The combinatorial cost

Autor(en): Elek, Gábor
Objekttyp: Article
Zeitschrift: L'Enseignement Mathématique

Band (Jahr): 53 (2007)
Heft 3-4

$$
\text { PDF erstellt am: } \quad \mathbf{2 1 . 0 7 . 2 0 2 4}
$$

Persistenter Link: https://doi.org/10.5169/seals-109545

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

THE COMBINATORIAL COST

by Gábor ELEK*)

Abstract

We study the combinatorial analogues of the classical invariants of measurable equivalence relations. We introduce the notion of cost and β-invariants (the analogue of the first L^{2}-Betti number introduced by Gaboriau [3]) for sequences of finite graphs with uniformly bounded vertex degrees and examine the relation of these invariants and the rank gradient resp. mod p homology gradient invariants introduced by Lackenby ([5], [6]) for residually finite groups.

1. INTRODUCTION

1.1 GRAPH SEQUENCES

Let $\mathcal{G}=\left\{G_{n}\right\}_{n=1}^{\infty}$ be a sequence of finite simple graphs satisfying the following conditions:

- $\sup _{1 \leq n<\infty} \max _{x \in V\left(G_{n}\right)} \operatorname{deg}(x)<\infty$. That is, the graphs have uniformly bounded vertex degrees.
- $\left|V\left(G_{n}\right)\right| \rightarrow \infty$ as $n \rightarrow \infty$.

In the sequel we refer to such systems as graph sequences. Now let $\mathcal{H}=\left\{H_{n}\right\}_{n=1}^{\infty}$ be another graph sequence such that $V\left(H_{n}\right)=V\left(G_{n}\right)$ for any $n \geq 1$. Then $\mathcal{H} \prec \mathcal{G}$ if there exists an integer $L>0$ such that for any $n \geq 1$ and $x, y \in V\left(H_{n}\right), d_{G_{n}}(x, y) \leq L d_{H_{n}}(x, y)$, where $d_{G_{n}}$ resp. $d_{H_{n}}$ denote the shortest path metrics on G_{n} resp. on H_{n}. That is, if x and y are adjacent in the graph H_{n} then there exists a path between x and y in G_{n} of length at most L. We say that \mathcal{G} and \mathcal{H} are equivalent, $\mathcal{G} \simeq \mathcal{H}$, if $\mathcal{H} \prec \mathcal{G}$ and $\mathcal{G} \prec \mathcal{H}$. The edge measure of \mathcal{G} is defined as

$$
e(\mathcal{G}):=\liminf _{n \rightarrow \infty} \frac{\left|E\left(G_{n}\right)\right|}{\left|V\left(G_{n}\right)\right|}
$$

[^0]and the cost of \mathcal{G} is given as
$$
c(\mathcal{G}):=\inf _{\mathcal{H} \simeq \mathcal{G}} e(\mathcal{H})
$$

Clearly, $c(\mathcal{G}) \geq 1$ for any graph sequence \mathcal{G}. Originally, the cost was defined for measurable equivalence relations by Levitt [7]. In our paper we view graph sequences as the analogues of L-graphings of measurable equivalence relations (see [4]).

Recall that a graph sequence $\mathcal{G}=\left\{G_{n}\right\}_{n=1}^{\infty}$ is a large girth sequence if for any $k \geq 1$, there exists n_{k} such that if $n \geq n_{k}$ then G_{n} does not contain a cycle of length not greater than k. Large girth sequences are the analogues of L-treeings [4]. Our first goal is to prove the following version of Gaboriau's Theorem [2], (see also [4], Theorem 19.2).

THEOREM 1.1. If $\mathcal{G}=\left\{G_{n}\right\}_{n=1}^{\infty}$ is a large girth sequence, then $e(\mathcal{G})=c(\mathcal{G})$.

1.2β-INVARIANTS

In the proof of Theorem 1.1 we shall use the β-invariants which are the analogues of the first L^{2}-Betti numbers of measurable equivalence relations [3]. First recall the notion of cycle spaces.

Let $G(V, E)$ be a finite, simple, connected graph and K be a commutative field. Let $\varepsilon_{K}(G)$ be the vector space over K spanned by the edges and let $C_{K}(G) \subseteq \varepsilon_{K}(G)$, the cycle space, be the subspace generated by the cycles of G. Then $\operatorname{dim}_{K} C_{K}(G)=|E|-|V|+1$. Now let $\mathcal{G}=\left\{G_{n}\right\}_{n=1}^{\infty}$ be a graph sequence. Let $C_{K}^{q}\left(G_{n}\right)$ be the space spanned by the cycles of G_{n} of length not greater than q. Here we use the usual convention that $(x, y)=-(y, x)$ and we associate to the cycle $\left(x_{1}, x_{2}, \ldots, x_{n}, x_{1}\right)$ the vector $\left(\sum_{i=1}^{n-1}\left(x_{i}, x_{i+1}\right)+\left(x_{n}, x_{1}\right)\right)$.

Set

$$
s_{K}^{q}(\mathcal{G}):=\liminf _{n \rightarrow \infty} \frac{\left|E\left(G_{n}\right)\right|-\operatorname{dim}_{K} C_{K}^{q}\left(G_{n}\right)}{\left|V\left(G_{n}\right)\right|}-1
$$

The β_{K}-invariant of \mathcal{G} is defined as

$$
\beta_{K}(\mathcal{G}):=\inf _{q} s_{K}^{q}(\mathcal{G})
$$

In Section 2 we shall prove that if $\mathcal{G} \simeq \mathcal{H}$, then $\beta_{K}(\mathcal{G})=\beta_{K}(\mathcal{H})$. This immediately shows that

$$
\beta_{K}(\mathcal{G})+1 \leq c(\mathcal{G})
$$

1.3 RESIDUALLY FINTE GROUPS

Let Γ be a finitely generated group and

$$
\Gamma \triangleright \Gamma_{1} \triangleright \Gamma_{2} \triangleright \ldots, \quad \cap_{n=1}^{\infty} \Gamma_{n}=\{1\}
$$

be a nested sequence of finite index normal subgroups. Following Lackenby [5] we define the rank gradient of the system $\left\{\Gamma,\left\{\Gamma_{n}\right\}_{n=1}^{\infty}\right\}$

$$
\text { rk } \operatorname{grad}\left\{\Gamma,\left\{\Gamma_{n}\right\}_{n=1}^{\infty}\right\}=\lim _{n \rightarrow \infty} \frac{d\left(\Gamma_{n}\right)}{\left|\Gamma: \Gamma_{n}\right|},
$$

where $d\left(\Gamma_{n}\right)$ is the minimal number of generators for Γ_{n}. In another paper [6], Lackenby investigated the behaviour of the sequence $\left\{\frac{d_{p}\left(\Gamma_{n}\right)}{\left|\Gamma: \Gamma_{n}\right|}\right\}_{n=1}^{\infty}$, where $d_{p}\left(\Gamma_{n}\right)=\operatorname{dim}_{\mathbf{F}_{p}} H_{1}\left(\Gamma_{n}, \mathbf{F}_{p}\right)$. Here we denote by \mathbf{F}_{p} the finite field of p elements. Note that $d_{p}\left(\Gamma_{n}\right) \leq d\left(\Gamma_{n}\right)$. The mod-p-homology gradient of the system $\left\{\Gamma,\left\{\Gamma_{n}\right\}_{n=1}^{\infty}\right\}$ is defined as

$$
p-\operatorname{grad}\left\{\Gamma,\left\{\Gamma_{n}\right\}_{n=1}^{\infty}\right\}=\liminf _{n \rightarrow \infty} \frac{d_{p}\left(\Gamma_{n}\right)}{\left|\Gamma: \Gamma_{n}\right|}
$$

Let S be a symmetric generating system for Γ and let $\mathcal{G}=\left\{G_{n}\right\}_{n=1}^{\infty}$ be the graph sequence of the Cayley-graphs of Γ / Γ_{n} with respect to S. We have the following theorem:

THEOREM 1.2. $c(\mathcal{G})-1 \leq \operatorname{rk} \operatorname{grad}\left\{\Gamma,\left\{\Gamma_{n}\right\}_{n=1}^{\infty}\right\}$.
If Γ is even finitely presented, then we have the inequality

$$
\beta_{\mathrm{Q}}(\mathcal{G})=\beta_{(2)}^{1}(\Gamma) \leq p-\operatorname{grad}\left\{\Gamma,\left\{\Gamma_{n}\right\}_{n=1}^{\infty}\right\}=\beta_{\mathbf{F}_{p}}(\mathcal{G}) \leq c(\mathcal{G})-1,
$$

where $\beta_{(2)}^{1}(\Gamma)$ is the first L^{2}-Betti number of Γ (see [8]).

1.4 HYPERFINTE GRAPH SEQUENCES

One of the key notions in the theory of measurable equivalence relations is hyperfiniteness. We introduce a similar notion for graph sequences. We shall prove the following analogues of Proposition 22.1 and Lemma 23.2 of [4].

PROPOSITION 1.3.

1. If $\mathcal{H}=\left\{H_{n}\right\}_{n=1}^{\infty}$ is a hyperfinite graph sequence then $c(\mathcal{H})=1$.
2. For any graph sequence $\mathcal{G}=\left\{G_{n}\right\}_{n=1}^{\infty}$ there exists a hyperfinite graph sequence $\mathcal{H}=\left\{H_{n}\right\}_{n=1}^{\infty}$ such that $\mathcal{H} \prec \mathcal{G}$.

Finally we prove the analogue of the theorem of Connes, Feldman and Weiss ([4], Theorem 10.1).

THEOREM 1.4. Let Γ be a finitely generated residually finite group with a nested sequence of finite index normal subgroups $\Gamma_{n}, \cap_{n=1}^{\infty} \Gamma_{n}=\{1\}$. Then the associated graph sequence \mathcal{G} is hyperfinite if and only if Γ is amenable.

2. β-INVARIANTS

PROPOSITION 2.1. Let $\mathcal{G} \simeq \mathcal{H}$ be equivalent graph sequences and K be a field. Then $\beta_{K}(\mathcal{G})=\beta_{K}(\mathcal{H})$.

Proof. Suppose that $\mathcal{H} \subseteq \mathcal{G}$, that is for any $n \geq 1, E\left(H_{n}\right) \subseteq E\left(G_{n}\right)$. Let $L>0$ be an integer such that $d_{G_{n}}(x, y) \leq L d_{H_{n}}(x, y)$. We define a K-linear transformation between quotient spaces:

$$
\widetilde{\phi}: \varepsilon_{K}\left(H_{n}\right) / C_{K}^{q}\left(H_{n}\right) \rightarrow \varepsilon_{K}\left(G_{n}\right) / C_{K}^{q}\left(G_{n}\right)
$$

by extending the inclusion $\phi: E\left(H_{n}\right) \rightarrow E\left(G_{n}\right)$.
LEMMA 2.2. If $\widetilde{\phi}$ is surjective then $q>L$.
Proof. Let $e=(x, y) \in E\left(G_{n}\right)$, then there exists a path P between x and y, in H_{n} of length not greater than L. The cycle $c=P \cup e$ represents an element in $C_{K}^{q}\left(G_{n}\right)$ and

$$
[e] \in[c] \oplus\left[\widetilde{\phi}\left(\varepsilon_{K}\left(H_{n}\right)\right)\right] .
$$

Hence the lemma follows.
By the lemma it follows that $s_{K}^{q}\left(H_{n}\right) \geq s_{K}^{q}\left(G_{n}\right)$ if $q>L$, thus $\beta_{K}(\mathcal{H}) \geq \beta_{K}(\mathcal{G})$.

Now we define another K-linear transformation:

$$
\widetilde{\psi}: \varepsilon_{K}\left(G_{n}\right) / C_{K}^{q}\left(G_{n}\right) \rightarrow \varepsilon_{K}\left(H_{n}\right) / C_{K}^{q L}\left(H_{n}\right),
$$

by mapping the basis vector $e=(x, y) \in E\left(G_{n}\right)$ to a path in H_{n} of length not greater than L connecting x and y. If $e \in H_{n}$, then let $\tilde{\psi}(e)=e$. Obviously, $\tilde{w}^{\text {i }}$ is surjective therefore $s_{K}^{q}\left(G_{n}\right) \geq s_{K}^{q L}\left(H_{n}\right)$ and consequently $\beta_{K}(\mathcal{G}) \geq \beta_{K}(\mathcal{H})$.

Hence if $\mathcal{G} \simeq \mathcal{H}, \mathcal{H} \subseteq \mathcal{G}$ then $\beta_{K}(\mathcal{G})=\beta_{K}(\mathcal{H})$. Now we consider the general case, where \mathcal{H} is an arbitrary graph sequence such that $\mathcal{H} \simeq \mathcal{G}$. Then let $\mathcal{J}=\mathcal{G} \cup \mathcal{H}$, that is $V\left(J_{n}\right)=V\left(G_{n}\right), E\left(J_{n}\right)=E\left(G_{n}\right) \cup E\left(H_{n}\right)$. Clearly, $\mathcal{J} \simeq \mathcal{G} \simeq \mathcal{H}$ and $\mathcal{H} \subseteq \mathcal{J}, \mathcal{G} \subseteq \mathcal{J}$. Thus by our argument above, $\beta_{K}(\mathcal{H})=\beta_{K}(\mathcal{J})=\beta_{K}(\mathcal{G})$.

PROPOSITION 2.3. Let $\mathcal{G}=\left\{G_{n}\right\}_{n=1}^{\infty}$ be a graph sequence. Then

$$
\beta_{\mathrm{Q}}(\mathcal{G}) \leq \beta_{\mathbf{F}_{p}}(\mathcal{G}) \leq c(\mathcal{G})-1 .
$$

Proof. Let $\mathcal{H} \simeq \mathcal{G}$, then $\beta_{K}(\mathcal{G})=\beta_{K}(\mathcal{H}) \leq e(\mathcal{H})-1$. Therefore $\beta_{K}(\mathcal{G}) \leq c(\mathcal{G})-1$.

LEMMA 2.4. $\quad \operatorname{dim}_{\mathbf{Q}} C_{\mathbf{Q}}^{q}\left(G_{n}\right) \leq \operatorname{dim}_{\mathbf{F}_{p}} C_{\mathbf{F}_{p}}^{q}\left(G_{n}\right)$.
Proof. Let c_{n}^{q} be the number of cycles in G_{n} of length not greater than q. Let $\rho_{\mathbf{Z}}: \mathbf{Z}^{c^{q}} \rightarrow \mathbf{Z}^{\left|E\left(G_{n}\right)\right|}$ be the homomorphism that maps $\bigoplus_{i=1}^{c_{n}^{q}} s_{i}$ to $\sum_{i=1}^{c_{n}^{q}} s_{i}\left[c_{i}\right]$, where $s_{i} \in \mathbf{Z}$ and $\left[c_{i}\right]$ is the integer vector generated by the i-th cycle c_{i}. Similarly, we define $\rho_{\mathbf{F}_{p}}: \mathbf{F}_{p}^{c_{n}^{q}} \rightarrow \mathbf{F}_{p}^{\left|E\left(G_{n}\right)\right|}$. Let $\pi_{1}: \mathbf{Z}^{c_{n}^{q}} \rightarrow \mathbf{F}_{p}^{c_{n}^{q}}$, $\pi_{2}: \mathbf{Z}^{\left|E\left(G_{n}\right)\right|} \rightarrow \mathbf{F}_{p}^{\left|E\left(G_{n}\right)\right|}$ be the residue class maps. Then $\pi_{2} \circ \rho_{\mathbf{Z}}=\rho_{\mathbf{F}_{\rho}} \circ \pi_{1}$. Therefore,

$$
\operatorname{rank}_{\mathbf{Z}} \operatorname{Im} \rho_{\mathbf{Z}} \geq \operatorname{dim}_{\mathbf{F}_{\rho}} \operatorname{Im} \rho_{\mathbf{F}_{\rho}} .
$$

Clearly, $\operatorname{rank}_{\mathbf{Z}} \operatorname{Im} \rho_{\mathbf{Z}}=\operatorname{dim}_{\mathbf{Q}} C_{\mathbf{Q}}^{q}\left(G_{n}\right)$ and $\operatorname{dim}_{\mathbf{F}_{p}} \operatorname{Im} \rho_{\mathbf{F}_{p}}=\operatorname{dim}_{\mathbf{F}_{p}} C_{\mathbf{F}_{p}}^{q}\left(G_{n}\right)$. Thus our lemma follows.

By our lemma, $\beta_{\mathrm{Q}}(\mathcal{G}) \leq \beta_{\mathbf{F}_{\rho}}(\mathcal{G})$ hence we finish the proof of our proposition.

QUESTION 2.5. Does there exist a graph sequence \mathcal{G} for which $\beta_{\mathrm{Q}}(\mathcal{G}) \neq \beta_{\mathbf{F}_{p}}(\mathcal{G})$ or $\beta_{\mathbf{F}_{p}}(\mathcal{G}) \neq c(\mathcal{G})-1 ?$

Finally we prove Theorem 1.1.
Proof. Let $\mathcal{G}=\left\{G_{n}\right\}_{n=1}^{\infty}$ be a large girth graph sequence. Then by definition $\beta_{K}(\mathcal{G})=e(\mathcal{G})-1$. That is, $e(\mathcal{G})-1 \leq c(\mathcal{G})-1$, hence our theorem follows.

3. RESIDUALLY FINITE GROUPS

The goal of this section is to prove Theorem 1.2. Let Γ be a finitely generated residually finite group with a not necessarily symmetric generating system S. Let $\Gamma \triangleright \Gamma_{1} \triangleright \Gamma_{2} \triangleright \ldots, \quad \cap_{n=1}^{\infty} \Gamma_{n}=\{1\}$ be a nested sequence of finite index normal subgroups and $\mathcal{G}=\left\{G_{n}\right\}_{n=1}^{\infty}$ be the graph sequence, where G_{n} is the (left) Cayley-graph of the finite group Γ / Γ_{n} with respect
to S. Note that if S^{\prime} is another generating system and $\mathcal{H}=\left\{H_{n}\right\}_{n=1}^{\infty}$ is the associated graph sequence then $\mathcal{H} \simeq \mathcal{G}$.

PROPOSITION 3.1. $c(\mathcal{G})-1 \leq \operatorname{rk} \operatorname{grad}\left\{\Gamma,\left\{\Gamma_{n}\right\}_{n=1}^{\infty}\right\}$.
Proof. First note that by the Reidemeister-Schreier theorem the groups Γ_{n} are finitely generated as well [9], moreover if T is a finite generating system of Γ_{n}, then

$$
d_{G_{T}^{\Gamma_{n}}}(x, y) \leq L d_{G_{S}^{\Gamma}}(x, y)
$$

for any $x, y \in \Gamma_{n}$, where G_{S}^{Γ} resp. $G_{T}^{\Gamma_{n}}$ are the Cayley-graphs with respect to S resp. to T, and the Lipschitz constant L depends only on S and T.

LEMMA 3.2. For any $k \geq 1$,

$$
\frac{d\left(\Gamma_{k}\right)}{\left|\Gamma: \Gamma_{k}\right|}+1 \geq c(\Gamma)
$$

Proof. We use an idea resembling an argument in the proof of Theorem 21.1 of [4]. Let T be a generating system of Γ_{k} of minimal number of generators. For simplicity we suppose that $T \subset S$. Consider the following graph sequence: $\mathcal{H}=\left\{H_{n}\right\}_{n=1}^{\infty}, V\left(H_{n}\right)=\Gamma / \Gamma_{n}$. If $n \leq k$, let $H_{n}=G_{n}$. Set $S_{n}=\Gamma_{k} / \Gamma_{n}$ and let H_{n}^{\prime} be the Cayley-graph of S_{n} with respect to T. Now enumerate the vertices of $V\left(H_{n}\right) \backslash S_{n},\left\{x_{1}, x_{2} \ldots, x_{r_{n}}\right\}$. For each x_{i} consider the set of shortest paths in G_{n} from x_{i} to the set S_{n}. Pick the minimal path with respect to the lexicographic ordering. The edges of H_{n} shall consist of H_{n}^{\prime} and the edges of the minimal paths. Define a map $\pi: V\left(H_{n}\right) \rightarrow S_{n}$ in the following way. For each $x_{i} \in V\left(H_{n}\right) \backslash S_{n}$ let $\pi\left(x_{i}\right) \in S_{n}$ be the endpoint of the minimal path from x_{i} to S_{n} and let $\pi(x)=x$ if $x \in S_{n}$. By the lexicographic minimality, the union of the paths form a subforest in G_{n} having exactly $\left|V\left(H_{n}\right) \backslash S_{n}\right|$ edges.

We claim that $\mathcal{H} \simeq \mathcal{G}$. Since $\mathcal{H} \subset \mathcal{G}$, we only need to prove that $\mathcal{G} \prec \mathcal{H}$. Let $n>k, x, y \in V\left(G_{n}\right)$. Consider the shortest G_{n}-path from x to $y,\left\{x_{0}, x_{1}, \ldots x_{l}\right\}, x_{0}=x, x_{l}=y$. Let us consider the sequence of vertices $\left\{\pi\left(x_{0}\right), \pi\left(x_{1}\right), \ldots \pi\left(x_{l}\right)\right\}$.

Let $y_{1}, y_{2}, \ldots, y_{\left|\Gamma: \Gamma_{k}\right|}$ be a set of coset-representatives with respect to Γ_{k}. Let t be the maximal word-length of the representatives with respect to S. Then $d_{G_{n}}(\pi(x), x) \leq t$ for any $x \in V\left(G_{n}\right)$. Therefore, $d_{G_{n}}\left(\pi\left(x_{i}\right), \pi\left(x_{i+1}\right)\right) \leq 2 t+1$. That is, $d_{H_{n}}\left(\pi\left(x_{i}\right), \pi\left(x_{i+1}\right)\right) \leq L(2 t+1)$, where L is the Lipschitz-constant defined before the statement of our lemma. Consequently,

$$
d_{H_{n}}(x, y) \leq L(2 t+1) d_{G_{n}}(x, y)
$$

and therefore $\mathcal{H} \simeq \mathcal{G}$.
For the edge measure of \mathcal{H} we have

$$
e(\mathcal{H})=\liminf _{n \rightarrow \infty} \frac{\left|\Gamma: \Gamma_{n}\right|-\left|\Gamma_{k}: \Gamma_{n}\right|+\left|E\left(H_{n}^{\prime}\right)\right|}{\left|\Gamma: \Gamma_{n}\right|} .
$$

The vertex degrees of H_{n}^{\prime} are not greater than $2|T|=2 d\left(\Gamma_{k}\right)$, also $\left|S_{n}\right|=$ $\left|\Gamma_{k}: \Gamma_{k}\right|$. Thus

$$
c(\mathcal{G}) \leq e(\mathcal{H}) \leq \frac{d\left(\Gamma_{k}\right)}{\left|\Gamma: \Gamma_{k}\right|}+1 .
$$

Hence the lemma follows.

Proposition 3.1 is a straightforward consequence of Lemma 3.2.
Let $\left\{\Gamma,\left\{\Gamma_{n}\right\}_{n=1}^{\infty}\right\}, S, \mathcal{G}$ be as above. Moreover suppose that Γ is finitely presented. This means that if $\Theta: \mathcal{F}_{S} \rightarrow \Gamma$ is the natural map from the free group generated by S to Γ then $\operatorname{ker} \Theta$ is generated by the relations $\left\{R_{1}, R_{2}, \ldots, R_{l}\right\}$ as a normal subgroup, that is, if $\Theta(w)=1$ then

$$
\underline{w}=\prod_{j=1}^{r_{\underline{\underline{w}}}} \gamma_{j} R_{i j} \gamma_{j}^{-1}, \quad \gamma_{j} \in \mathcal{F}_{S} .
$$

Let $\tilde{\Sigma}$ be the usual covering $C W$-complex constructed from $\left\{R_{i}\right\}_{i=1}^{l}$, the 1 -skeleton of $\tilde{\Sigma}$ is the Cayley-graph of Γ and for each $\gamma \in \Gamma$ and $1 \leq i \leq l$, we add a 2 -cell $\sigma_{\gamma, i}$ such that

$$
\partial \sigma_{\gamma, i}=\sum_{j=1}^{s_{i}}\left(w_{j} \gamma, \underline{w}_{j-1} \gamma\right),
$$

where $R_{i}=a_{s_{i}} a_{s_{i}-1} \ldots a_{2} a_{1}, \underline{w}_{j}=a_{j} a_{j-1} \ldots a_{2} a_{1}, w_{0}=1$. Then $\widetilde{\boldsymbol{\Sigma}}$ is simply connected with a natural Γ-action. Clearly, $\pi_{1}\left(\Sigma / \Gamma_{n}\right)=\Gamma_{n}$. Recall that the group homology space $H_{1}\left(\Gamma_{n}, K\right)$ is isomorphic to the $C W$-homology space $H_{1}\left(\tilde{\Sigma} / \Gamma_{n}, K\right)$.

LEMMA 3.3. We have

$$
\lim _{n \rightarrow \infty} \frac{\operatorname{dim}_{K} H_{1}\left(\widetilde{\Sigma} / \Gamma_{n}, K\right)}{\left|\Gamma: \Gamma_{n}\right|}=\beta_{K}(\mathcal{G}) .
$$

Proof. Consider the homology complex

$$
C_{2}\left(\tilde{\Sigma} / \Gamma_{n}, K\right) \xrightarrow{\partial_{2}} C_{1}\left(\tilde{\Sigma} / \Gamma_{n}, K\right) \xrightarrow{\partial_{1}} C_{0}\left(\tilde{\Sigma} / \Gamma_{n}, K\right) .
$$

Observe that

$$
C_{1}\left(\tilde{\Sigma} / \Gamma_{n}, K\right) \simeq \varepsilon_{K}\left(G_{n}\right) \quad \text { and } \quad \operatorname{dim}_{K} C_{0}\left(\tilde{\Sigma} / \Gamma_{n}, K\right)=\left|V\left(G_{n}\right)\right|
$$

Let r be the maximal word-length of a relation R_{i}. Then $\partial_{2}\left(C_{2}\left(\tilde{\Sigma} / \Gamma_{n}, K\right)\right)$ is generated by cycles of length at most r. On the other hand, for any $q>r$, the q-cycles are in $\partial_{2}\left(C_{2}\left(\Sigma / \Gamma_{n}, K\right)\right)$ if n is large enough.

Therefore $C_{K}^{q}\left(G_{n}\right)=\partial_{2}\left(C_{2}\left(\Sigma / \Gamma_{n}, K\right)\right)$ if n is large enough. Consequently,

$$
s_{K}^{q}(\mathcal{G})=\liminf _{n \rightarrow \infty} \frac{\left|E\left(G_{n}\right)\right|-\operatorname{dim}_{K} \partial_{2}\left(C_{2}\left(\tilde{\Sigma} / \Gamma_{n}, K\right)\right)-\left|V\left(G_{n}\right)\right|}{\left|\Gamma: \Gamma_{n}\right|}
$$

On the other hand,

$$
\begin{aligned}
\frac{\operatorname{dim}_{K} H_{1}\left(\tilde{\Sigma} / \Gamma_{n}, K\right)}{\left|\Gamma: \Gamma_{n}\right|} & =\frac{\operatorname{dim}_{K} \operatorname{ker} \partial_{1}-\operatorname{dim}_{K} \operatorname{Im} \partial_{2}}{\left|\Gamma: \Gamma_{n}\right|} \\
& =\frac{\left|E\left(G_{n}\right)\right|-\operatorname{dim}_{K} \partial_{2}\left(C_{2}\left(\tilde{\Sigma} / \Gamma_{n}, K\right)\right)-\left|V\left(G_{n}\right)\right|+1}{\left|\Gamma: \Gamma_{n}\right|}
\end{aligned}
$$

Hence the lemma follows.

Now we prove the second part of Theorem 1.2.
PROPOSITION 3.4. Let Γ be a finitely presented residually finite group, $\left\{\Gamma,\left\{\Gamma_{n}\right\}_{n=1}^{\infty}\right\}, S, \mathcal{G}$ be as above. Then

$$
\beta_{\mathrm{Q}}(\mathcal{G})=\beta_{(2)}^{1}(\Gamma) \leq p-\operatorname{grad}\left\{\Gamma,\left\{\Gamma_{n}\right\}_{n=1}^{\infty}\right\}=\beta_{\mathbf{F}_{p}}(\mathcal{G}) \leq c(\mathcal{G})-1,
$$

where $\beta_{(2)}^{1}(\Gamma)$ is the first L^{2}-Betti number of Γ (see [8]).
Proof. By Lemma 3.3, $\beta_{\mathbf{F}_{p}}(\mathcal{G})=p-\operatorname{grad}\left\{\Gamma,\left\{\Gamma_{n}\right\}_{n=1}^{\infty}\right\}$. Also,

$$
\beta_{\mathrm{Q}}(\mathcal{G})=\liminf _{n \rightarrow \infty} \frac{\operatorname{dim}_{\mathrm{Q}} H_{1}\left(\widetilde{\Sigma} / \Gamma_{n}, \mathbf{Q}\right)}{\left|\Gamma: \Gamma_{n}\right|}
$$

By the Approximation Theorem of Lück

$$
\lim _{n \rightarrow \infty} \frac{\operatorname{dim}_{\mathrm{Q}} H_{1}\left(\tilde{\Sigma} / \Gamma_{n}, \mathbf{Q}\right)}{\left|\Gamma: \Gamma_{n}\right|}=\beta_{(2)}^{1}(\Gamma)
$$

Hence our proposition follows.
QUESTION 3.5. 1. Does there exist a finitely presented residually finite group Γ and a system $\left\{\Gamma,\left\{\Gamma_{n}\right\}_{n=1}^{\infty}\right\}$ such that

$$
\beta_{(2)}^{1}(\Gamma) \neq p-\operatorname{grad}\left\{\Gamma,\left\{\Gamma_{n}\right\}_{n=1}^{\infty}\right\} \quad \text { or } \quad p-\operatorname{grad}\left\{\Gamma,\left\{\Gamma_{n}\right\}_{n=1}^{\infty}\right\} \neq c(\mathcal{G})-1 \text { ? }
$$

2. Does there exist a finitely generated residually finite group Γ and a system $\left\{\Gamma,\left\{\Gamma_{n}\right\}_{n=1}^{\infty}\right\}$ such that

$$
c(\mathcal{G})-1 \neq \operatorname{rk} \operatorname{grad}\left\{\Gamma,\left\{\Gamma_{n}\right\}_{n=1}^{\infty}\right\} ?
$$

4. HYPERFINTE GRAPH SEQUENCES

We say that a graph sequence $\mathcal{G}=\left\{G_{n}\right\}_{n=1}^{\infty}$ is hyperfinite if for any $\epsilon>0$ there exists $K_{\epsilon}>0$, positive integers $\left\{k_{n}\right\}_{n=1}^{\infty}$ and a sequence of partitions of the vertex sets $V\left(G_{n}\right)$

$$
A_{1}^{n} \cup A_{2}^{n} \cup \cdots \cup A_{k_{n}}^{n}=V\left(G_{n}\right)
$$

such that

- For any $n \geq 1,1 \leq i \leq k_{n},\left|A_{i}^{n}\right| \leq K_{\epsilon}$.
- If E_{n}^{ϵ} is the set of edges $(x, y) \in E\left(G_{n}\right)$ such that $x \in A_{i}, y \in A_{j}, x \neq y$, then

$$
\liminf _{n \rightarrow \infty} \frac{\left|E_{n}^{\epsilon}\right|}{\left|V\left(G_{n}\right)\right|} \leq \epsilon .
$$

Now we prove Proposition 1.3.
Proof. Suppose that $\mathcal{G}=\left\{G_{n}\right\}_{n=1}^{\infty}$ is hyperfinite. Let $\mathcal{H}^{\epsilon}=\left\{H_{n}^{\epsilon}\right\}_{n=1}^{\infty}$ be the following graph sequence. The vertex set of H_{n}^{ϵ} is $V\left(G_{n}\right), E\left(H_{n}^{\epsilon}\right)$ is the union of E_{n}^{e} and a spanning tree for each connected component of the graphs spanned by the vertices of $A_{i}^{n}, 1 \leq i \leq k_{n}$. Clearly, $\mathcal{H}^{\epsilon} \simeq \mathcal{G}$ and $\left|E\left(H_{n}^{\epsilon}\right)\right| \leq\left|E_{n}^{\epsilon}\right|+\left|V\left(G_{n}\right)\right|$ thus $e\left(\mathcal{H}^{\epsilon}\right) \leq 1+\epsilon$. Therefore $c(\mathcal{G})=1$.

Now we show that for any graph sequence $\mathcal{G}=\left\{G_{n}\right\}_{n=1}^{\infty}, \mathcal{H}=\left\{H_{n}\right\}_{n=1}^{\infty}$ is hyperfinite where H_{n} is a spanning tree of G_{n}. We actually show that a sequence of trees $\mathcal{T}=\left\{T_{n}\right\}_{n=1}^{\infty}$ is always hyperfinite. Let q be an integer and consider a maximal q-net $L_{n}^{q} \subset V\left(T_{n}\right)$. That is, if $x \neq y \in L_{n}^{q}$ then $d_{T_{n}}(x, y) \geq q$ and for any $z \in V\left(T_{n}\right)$ there exists $x \in L_{n}^{q}$ such that $d_{T_{n}}(x, z) \leq q$. Now for each $x \in V\left(T_{n}\right)$ let $\pi(x)$ be one of the vertices $y \in L_{n}^{q}$ closest to x. Then $\bigcup_{y \in L_{n}^{q}} \pi^{-1}(y)$ is a partition of $V\left(T_{n}\right)$. Clearly $\left|\pi^{-1}(y)\right| \geq q$ for any $y \in L_{n}^{q}$. Obviously the T_{n}^{y} subgraph spanned by the vertices in $\pi^{-1}(y)$ is connected. Thus

$$
\left|E_{n}^{e}\right| \leq\left|V\left(T_{n}\right)\right|-\left(\left|V\left(T_{n}\right)\right|-\left|L_{n}^{q}\right|\right) .
$$

Here we used the fact that a connected graph has at least as many edges as the number of its vertices minus one. Obviously, $\left|L_{n}^{q}\right| \leq \frac{\left|V\left(T_{n}\right)\right|}{q}$, therefore

$$
\lim _{n \rightarrow \infty} \frac{\left|E_{n}^{\in}\right|}{\left|V\left(T_{n}\right)\right|} \leq \frac{1}{q}
$$

Consequently, the graph sequence \mathcal{T} is indeed hyperfinite.
Finally, we prove Theorem 1.4.
Proof. First let Γ be a residually finite non-amenable group with a symmetric generating system S and a nested sequence of finite index normal subgroups $\Gamma \triangleright \Gamma_{1} \triangleright \Gamma_{2} \triangleright \ldots, \quad \cap_{n=1}^{\infty} \Gamma_{n}=\{1\}$. Let G_{n} be the Cayley-graph of Γ / Γ_{n} with respect to S and G_{S}^{Γ} be the Cayley-graph of the group Γ. Since Γ is non-amenable, it has no Følner-exhaustion, consequently there exists a real number $\delta>0$ such that for each finite subset $F \subset \Gamma$ the number of edges from F to the complement of F is at least $\delta|F|$. Fix an integer $m>0$. If n is large enough then for any subset $M \subset \Gamma / \Gamma_{n},|M| \leq m$ the number of edges from M to its complement must be at least $\delta|M|$. This follows easily form the fact that for any $r \geq 0$, the r-balls in G_{n} and in G_{S}^{Γ} are isometric. This implies that \mathcal{G} is not hyperfinite.

Now let $\Gamma,\left\{\Gamma_{n}\right\}_{n=1}^{\infty}, S, \mathcal{G}$ be as above, but let Γ be amenable. The following lemma is a straightforward consequence of Theorem 2 of [1].

LEMMA 4.1. For any $\omega>0$, there exist $L_{\omega}>0, M_{\omega}>0$ and a sequence of family of subsets

$$
\left\{W_{n}^{i}\right\}_{i=1}^{k_{n}}, \quad W_{n}^{i} \subset V\left(G_{n}\right) \quad \text { if } \quad n \geq M_{\omega}
$$

such that for any $1 \leq i \leq k_{n}$,

- $\left|W_{n}^{i}\right| \leq L_{\omega}$,
- $\left|W_{n}^{i} \backslash \bigcup_{j \neq i}^{k_{n}} W_{n}^{j}\right| \geq(1-\omega)\left|W_{n}^{i}\right|$,
- the number of edges from W_{n}^{i} to its complement is at most $\omega\left|W_{n}^{i}\right|$, and
- $\left|\bigcup_{i=1}^{k_{n}} W_{n}^{i}\right| \geq(1-\omega)\left|V\left(G_{n}\right)\right|$.

Now let $Z_{n}^{i}=W_{n}^{i} \backslash \bigcup_{j \neq i}^{k_{n}} W_{n}^{j}$ and consider the partition of $V\left(G_{n}\right)$,

$$
V\left(G_{n}\right)=\bigcup_{i=1}^{k_{n}} Z_{n}^{i} \cup \bigcup_{j=1}^{l_{n}} T_{n}^{i}
$$

where T_{n}^{i} are arbitrary subsets of size at most L_{ω}. Let E_{n}^{ω} be the set of edges $(x, y) \in G_{n}$ such that their endpoints belong to different subsets in the partition. There are three kinds of edges in E_{n}^{ω} :

- Edges with an endpoint in T_{n}^{i}. The number of such edges is at most $2|S|\left(1-(1-\omega)^{2}\right)\left|V\left(G_{n}\right)\right|$.
- Edges from Z_{n}^{i} to the complement of W_{n}^{i}, for some $1 \leq i \leq k_{n}$. The number of such edges is at most $2|S| \omega(1-\omega)^{-1}\left|V\left(G_{n}\right)\right|$.
- Edges from Z_{n}^{i} to $W_{n}^{i} \backslash Z_{n}^{i}$ for some $1 \leq i \leq k_{n}$. The number of such edges is at most $2|S| \omega(1-\omega)^{-1}\left|V\left(G_{n}\right)\right|$.
Hence

$$
\liminf _{n \rightarrow \infty} \frac{\left|E_{n}^{\omega}\right|}{\left|V\left(G_{n}\right)\right|} \leq 2|S|\left(\left(1-(1-\omega)^{2}\right)+2 \omega(1-\omega)^{-1}\right) .
$$

Therefore \mathcal{G} is hyperfinite.

REFERENCES

[1] ELEK, G. The strong approximation conjecture holds for amenable groups. J. Funct. Anal. 239 (2006), 345-355.
[2] GABORIAU, D. Coût des relations d'équivalence et des groupes. Invent. Math. 139 (2000), 41-98.
[3] - Invariants l^{2} de relations d'équivalence et de groupes. Publ. Math. Inst. Hautes Études Sci. 95 (2002), 93-150.
[4] KECHRIS, A. S. and B. D. Miller. Topics in Orbit Equivalence Theory. Lecture Notes in Mathematics 1852. Springer-Verlag, Berlin, 2004.
[5] LACKENBY, M. Expanders, rank and graphs of groups. Israel J. Math. 146 (2005), 357-370.
[6] - Large groups, property (τ) and the homology growth of subgroups. (Preprint).
[7] Levitt, G. On the cost of generating an equivalence relation Ergodic Theory Dynam. Systems 15 (1995), 1173-1181.
[8] LÜCK, W. L^{2}-Invariants : Theory and Applications to Geometry and K-Theory. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 44. SpringerVerlag, Berlin, 2002.
[9] Magnus, W., A. Karrass and D. Solitar. Combinatorial Group Theory: Presentations of Groups in Terms of Generators and Relations. Interscience Publishers, John Wiley \& Sons, Inc., New York-London-Sydney, 1966.
(Reçu le 4 septembre 2006)

Gábor Elek
The Alfréd Rényi Institute of Mathematics
Hungarian Academy of Sciences
P.O.B. 127

H-1364 Budapest
Hungary
e-mail: elek@renyi.hu

[^0]: *) The author is supported by OTKA Grants T 049841 and T 037846.

