 - -) 10 — - 10 < 0 for 0 < a < 1.

This concludes the proof : the polynomial R(a) has exactly 3 real roots, say

Ai, A2, A3, which are such that Ai < — 1 < A2 < 0 and A3 > 1.

5. Proof of Theorem 1 for n > 6

In §2, we proved that the area of a cyclic pentagon with side lengths

a — b — I, c — 2, d — 3, e — 4 does not belong to any radical extension

of Q. In this section, we will prove Theorem 1 for n > 6 by showing that
the following assumption (*) contradicts the above fact.

Assumption (-*). For a certain integer n > 6, there exists an area
formula F(a\ ,ai,. an) which gives the area of an arbitrary cyclic n-gon
in terms of the side lengths a\,02,... ,an using only the four arithmetic

operations and k-th roots.
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In this section, we will assume (-*), and n will always denote the particular
integer specified in (*). Let 5b denote the area of the cyclic pentagon with
side lengths <21 ai — 1, «3 2, 04 — 3, <25—4. If I is a sufficiently
small positive real number, then by Proposition 4 of Appendix A, there exists

a cyclic «-gon with side lengths

a\ — «2 — 15 <23 — 2. <34 — 3. <25 — 4. a$ — /, an — t.
Note that the radius of the circumscribed circle may depend on /.

Proposition 2.

(15) ^^(1,1,2,3,4,/,... ,/) -So.

Proof. In general, we will denote by S(ci-. C2, cm) the area of a cyclic
m-gon whose side lengths are C\,C2-, ,cm, where m is any integer with
m> 3. Then we have

(16) 5(1,1,2,3,4,/,... ,0 =5(1,1,2,3,«) + 5(«,4,/,...,/).
In this equation, we are considering a cyclic Ä-gon B1B2 Bn with
B1B2 — B2B3 ~ 1, B3B4 2, B4B3 — 3, BsBß ~ 4, B§B\ — t if n ~ 6,

or B^B^] — t, Bn„.iBn — t, BnB\ — t if n>l. (See Figure 2.) Thus

in equation (16), the number of /'s on each side is n — 5. Also u denotes

the diagonal length u — B1B5, which is a function of /. It is geometrically
clear that

(17) lim^w — 4,

and that

(18) limo5(w,4,/,...,f) -0.
By Proposition 5 in Appendix A, 5(ci, C2,..., cm) is a continuous function

of {c\,C2, - Cm). Thus by (17), we have

(19) lj 2'3'4) ~ 50 •

Assumption (a) implies that

F(l, 1,2,3,4,/,...,/) — 5(1,1,2,3,4,/,...,/).
Thus by (16), (18) and (19) we have

(20) limo F(l, 1,2,3,4,/,...,/) =50.

Proposition 2 is now proved.
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B5

Figure 2

Cyclic K-gon B1B2

By Assumption (*), the value F(l, 1,2,3,4, /,... ,/) can be calculated by
starting from rational numbers and the variable /, and applying the four
arithmetic operations and taking £-th roots. In other words, F(1,1,2,3,4,/,...,/)
is an admissible function as defined in Appendix B. There we also define

a restricted admissible function to be an admissible function which can be

constructed from a finite number of polynomials in / with rational coefficients

by using only three arithmetic operations of addition, subtraction, and

multiplication (i.e. without using division), together with the operation of taking
k-th roots.

For notational simplicity, let us denote F(l, 1,2,3,4,/,...,/) by Fit). By
Lemma 7 in Appendix B, an admissible function F(t) can be expressed as a

quotient of two restricted admissible functions:

fit)
(21) Fit) ~

git)
where fit) and git) are certain branches of restricted admissible functions
which are not identically zero. Note that the domain of Fit) contains a small
interval 0 < / < e. If e is sufficiently small, this interval is contained in
unramified domains (in the sense of Appendix B) of fit), git) and yft. We

can choose a connected and simply connected open set D (c C) which
contains the interval 0 < t < e and serves as an unramified domain for
all these functions simultaneously. We assume that on D a branch (denoted

by Z* of yrt is selected so that Z* >0 for 0 < / < e. Then by Proposition 7
in Appendix B, the functions fit) and git) have Puiseux expansions
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(22) /CO — Co + C\tP + C2ÎP 1 0 < t <

(23) g(t) — do + d\t* + i 0 < t < c,

where p and q are positive integers, and all the coefficients c,-, dj belong to

a radical extension of Q.
Since Fit) is the quotient of fit) and git) (see (21)), and its limit when

t f +0 is a finite non-zero number Sq (see (15)), we infer that the first

non-zero terms of (22) and (23), say Cftp and dfl* have the same exponents:

I _ L
p q

'

Then by cancelling tp — t°- from the numerator and the denominator, we have

I 2

Ci T- Ci„y\tP T- Ci+2tp
I " I

dj -j- dj.y\tl -f-dj..y2?^

'c"2'I ' " o<t<c.

This implies that

(24) lim Fit) %
-7

which belongs to a radical extension of Q. Since by (15) this limit is equal
to Sq, (24) contradicts the fact (proved in §2) that Sq does not belong to

any radical extension of Q. This contradiction shows that Assumption (*) is
absurd. This proves Theorem 1 for n > 6.

We would like to remark that Theorem 1 for n — 5 does not trivially
imply Theorem 1 for n > 6. The following proposition seems to indicate the

subtlety of the problem.

We have shown in §2 that for certain cyclic pentagons ABCDE with
AS — AE, there is no formula which gives the area in terms of the side

lengths using only arithmetic operations and k-th roots. However, if ABCDE
is any cyclic pentagon with AS — AE, and if F is any point (other than A

or E) on the arc AE of the circumscribed circle (as in Figure 3), then we

can prove:

Proposition 3. There exists a formula which gives the area of the cyclic
hexagon ABCDEF (of Figure 3) in terms of its side lengths, using only
arithmetic operations and square roots.
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Figure 3

Cyclic pentagon ABCDE and point F

Proof. Consider the cyclic quadrilateral ABEF and its diagonal AE. Let
2 •>

u denote the length of the chord BE. By calculating AE as we did for x
in the proof of Lemma 2, we have

(25) ÂË2 —
('e2 (aZ ± u2~)ef

au A ef

But AE — a ; after some simplifications we get

(26) u
ef

Since the quadrilaterals ABEF and BCDE are cyclic, their areas can be

calculated (by Brahmagupta's formula) from the side lengths a,u,e.f and

b,c,d.u, respectively, using only arithmetic operations and square roots. This

together with (26) completes the proof of Proposition 3.

6. Appendix A

The purpose of this appendix is to prove two propositions on cyclic
polygons, which are probably well-known, but are used in our arguments.

Proposition 4. Let n be an integer greater than 2. Let cq, i — 1,2,..., n,
be positive real numbers. The following three conditions are equivalent :
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(i) 2 max(ai. a^. an) < 1 ai> other words, s — cii> 0 for each
i — 1,2...., n, where s — (a\ + ai + • • • + ctn)j2,

(ii) there exists an n-gon whose side lengths are a\. aj, an,

(iii) there exists a cyclic n-gon whose side lengths are a\, a2, an.

Proof The implications (iii) => (ii) and (ii) => (i) are obvious. We will
prove that (i) =» (iii).

Assume condition (i). We may assume that

an — max(ai, a2,..., an).

Then (i) is equivalent to

(27) an < a\ + a2 + + an^\.

For r > 0, let C(r) denote a circle of radius r. If A and B are two points
on C(r) and a — AB, then the angle at the center of C(r) subtended by the

chord AS is

(28) 2arcsin^^-^,

where we choose the branch of arcsin so that

— ^ < arcsin(x) < for 1 < x < 1.

To prove the implication (i) =» (iii), we consider three cases:

m EJT f,
Pi
(C) EÖ < Ï-

Case (A). Note that if C(r) circumscribes an /2-gon whose side lengths
are ai,a2,... ,On, then the diameter 2r must satisfy

2r > max(ai ,02,. an) — an.

that is, r > f.
Consider the continuous function f(r) defined by

(29) r) arcsin(^) • r ^ y •

i= 1 ~

By assumption (A), we have
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H—1
rAn, ST" ai\ {°n\ ^ ^ ^t(—) — \ arcsm — -r arcsm — > —t— — ttJ 2 A~* \an) Kein) 2 2

i= 1

By (29), we have

lim /(r) 0.
r—*oc

Since

n
£1/1 £1/91

(30) =4=<0, for r>^,^r^4r2-a} 2

the function /(r) is monotone decreasing. Therefore, there exists a unique
value ro (> y such that /(t*o) ~ -tt, i.e.

B» Êatcsin(lï)^:^'
1=1

Equation (31) means that the sum of the angles at the center of C(t*o) subtended

by the chords of lengths ian is 2tt. (See (28).) Thus there exists an

«-gon with side lengths a\. ch,... ,an inscribed in the circle C(/*o). Case (A)
is done.

Case (B). Take « points Ai, ,A„, in this order, on the circle C(^)
of radius y in such a way that A,A,+1 — a^, for i — 1.2, ...,«*» 1. Then

by assumption (B), the sum of the central angles subtended by the chords

A1A2, A2A3,..., An,,\An is equal to tt. Thus the chord AiA„ is a diameter of

C(y) ' its length is equal to an. This implies that the «-gon A1A2 An

inscribed in C(y) has the required side lengths ai,a2,... ,<%. This concludes
Case (B).

Case (C). Take « points Ai,A2, An, in this order, on the circle

C(r) of radius r, where r > y. We take them so that A,A,-+1 — a,-, for
i— 1,2,1. The length of the chord AiA„ depends on r, while the

lengths of A1A2, A2A3,..., A«_iA« are fixed as above, independently of r.
We denote the length of A\An, as a continuous function of r, by g(r). It is
defined for r > y. Assumption (C) implies that if r — y the sum of the

angles at the center of C(y), subtended by A1A2, A2A3,..., An-iAn, is less

than tt Thus if r — ^ the chord A]AB is shorter than the diameter of C(^),
that is,

(32) g{^)<an.
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As we show below, the function g(r) is monotone increasing, and it is

geometrically clear that

n— 1

(33) lim g(r) ~ a,-.
r—>oc* t—*

Recall that by (27),

i=i

n— 1

(34) ein < Cli.

i=l

Then by (32), (33), (34), we infer that there exists a unique value r$ such

that ro > y and g(/o) — cin\ in other words, we have

AiAb — cin,

on the circle C(ro). This implies that the «-gon AiA2...A„ inscribed in
the circle C(ro) has the required side lengths a\.a,2, -.. ,an. This concludes
Case (C) except for the proof that g(r) is monotone increasing.

We now prove this fact. Let O denote the center of C(r). By assumption

(C), we have

n— 1

(35) ZA\OAn — 2 arcsin( < tt, for r > ^
i= 1

and the function g(r) is written explicitly as

(36) g(r) — 2rsin^^^^j 2r sin arcsin ^
~~ i= 1

For simplicity, we set

$i — arcsin| ^ J

Then we have

n— 1 n— 1 n— 1

(=1 i'=l i= 1 V

As is clear from Figure 4, we have

(37) /TX y " tan ft; •

/4r2 - a?

Substituting (37), we have
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n— 1 n— 1 n— 1

(38) f/(r) - 2 sin('^
i= i ;=i i= î

n— 1 n— 1 «— 1

> 2 sin(y^ $j
i= i i=i (=i

Note that we used the fact that 0 < Oi < Yli=i < f 111 the above

computation. See (35).

Thus we have proved that g'(r) > 0 for r > y, i.e that <?(r) is monotone

increasing, as asserted. This completes the proof of Proposition 4.

Let Dn be the open set in «-dimensional space R" defined as follows:

n

Dn — I(ai,a2,... ,an) I «1 > 0,..., an > 0, 2max(«i,«2? • • • On) < ^ «* j
î=I

By Proposition 4, for each («i,«2? • • • >an) £ A» there exists a cyclic «-gon
whose side lengths are a\,a2,.. ,a„. Let S(a\,«2,...,««) denote the area of
such a cyclic «-gon.

Proposition 5. 5(«i,«2, • • • ein) L « continuous function on Dn.

Though this proposition seems intuitively clear, we will give a proof for
completeness. Before proving Proposition 5, we will prove a closely related

lemma.

2 cos

2 cos 0.
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Let r denote the radius of the circumscribed circle of a cyclic n-gon with
side lengths a\,a2, • • • an-

Lemma 6. r is a continuous function on Dn.

Proof. We divide Dn into n 4- 1 subsets A, C1X2, Cn defined as

follows :

A ~ |(ai?ß2? •.Qn) I arcs^n(^) — 77}5 where M — max(ai,a2,...
i= 1

Cj — |(<2lj(32,...,(%) a.j — max(ai,a.2,... ,an) and ^ arcsin^—^ |.
i

Note that

Dn AU Ci UC2 U U Cn

From the arguments of Cases (B) and (C) in the proof of Proposition 4, it is
clear that if (ai,a,2,... ,an) Cj, then

cij > at, for G {1,2,..., n} \ {j}.
Thus if j A k, then

Cj n Ck - 0 •

Also note that

AO.Cj =s. |(ai,a2j• • • >On) | ^ arcsinf-
i ' J

because if M — Oj, then arcsin(^) — arcsin(l) — f.
Suppose that

(ai, a2,..., an) G int(»4) ~ A \ (|J A D Cjj •

s j
Then from the argument of Case (A) in the proof of Proposition 4, r is

uniquely determined by the condition f(r) — tt where f(r) is the function
defined by (29). Differentiating f{r), we have f'(r) < 0 (see (30)).

Thus by the implicit function theorem, the value of r satisfying f(r) — tt
depends smoothly on (o\,02,... ..of) We denote this function by

r - <pA<fl\,a2,... ,an), (a1;a2, ...,on) int(.4).

If a point (cq. cb,.... an) e int(v4) approaches the boundary A Pi Cj, that is,

if cij — max(ai, ^2,...,an), and
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arcsin| — j —> — + 0.

then from Case (A) in the proof of Proposition 4, we have
Cli

On the other hand, from Case (B) in the proof of Proposition 4, it is clear
that the radius of the circumscribed circle of a polygon corresponding to a

point (ai, a2,... ,an) A n Cj is equal to j. Therefore, the smooth function

pj, on int(y4) is continuously extended to A by defining
a.;

(39) A fal ' • • &n) ^ ' (^1 r ^2? • Q>n) £ v4 I \Cj *

Next suppose that

(ai, a2,..., an) £ int(C,-) — Cj \ (A H C/).

Then aj — max(ai,a2i... ,an), and the radius r of the circumscribed circle
is uniquely detennined by the condition g(r) — aj, where g(r) is a function

explicitly given by

g(r) — 2rsin^ arcsin| ^-jj
i

See equation (36) in Case (C) of the proof of Proposition 4, where it
was assumed that an — max(ai,a2j • • • !&«)• Since g'(r) > 0 by (38), the

implicit function theorem tells us that the radius r is a smooth function of
(a\,a2,... ,an) int(Cy). Let us denote this function by

r — ;pj(a\,a2,..., an), (a\,a2,... ,an) int(Q) (— Cj \ A O, Cj).

If a point (a\,a2,. ..,an) mt(Q) approaches the boundary A fl Cj, that

is, if
arcsin^—j —> — — 0,

then from Case (C) of the proof of Proposition 4, we have

a,
Pj(ai,a2,... ,an)

Thus as in the case of pj,, the smooth function pj on int(Q) is continuously
extended to Cj by defining

ai i s,(40) pj(ai, a2, ...,an) ^, {a\,a2,..., aA AO,Cj.

By (39) and (40), we have for j 1,2, ,n

PA(fli -,a2, -.. 0») - pj(a l j a-2, » OA, V(ai, a2,..., an) e A 0, Cj.

Therefore, by gluing togther p^, and pj, j 1,2,...,«, we obtain a

continuous function r — p{a\,a2,... ,an) on Dn. This proves Lemma 6.
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Once Lemma 6 is proved, Proposition 5 is easy to prove.

Proofof Proposition 5. The area S(a.\, ci2, an) is calculated as follows :

ÎTH-ifv^f on^
S(a1:a2r....,an)= 4—

< r\y a<,r2 _ 4 a, r2 _ 3L on f •f2-ji {Utj) 2 V 4 2 V 4 OIi W •

These two expressions coincide on the boundary AO,Cj, because we
have r — ^ there. Since r depends on (a\,a2,... .,an) continuously,
S(a\. ci2,. - ,an) also depends continuously on (ai,ü2,... ,an). This completes
the proof of Proposition 5.

7. Appendix B

The purpose of this appendix is to discuss "Puiseux expansions" of complex
valued algebraic functions of one complex variable, used in the proof of
Theorem 1. For an explanation of Puiseux expansions, see [8].

We will denote by Q[Z] the polynomial ring of a variable t with rational

coefficients, and by Q(t) the quotient field of Q[î]. In other words, Q(?) is

the field of rational functions of a variable t with rational coefficients.

In this appendix, our discussion will be confined to rather special types of
algebraic functions.

Definition. An algebraic function F(t) is said to be an admissible

function if it belongs to a radical extension of the field QCO-

This means that a function F(t) is admissible if and only if it is constructed

from a finite number of polynomial functions Q[/]) by using the four
arithmetic operations, together with the operation of taking £-th roots.

Note that when taking a £-th root of a function /(?),

s® s/m,

we meet the ambiguity that the value is only determined up to multiplication
by £-th roots of unity. In other words, the expression (41) may be any one

of the following k functions ([branches)

(42) WS: UFt\: 7 TBSIs
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where Ç is a primitive k-th root of unity. In some special cases, we can

remove this ambiguity. For example, take a connected and simply connected

region D in the complex number plane C, so that D does not contain any
zeros of f(t) nor of 1//(/). and restrict the variable t within D, then we can

remove the ambiguity of (41) in the sense that we can choose as we like one

of the branches from (42) over the domain D without any ambiguity.
We will later show how to take a useful domain D in our application.

However, before that, we will consider an admissible function to be a

multivalued function.

Definition. An admissible function F(t) is said to be of restricted type
or briefly a restricted admissible function, if we can construct it from a

finite number of polynomials Q[Z]) by using only the three arithmetic

operations of addition, subtraction, and multiplication (i.e. without using
division), together with the operation of taking k-th roots.

For example, a polynomial function Q[f]) is a restricted admissible
function.

It is easy to see that the next lemma holds.

Lemma 7. Every admissible function can be expressed as a quotient of
two restricted admissible functions.

A polynomial in an indeterminate X is said to be monic, if the coefficient
of the leading term X'" is 1.

Lemma 8. A restricted admissible function F(t) which is not identically
zero satisfies a monic polynomial equation whose coefficients belong to Q[f].
More precisely, given a non-zero restricted admissible junction F(t), there

exists a monic polynomial equation

(431 jp +fir" 1
• -•+/„ .is -!-/» - a

with fi QM, i — 1,2j... ,m, such that X — F is one of its solutions, that

is,

(44) F tflF" 1
: •'+ & # Bf. a

holds identically as a function of t.

This lemma can be proved by arguments similar to those in Chapter I, §2
of [3],
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For a given F(t), choosing a polynomial equation (43) with the lowest

degree m, we may assume that fm is not a zero polynomial. This is because

if fm — 0, then F(I) would satisfy a polynomial equation of lower degree

" 1 k j\pm 4? ^ 4r jm -1 ~ S

The following proposition is in fact a corollary of Lemma 8.

Proposition 6. A restricted admissible function F(t) which is not

identically zero has a finite number of zeros.

Proof. Suppose that F(t) satisfies equation (43), i.e. that equation (44)
holds identically as a function of t. Suppose that F(to) — 0 for some to C.
Then from (44), we have

fm(to) ~ 0.

Thus the zero set of F is a subset of the zero set of fm. Since a polynomial
fm has a finite number of zeros, this proves Proposition 6.

Let F(t) be a restricted admissible function which is not identically zero.

We define an inductive sequence for constructing Fit) to be a sequence

consisting of a finite number of non-zero restricted admissible functions

(45) X(F(t))^{FuF2>...>FN}

which satisfies the following conditions (a) and (b):

(a) Fi is a polynomial in t with rational coefficients, and F# — F(t), the

given restricted admissible function,

(b) each Fk(h —2,,N) is a polynomial in t with rational coefficients,

or Fh F, ± Fj, Fh FfFj, or Fh yFj, where F,- and F) are functions in
the sequence 2*(F(0) which appear before F/,. Furthermore, for each such h,

the indices i and j are explicitly specified.

Suppose we are given a non-zero restricted admissible function F(t). Then

fixing a certain inductive sequence X(F(t)) for constructing it, we define the

set of ramification points of Fit), denoted by Ram(F) (C C), inductively as

follows :

(i) If F/j(£ X(F(t)) is a polynomial in t with rational coefficients, we set

Ram(Fh) ~ 0,
(ii) if Fh — Fj ±Fj or F/z — FfFj, where F, and Fj are specified non-zero

restricted admissible functions in the sequence X(F(t)) appearing before F/j,
then we set
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Ram,(Fh) •— Ram,(Ft) U Ram(Ff),

(iii) if Fh — \fFi with a specified restricted admissible function F,- which

appears before Fh in the sequence X(F(t)), and k > 1, then we set

RamiFh) — RamiFi) U Zero(Fj).

where Zero(Fi) is the zero set of F,.

Remark. We adopt the convention that if in the inductive sequence
2'(F(/)) a function Fh is a polynomial in t with rational coefficients, and at
the same time, the construction of Fh is explicitly specified as Fh — F,- F Fj,
Fh — FfFj or Fh — s/F'i, then to define Ram(Fh) we apply rule (ii) or (iii)
rather than (i).

Although the notation is somewhat imprecise, the set Ram(F(t)) depends

not only on Fit) but also on 2(F(t)). When we speak of the set of ramification

points of Fit), we always assume tacitly that a certain inductive sequence
(45) for constructing F(t) has been chosen and fixed. By the definition of
a restricted admissible function and Proposition 6, Ram(F) is a finite set of
points (C C).

Definition. Let F(t) be a restricted admissible function which is not
identically zero. An open set D (c C) is said to be an unramified domain for
Fit), if D is connected and simply connected, and satisfies D fl RamiF) — 0.

If D is an unramified domain for a restricted admissible function F(f),
then F{t) restricted to D is a disjoint union of a finite number of branches,

each of which is a univalent function over D.
For example, if D is a connected and simply connected open set which

does not contain 0, then D is an unramified domain for \/t, for any k > 1.

Moreover, if D contains an open interval (0, e) (C R) with a small e > 0,
then we can uniquely select a branch of the function \ft over D such that

(46) sft > 0, for each t (0, e).

We will denote this branch by F.
In the following proposition, D<: denotes the connected component of

{t C I |f| < e} fl D which contains (0, e).
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Proposition 7. Let F(t) be a restricted admissible function which is not

identically zero. Let D be an unramified domain for Fit). Suppose that D
does not contain 0, but contains an open interval (0. c) with a sufficiently
small e > 0. Then for each branch of F(t) over D, there exists an integer

p > 0 such that the branch can be expanded as follows :

(47) F(f) — Co 4- c\tp -h C2ri 4
5 for t G D<:.

Furthermore, for a fixed Fit), all the coefficients Ci belong to a radical
extension of Q.

The expansion (47) is called the Puiseux expansion of F(t).

Proof. Let T(F(t)) be the inductive sequence for constructing Fif) which
is tacitly assumed. We will prove Proposition 7 by induction based on X(F(t)),
starting from a polynomial G Q[/]. Note that by the definition of an unramified
domain for a restricted admissible function, the unramified domain D for F(t)
also serves as an unramified domain for all the functions which appear in the

inductive sequence X(F(t)).
A polynomial /(f) G Q[f] has a natural Puiseux expansion:

f(t) — oq ~t~ afi 4-... 4- amtm,

in which all the coefficients ao,a\,... ,0m belong to Q.
Suppose that branches of two restricted admissible functions fit), git) have

Puiseux expansions:

(48) /(f) — ao i~aià + afà 4

(49) gif) — bo -h bf « + ^f« 4

in which ao,a\,a2.... belong to a radical extension K\ of Q, and

bo, b\, b2,... belong to another radical extension Ff of Q. If /(f) / ~g(f),
then the sum /(f) 4- g(t) is not identically zero, and has a Puiseux expansion

/(f) 4- git) - c0 -h ari 4- c2F 4

where r — l.c.m/p.^), and cf- — 0,aj, bj, or aj-fbt as the case may be. Thus
the coefficients Co- Ci, C2, belong to a radical extension of Q generated

by K\. Ä2. The argument for the difference /(f) — g(f) is the same.

The product of f(t)g(t) has a Puiseux expansion

fit)git) ~co f c\ri 4~ c2P 4 j

where r — pq, and
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with the indices j, k running over all pairs (j, k) that satisfy j -f | ~ \ •

(If for some i no such pair exists, then cy =0.) Obviously, the coefficients

co,ci,C2}- belong to a radical extension K$ of Q generated by K\, iL •

Finally, let us consider a branch of £-th roots of fit). We assume that

fit) has Puiseux expansion (48) whose coefficients aoWi-. a2; • - • belong to a

radical extension K\ of Q. Let n be the smallest index such that an f- 0.
Then we have

(50) i/f(f) - y,ant~p + an+it^

k>— .4 kt i • *^«+1 +- tXn-\-2 1

— sjan tPk x 11 -t —tp -i —t.p iV Oz (in

Note that the value of ffan is determined without ambiguity involving £-th
roots of unity by the choice of the branch of y(fit) over D<:, and ffan belongs
to a radical extension K[ of K\. Here K{ is the radical extension of Q which
is generated by K\ and ffäf.

Recall the binomial expansion:

(5i) =jr
i=o

where

1N
_ fhfàr-D-Û-i+l) i> h

(52)
f}} [1 i — 0.

In particular, the binomial coefficients (52) belong to Q.
The series (51) converges for \z\ < 1- Thus if e is sufficiently small, we

have for 0 < t < e :

l
(53) ^ + ^±tp + t—F m —+ •

V tln Cln .q \i / \
Equation (53) shows that all the coefficients of the Puiseux expansion of

71 4~ -Yii±t'p -f -f • • •

V Lî tXfi

belong to K\. Thus, by (50), \ff(t) has a Puiseux expansion whose coefficients

belong to a radical extension K{ of Q.
Therefore, Proposition 7 is proved by induction.
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