The irregularity of cyclic multiple planes after Zariski

Autor(en): Naie, Daniel
Objekttyp: Article
Zeitschrift: L'Enseignement Mathématique
Band (Jahr): 53 (2007)

Heft 3-4

PDF erstellt am:
21.07.2024

Persistenter Link: https://doi.org/10.5169/seals-109548

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

THE IRREGULARITY OF CYCLIC MULTIPLE PLANES
 AFTER ZARISKI

by Daniel NAIE

Abstract

A formula for the irregularity of a cyclic multiple plane associated to a branch curve that has arbitrary singularities and is transverse to the line at infinity is established. The irregularity is expressed as a sum of superabundances of linear systems associated to some multiplier ideals of the branch curve and the proof rests on the theory of standard cyclic coverings. Explicit computations of multiplier ideals are performed and some applications are presented.

1. INTRODUCTION

Let $f(x, y)=0$ be an affine equation of a curve $B \subset \mathbf{P}^{2}$ and H_{∞} be the line at infinity. The projective surface $S_{0} \subset \mathbf{P}^{3}$ defined by the affine equation $z^{n}=f(x, y)$ is called by Zariski the n-cyclic multiple plane associated to B and H_{∞} - possibly only to B if $n=\operatorname{deg} B$. For a given curve B, the cyclic multiple planes play an important role in the study of the fundamental group of the complement of B. At the same time they provide interesting examples of surfaces. In [23], Zariski took up the study of S_{0} in the case that the curve B has only nodes and cusps and answered the following question: What is the irregularity of S_{0}, i.e. the dimension of the vector space of global holomorphic 1 -forms on a desingularization of S_{0} ?

ZARISKI'S THEOREM. Let B be an irreducible curve of degree b, transverse to the line at infinity H_{∞} and with only nodes and cusps as singularities. Let $S_{0} \subset \mathbf{P}^{3}$ be the n-cyclic multiple plane associated to B and H_{∞}, and let S be a desingularization of S_{0}. The surface S is irregular if and only if n and b are both divisible by 6 and the linear system of curves of degree $5 b / 6-3$ passing through the cusps of B is superabundant. In this case,

$$
q(S)=h^{1}\left(\mathbf{P}^{2}, \mathcal{I}_{\mathcal{Z}}\left(-3+\frac{5 b}{6}\right)\right),
$$

where \mathcal{Z} is the support of the set of cusps.
The aim of this paper is to present a generalization of Zariski's theorem to a branch curve that has arbitrary singularities and is transverse to the line at infinity bringing to the fore the theory of cyclic coverings as developed in [20]. The irregularity will be expressed as a sum of superabundances of linear systems defined in terms of some multiplier ideals associated to the branch curve B. We refer to [5] for the notion of multiplier ideal. To state the main result in Section 3, we recall here that if the rational ξ varies from a very small positive value to 1 , then one can attach to B a collection of multiplier ideals $\mathcal{J}(\xi \cdot B)$ that starts at $\mathcal{O}_{\mathbf{p}^{2}}$, diminishes exactly when ξ equals a jumping number - they represent an increasing discrete sequence of rationals - and finally ends at $\mathcal{I}_{B}=\mathcal{O}_{\mathbf{p}}(-B)$. The multiplier ideals reflect the singularities of the rational curve ξB. For example in case B has only nodes and cusps, the only jumping number <1 of B is $5 / 6$ and the corresponding multiplier ideal is $\mathcal{I}_{\mathcal{Z}}$, where \mathcal{Z} is the support of the cusps.

THEOREM (3.1). Let B be a plane curve of degree b and let H_{∞} be a line transverse to B. Let S be a desingularization of the n-cyclic multiple plane associated to B and H_{∞}. If $J(B, n)$ is the subset of jumping numbers of B smaller than 1 and that live in $\frac{1}{\operatorname{gcd}(b, n)} \mathbf{Z}$, then

$$
q(S)=\sum_{\xi \in J(B, n)} h^{1}\left(\mathbf{P}^{2}, \mathcal{I}_{Z(\xi B)}(-3+\xi b)\right)
$$

where $Z(\xi B)$ is the subscheme defined by the multiplier ideal $\mathcal{J}(\xi \cdot B)$.

Since for B with nodes and cusps $5 / 6$ is the only jumping number <1, Theorem 3.1 becomes Zariski's theorem. In general, the usefulness of Theorem 3.1 relies on explicit computations of the jumping numbers and multiplier ideals attached to B. In case the singularities of B are locally given
by equations of the form $x^{p}+y^{h}=0$ such explicit computations may be performed and will enable us to apply the theorem to various examples in Section 4. Furthermore, in Remark 4.7 it will be shown that the irregularity may jump in case the position of H_{∞} with respect to B becomes special.

Generalizations of Zariski's theorem are discussed in several papers and the proofs are based on different points of view. First, Zariski's original argument divides naturally into three parts. He describes the canonical system of S in terms of the conditions imposed by the singularities of S_{0} that correspond to the cusps. Then he establishes the formula

$$
\begin{equation*}
q(S)=\sum_{k=n-\lfloor n / 6\rfloor}^{n-1} h^{1}\left(\mathbf{P}^{2}, \mathcal{I}_{\mathcal{Z}}\left(-3+\left\lceil\frac{k b}{n}\right\rceil\right)\right) \tag{1.1}
\end{equation*}
$$

where \mathcal{Z} denotes the support of the set of cusps. To finish, he invokes the topological result proved in [22]: If n is a power of a prime and B is irreducible, then the n-cyclic multiple plane is regular. The theorem follows from the examination of the different terms in the previous sum when the degree of the cyclic multiple plane is a power of a prime and goes to infinity; these terms are
$h^{1}\left(\mathbf{P}^{2}, \mathcal{I}_{Z}(-3+5 b / 6+1)\right), h^{1}\left(\mathbf{P}^{2}, \mathcal{I}_{\mathcal{Z}}(-3+5 b / 6+2)\right), \ldots, h^{1}\left(\mathbf{P}^{2}, \mathcal{I}_{\mathcal{Z}}(-3+b)\right)$ and they all vanish.

Second, Esnault establishes in [7] a formula similar to (1.1) for the irregularity of the b-cyclic multiple plane S_{0}, where b is the degree of the branch curve B that possesses arbitrary isolated singularities. She uses the techniques of logarithmic differential complexes, the existence of a mixed Hodge structure on the complex cohomology of the associated Milnor fibre - the complement of S_{0} with respect to the plane that contains $B-$ and the Kawamata-Viehweg vanishing theorem. In [1], Artal-Bartolo interprets Esnault's formula for the irregularity and applies it to produce two new Zariski pairs. Two plane curves $B_{1}, B_{2} \subset \mathbf{P}^{2}$ are called a Zariski pair if they have the same degree and homeomorphic tubular neighbourhoods in \mathbf{P}^{2}, but the pairs $\left(\mathbf{P}^{2}, B_{1}\right)$ and $\left(\mathbf{P}^{2}, B_{2}\right)$ are not homeomorphic. Zariski was the first to discover that there are two types of plane sextics with six cuspidal singularities depending on whether or not the cusps lie on a plane conic. In [21], Vaquié gives a formula for the irregularity of a cyclic covering of degree n of a non-singular algebraic surface X ramified along a reduced curve B of degree b with respect to some projective embedding and a nonsingular hyperplane section H that intersects B transversely. His formula is stated in terms of superabundances of the set of singularities of B and
the proof also uses the techniques of logarithmic differential complexes. The superabundances involved are given by ideal sheaves that coincide in fact to the multiplier ideals. Vaquie's paper is one among several to introduce the notion of multiplier ideals implicitly and we refer to [5] for this issue.

Third, in [13], Libgober applies methods from knot theory to study the n-multiple plane S_{0}. His results are expressed in terms of Alexander polynomials and extend Zariski's theorem to irreducible curves B with arbitrary singularities and to lines H_{∞} with arbitrary position with respect to B. Later on, in $[14,15,16]$, he deals with the case of reducible curves B having transverse intersection with the line at infinity and the irregularity of the multiple plane is expressed using quasiadjunction ideals. The technique is based on mixed Hodge theory, and the result is a particular case in a vaster study pursued in the above mentioned papers where the homotopy groups of the complements of various divisors in smooth projective varieties are explored. These groups are related to the Hodge numbers of cyclic or more generally abelian coverings ramified along the considered divisors, as well as to the position of their singularities. We refer the reader to [18] for more ample details and references and to [17] for the relation between the quasiadjunction ideals and the multiplier ideals.

Our argument will follow Zariski's ideas. A desingularization of cyclic multiple plane is expressed as a standard cyclic covering. Then an analog of the formula (1.1) is obtained thanks to the theory of cyclic coverings:

$$
q(S)=\sum_{k=1}^{n-1} h^{1}\left(\mathbf{P}^{2}, I_{Z\left(\frac{\kappa}{n} B\right)}\left(-3+\left\lceil\frac{k b}{n}\right\rceil\right)\right)
$$

Finally Theorem 3.1 is established using the Kawamata-Viehweg-Nadel vanishing theorem.

REMARK. The above formula coincides with Vaquiés in [21] when the latter is interpreted for a plane curve B and a line H transverse to it. At the same time, Vaquie's formula in its general form might be obtained by the argument we make use of in establishing Theorem 3.1 if Vaquiés general setting were to be considered.

The paper is organized as follows. In §2 the theory of cyclic coverings and some facts about multiplier ideals are recalled. Next, in §3 it is shown that the normalization of a given cyclic multiple plane is birationally isomorphic to a standard cyclic covering of the plane. Then, using it, Theorem 3.1 is proved. In §4 some applications are presented. Finally, in the appendix a new explicit
computation for certain multiplier ideals is performed and used to complete the proof of Proposition 4.3. It is hoped that this description might be useful in other circumstances.

Notation and conventions. All varieties are assumed to be defined over C. Standard symbols and notation in algebraic geometry will be freely used. The multiplier ideal associated to a curve B and a rational ξ will be denoted by $\mathcal{J}(\xi \cdot B)$ and the corresponding subscheme by $Z(\xi B)=Z(\mathcal{J}(\xi \cdot B))$. If Z is a subscheme in X, then \mathcal{I}_{Z} is the sheaf of ideals locally defined by the functions that vanish along Z. In particular, $\mathcal{J}(\xi \cdot B)=\mathcal{I}_{Z(\xi B)}$. Moreover, if D is a divisor on the variety Y, we shall often write $H^{i}(Y, D)$ and $h^{i}(Y, D)$ instead of $H^{i}\left(Y, \mathcal{O}_{Y}(D)\right)$ and $h^{i}\left(Y, \mathcal{O}_{Y}(D)\right)$ respectively. If \mathcal{L} is an invertible sheaf on Y, then we shall regularly denote by L a divisor such that $\mathcal{L} \simeq \mathcal{O}_{Y}(L)$.

For m a positive integer, if $a \in \mathbf{Z} / m$ then a^{*} will denote the smallest non-negative integer in the equivalence class a.

ACKNOWLEDGEMENTS. I started this paper during a one week stay at the University of Pisa in the spring of 2004. I would like to thank Rita Pardini for her hospitality and for the friendly talks we had. The paper owes Mihnea Popa its present form. I would like to record my debt to his reading of a preliminary version in the autumn of 2005 and to his encouragements to generalize the results I obtained at that time. I wish to thank my friends Marian Aprodu, Laurent Evain and Jean-Philippe Monnier for the conversations they put up with during this period. Finally, I would like to thank the referees for their comments and constructive criticism on questions of presentation, principle and proportion.

2. PRELIMINARIES

We shall summarize, in a form convenient for further use, some properties of cyclic coverings and of multiplier ideals.

2.1 CYCLIC COVERINGS

Let Y be a variety and let G be the cyclic group of order n. If G acts faithfully on Y, then the quotient $X=Y / G$ exists and Y is called an abelian covering of X with group G. The map $\pi: Y \rightarrow X$ is a finite morphism, $\pi_{*} \mathcal{O}_{Y}$ is a coherent sheaf of \mathcal{O}_{X}-algebras, and $Y \simeq \mathbf{S p e c}_{\mathcal{O}_{X}}\left(\pi_{*} \mathcal{O}_{Y}\right)$.

If Y is normal and X is smooth, then π is flat and consequently $\pi_{*} \mathcal{O}_{Y}$ is locally free of rank n. The action of G on $\pi_{*} \mathcal{O}_{Y}$ decomposes it into the direct sum of eigen line bundles associated to the characters $\chi \in \widehat{G}=\operatorname{Hom}\left(G, \mathbf{S}^{1}\right)$,

$$
\pi_{*} \mathcal{O}_{Y}=\mathcal{O}_{X} \oplus \bigoplus_{\chi \in \widehat{G}, \chi \neq 1} \mathcal{L}_{\chi}^{-1}
$$

The action of G on \mathcal{L}_{χ}^{-1} is the multiplication by χ.
There are two naturally arising questions when dealing with cyclic coverings. First, what is the ring structure of $\pi_{*} \mathcal{O}_{Y}$? Knowing this structure is equivalent to knowing the covering Y. This structure, being compatible with the group action, is determined by the multiplications $\mathcal{L}_{\chi}^{-1} \otimes \mathcal{L}_{\chi^{\prime}}^{-1} \rightarrow \mathcal{L}_{\chi \chi^{\prime}}^{-1}$ for any $\chi, \chi^{\prime} \in \widehat{G}$. Finding the image of each of these maps will provide us with an answer to the first question and lead us to ask the second one : Given a covering Y of X, is there straightforward information at the level of $X-$ less involved than $n-1$ line bundles $\mathcal{L}_{\chi}, \chi \in \widehat{G}, \chi \neq 1$, and a ring structure on $\bigoplus_{\chi \in \widehat{G}} \mathcal{L}_{\chi}^{-1}-$ for telling us how to reconstruct Y ?

EXAMPLE 2.1 (Simple coverings). Let $B \subset X$ be a reduced effective divisor such that there exists a line bundle \mathcal{L} over X with $\mathcal{L}^{n} \simeq \mathcal{O}_{X}(B)$. This data (later on it will be called reduced building data) defines an n-cyclic covering of X totally ramified along B : let ψ be a fixed generator for \widehat{G}, let $\mathcal{L}_{\left\{\psi^{k}\right.}=\mathcal{L}^{k}$ and let

$$
\mathcal{L}_{\psi^{j}}^{-1} \otimes \mathcal{L}_{\psi^{k}}^{-1} \xrightarrow{\simeq} \mathcal{L}_{\psi^{j+k}}^{-1} \otimes \mathcal{O}_{X}(-\varepsilon(j, k) B) \longleftrightarrow \mathcal{L}_{\psi^{j+k}}^{-1}
$$

be the multiplications for any $1 \leq j, k \leq n-1$, with $\varepsilon(j, k)=0$ or 1 depending on whether or not $j+k<n$. If $L \xrightarrow{p} X$ denotes the total space of \mathcal{L} with z the tautological section of $p^{*} \mathcal{L}$, then Y is defined in L by $z^{n}-p^{*} s=0$, where s is a global section defining B.

Before turning to the two questions asked formerly, let us notice that a general cyclic covering Y may be seen as a subvariety into a vector bundle over X in the same way a simple covering was seen into a line bundle. Let $\mathcal{F}=\bigoplus_{\chi \neq 1} \mathcal{L}_{\chi}^{-1}$. The surjection $\operatorname{Sym}_{\mathcal{O}_{X}} \mathcal{F} \rightarrow \pi_{*} \mathcal{O}_{Y}$ defines the embedding of Y into the total space of $\mathcal{F}, F \xrightarrow{p} X$. The ring structure of $\pi_{*} \mathcal{O}_{Y}$ is equivalent to knowing the kernel of that surjection. Over an open subset $U \subset X$, if z_{j} denotes the tautological section of the line bundle $p^{*} \mathcal{L}_{\chi^{j}}$, the surjection $\operatorname{sym}_{\mathcal{O}_{X}} \mathcal{F} \rightarrow \pi_{*} \mathcal{O}_{Y}$ becomes

$$
\begin{equation*}
\mathcal{O}_{X}(U)\left[z_{1}, \ldots, z_{n-1}\right] \longrightarrow\left(\pi_{*} \mathcal{O}_{Y}\right)(U)=\mathcal{O}_{Y}\left(\pi^{-1}(U)\right) \tag{2.1}
\end{equation*}
$$

To understand the ring structure of $\pi_{*} \mathcal{O}_{Y}$ let us consider a component D of the ramification locus. We suppose that Y is normal and X is smooth. Since π is flat, D is 1 -codimensional. The component D is associated to its inertia subgroup $H \subset G$ - the subset of elements of G that globally fix $D-$ and to a character $\psi \in \widehat{H}$ that generates \widehat{H}. The character ψ corresponds to the induced representation of H on the cotangent space to Y at D. Dualizing the inclusion $H \subset G$, such a couple (H, ψ) is equivalent to a group epimorphism $f: \widehat{G} \rightarrow \mathbf{Z} / m_{f}$, where $m_{f}=|H|$; for any $\chi \in \widehat{G}$, the induced representation $\left.\chi\right|_{H}$ is given by $\psi^{f(\chi)^{\circ}}$.

Recall that $a \cdot$ denotes the smallest non-negative integer in the equivalence class of $a \in \mathbf{Z} / m$. Here and later on, \mathfrak{F} denotes the set of all group epimorphisms from \widehat{G} to different $\mathbf{Z} / m \mathbf{Z}$. Let $B_{f} \subset X$ be the subdivisor of the branch locus defined set-theoretically as $\pi\left(R_{f}\right)$, with R_{f} the union of all the components D of the ramification locus associated to the group epimorphism f. In [20] it is shown that the ring structure is given by the following isomorphisms: for any $\chi, \chi^{\prime} \in \widehat{G}$,

$$
\begin{equation*}
\mathcal{L}_{\chi} \otimes \mathcal{L}_{\chi^{\prime}} \simeq \mathcal{L}_{\chi \chi^{\prime}} \otimes \otimes_{f \in \mathcal{Z}} \mathcal{O}_{X}\left(\varepsilon\left(f, \chi, \chi^{\prime}\right) B_{f}\right) \tag{2.2}
\end{equation*}
$$

with $\varepsilon\left(f, \chi, \chi^{\prime}\right)=0$ or 1 , depending on whether or not $f(\chi)^{\cdot}+f\left(\chi^{\prime}\right)^{\cdot}<m_{f}$.
EXAMPLE 2.2. Let P and Q be two distinct points of \mathbf{P}^{1}. We define $\mathcal{L}_{\chi}=\mathcal{L}_{\chi^{2}}=\mathcal{O}_{\mathbf{P}^{1}(1)}$ and a ring structure on $\mathcal{O}_{\mathbf{p}^{1}} \oplus \mathcal{L}_{\chi}^{-1} \oplus \mathcal{L}_{\chi^{2}}^{-1}$ by the isomorphisms

$$
\begin{gathered}
\mathcal{L}_{\chi} \otimes \mathcal{L}_{\chi} \simeq \mathcal{L}_{\chi^{2}} \otimes \mathcal{O}_{\mathbf{p}^{1}}(Q), \quad \mathcal{L}_{\chi} \otimes \mathcal{L}_{\chi^{2}} \simeq \mathcal{O}_{\mathbf{p}^{1}} \otimes \mathcal{O}_{\mathbf{p}^{1}}(P+Q) \\
\quad \text { and } \mathcal{L}_{\chi^{2}} \otimes \mathcal{L}_{\chi^{2}} \simeq \mathcal{L}_{\chi} \otimes \mathcal{O}_{\mathbf{p}^{1}(P)}
\end{gathered}
$$

We obtain the triple covering Y of \mathbf{P}^{1} totally ramified over P and Q. For example above $\mathbf{P}^{1}-\{Q\}$, if x is a local coordinate centered at P, Y is defined by the surjection

$$
\mathbf{C}[x]\left[z_{1}, z_{2}\right] \longrightarrow \mathbf{C}[x]\left[z_{1}, z_{2}\right] /\left(z_{1}^{2}-z_{2}, z_{1} z_{2}-x, z_{2}^{2}-x z_{1}\right) \simeq \mathbf{C}[x]\left[z_{1}\right] /\left(z_{1}^{3}-x\right)
$$

Similarly, above $\mathbf{P}^{1}-\{P\}$ with y the local coordinate $y(Q)=0$, the triple covering is defined by $C[y]\left[z_{2}\right] /\left(z_{2}^{3}-y\right)$. In other words, locally Y looks like a simple triple covering, but globally it is not a simple covering.

The next proposition is formulated for cyclic groups, since it is this case that will be used in the sequel. We refer again to [20] for the case of abelian groups.

PROPOSITION 2.3. Let $\pi: Y \rightarrow X$ be a cyclic covering with Y normal and X smooth. If generates \widehat{G}, then for every $k=1, \ldots, n$,

$$
\begin{equation*}
L_{\psi \psi^{k}} \sim k L_{\psi}-\sum_{f \in \mathfrak{f}}\left\lfloor\frac{k f(\psi)}{m_{f}}\right\rfloor B_{f} . \tag{2.3}
\end{equation*}
$$

In particular, for $k=n$ equation (2.3) becomes

$$
\begin{equation*}
n L_{\psi} \sim \sum_{f \in \mathfrak{Y}} \frac{n}{m_{f}} f(\psi)^{\cdot} B_{f} . \tag{2.4}
\end{equation*}
$$

Proof. From the hypothesis, ψ spans the group of characters. Applying (2.2) for ψ and ψ^{j-1} we get

$$
L_{\psi}^{\psi}+L_{\psi j-1} \sim L_{\psi \dot{\psi} j}+\sum_{f \in \mathfrak{F}} \varepsilon\left(f, \psi, \psi^{j-1}\right) B_{f} .
$$

Then, summing over j from 1 to k,

$$
L_{\psi \psi^{k}} \sim k L_{\psi}-\sum_{j=1}^{k} \sum_{f \in \mathfrak{F}} \varepsilon\left(f, \psi, \psi^{j-1}\right) B_{f}=k L_{\psi}-\sum_{f \in \mathfrak{F}} \sum_{j=1}^{k} \varepsilon\left(f, \psi, \psi^{j-1}\right) B_{f}
$$

By definition $\varepsilon\left(f, \psi, \psi^{j-1}\right)=1$ is equivalent to $f(\psi)^{\cdot}+f\left(\psi^{j-1}\right)^{\cdot} \geq m_{f}$ which is equivalent to $\left(f(\psi)+f\left(\psi^{j-1}\right)\right)^{*}<f(\psi)^{*}$, i.e. to $(j f(\psi))^{*}<f(\psi)^{*}$. It follows that $\sum_{j=1}^{k} \varepsilon\left(f, \psi, \psi^{j-1}\right)$ counts the number of j 's in $\{1,2, \ldots, k\}$ for which $(j f(\psi))^{\circ}<f(\psi)^{\circ}$, i.e. for which the remainder of the division of $j f(\psi)$ - equivalently of $j f(\psi)^{\circ}$ - by m_{f} is smaller than $f(\psi)^{\circ}$. This number is exactly $\left\lfloor k f(\psi)^{\cdot} / m_{f}\right\rfloor$ and formula (2.3) follows. Formula (2.4) is obvious, since $\psi^{n}=1$.

We are now able to answer the second question. Starting with a line bundle \mathcal{L}_{ψ}, a fixed generator ψ of \widehat{G}, and effective divisors $B_{f}, f \in \mathfrak{F}$, that satisfy the identity (2.4), we define the line bundles $\mathcal{L}_{\psi^{k}}$ using formula (2.3). Any three of these line bundles $\mathcal{L}_{\chi}, \mathcal{L}_{\chi^{\prime}}$ and $\mathcal{L}_{\chi \chi^{\prime}}$ verify equation (2.2). Consequently, the \mathcal{O}_{X}-module $\bigoplus_{k} \mathcal{L}_{\psi^{k}}^{-1}$ is endowed with a ring structure, hence it defines in a natural way the standard cyclic covering $\pi: Y=\mathbf{S p e c}_{\mathcal{O}_{x}}\left(\oplus_{k} \mathcal{L}_{\psi^{k}}^{-1}\right) \rightarrow X$. In case Y is normal the covering is unique up to isomorphisms of cyclic coverings. We notice that when we started the investigation of the ring structure we supposed Y normal and denoted by B_{f} some components of the branch divisor defined set theoretically, hence without multiple components. Now in the construction of the standard cyclic covering the divisors B_{f} may have multiple components. For example starting with $B_{f}=P+2 Q$ on \mathbf{P}^{1},
the standard covering defined by $3 L_{\psi}^{f} \sim B_{f}$ is the simple 3 -covering (see Example 2.1) ramified above P and Q and having a cuspidal point over Q.

Following [20], we will call the divisors \mathcal{L}_{χ} and $B_{f}, f \in \mathfrak{F}$, used in the definition of a standard cyclic covering a set of reduced building data for the covering.

2.2 THE NORMALIZATION PROCEDURE FOR STANDARD CYCLIC COVERINGS

The standard covering obtained starting with a set of reduced building data may not be normal. In [20, Corollary 3.1] it is shown that such a standard covering is not normal precisely above the multiple components of the branch locus and the normalization procedure is constructed. Let $f: \widehat{G} \rightarrow \mathbf{Z} / m_{f}$ be a group epimorphism and let $B_{f}=r C+R$, with C irreducible, C not a component of R and $r \geq 2$. The surface Y is not normal along the pull-back of C. The normalization procedure along this multiple component splits into two steps and shows how to end up with a new covering, normal along the pull-back of C. We shall later review the formulae involved for each step. They are based on the comparison between the multiplicity r and the order m_{f} of the inertia subgroup. Two simple examples should shed some light on these steps.

EXAMPLE 2.4 (for the first step). Suppose that s is a coordinate along the affine line, that $Y \rightarrow \mathbf{A}^{1}$ is given by $z^{m}-s^{d}=0$ in the affine plane and that d divides m. The curve $Y=\operatorname{Spec} \mathrm{C}[s, z] /\left(z^{m}-s^{d}\right)$ is a simple cyclic covering of the line ramified above the origin. It is smooth, or equivalently normal, if and only if $d=1$. If $d>1$, a desingularization Y^{\prime} of Y is defined by the $\mathrm{C}[s]$-algebra $\mathrm{C}[s, z, \zeta] /\left(z^{m / d}-\zeta s, \zeta^{d}-1\right)$. The inclusion of $\mathrm{C}[s]$-algebras

$$
\mathrm{C}[s, z] /\left(z^{m}-s^{d}\right) \stackrel{i_{1}}{\longleftrightarrow} \mathrm{C}[s, z, \zeta] /\left(\zeta^{d}-1, z^{m / d}-\zeta s\right)
$$

tells us that the covering $Y^{\prime} \rightarrow \mathbf{A}^{1}$ factors through an étale covering of the affine line of degree $d, Y^{\prime} \rightarrow Y_{e t} \rightarrow \mathbf{A}^{1}$.

EXAMPLE 2.5 (for the second step). This time, suppose that $Y \rightarrow \mathbf{A}^{1}$ is the simple cyclic covering given by $z^{m}-s^{r}=0$ in the affine plane and that m and $r \geq 2$ are relatively prime positive integers. Let the positive integers q and v satisfy $v r-q m=1$. A desingularization Y^{\prime} of Y is defined by the inclusion of $\mathrm{C}[s]$-algebras

$$
\mathbf{C}[s, z] /\left(z^{m}-s^{r}\right) \stackrel{i_{2}}{\longleftrightarrow} \mathbf{C}[s, \xi] /\left(\xi^{m}-s\right),
$$

with $i_{2}(z)=\xi^{r}$. It says that the covering $Y \rightarrow \mathbf{A}^{1}$ is desingularized by the change of coordinates $\xi=z^{v} / s^{q}$ since we have $\xi^{r}=z^{v r} / s^{q r}=z$.

STEP 1. If $B_{f}=r C+R$ and $\left(r, m_{f}\right)=d>1$, then the natural composition is considered

$$
f^{\prime}: \widehat{G} \xrightarrow{f} \mathbf{Z} / m_{f} \longrightarrow \mathbf{Z} / \frac{m_{f}}{d} .
$$

For any χ, the integers $f(\chi)^{\bullet}$ and $f^{\prime}(\chi)^{\bullet}$ are linked by the relation $f(\chi)^{\bullet}=$ $q_{\chi} m_{f} / d+f^{\prime}(\chi)^{\cdot}$. Put
$L_{\chi}^{\prime} \sim L_{\chi}-q_{\chi} \frac{r}{d} C, \quad B_{f}^{\prime}=R, \quad B_{f^{\prime}}^{\prime}=B_{f^{\prime}}+\frac{r}{d} C \quad$ and $\quad B_{g}^{\prime}=B_{g} \quad$ if $g \neq f, f^{\prime}$ in order to construct $Y^{\prime} \rightarrow X$, a 'less non-normal' covering over C.

Two facts should be noticed. Firstly, if $\psi \in \widehat{G}$ is such that $f(\psi)=1$, then Y is a simple covering locally over $X \backslash \bigcup_{g \neq f} B_{g}$ defined by $\mathcal{L}_{\mathcal{q},}$. The new covering $Y^{\prime} \rightarrow X$ factors over the same open subset through an étale covering of X of degree d followed by a simple covering of degree m_{f} / d defined by the pull-back of $\mathcal{L}_{2 \in}^{\prime}$ on the étale covering. By Proposition 2.3, $L_{\psi_{\psi_{f}} / d} \sim m_{f} / d L_{\psi}$, then

$$
L_{\psi^{m_{f} / d}}^{\prime} \sim L_{\psi^{m_{f} / d}}-\frac{r}{d} C \sim \frac{m_{f}}{d} L_{\psi}-\frac{r}{d} C,
$$

hence

$$
d L_{\psi \psi_{j}^{m_{f} / d}}^{\prime} \sim 0 \quad \text { and } \quad \frac{m_{f}}{d} L_{\psi}^{\prime} \sim \frac{m_{f}}{d} L_{\psi} \sim L_{\psi^{m_{f} / d}}^{\prime}+\frac{r}{d} C .
$$

These relations, seen in terms of tautological sections of the corresponding line bundles as in (2.1), are exactly the relations from Example 2.4. Secondly, looking at f^{\prime}, the induced multiplicity and the corresponding subgroup order become relatively prime.

STEP 2. If $B_{f}=r C+R$ with $r \geq 2$ and $\left(r, m_{f}\right)=1$, the composition

$$
f^{\prime}: \widehat{G} \xrightarrow{f} \mathbf{Z} / m_{f} \xrightarrow{r} \mathbf{Z} / m_{f}
$$

is considered. As before, for any $\chi \in \widehat{G}$, the integers $f(\chi)^{\bullet}$ and $f^{\prime}(\chi)^{\bullet}$ are linked by $r \cdot f(\chi)^{\cdot}=q_{\chi} m_{f}+f^{\prime}(\chi)^{\cdot}$. Put

$$
L_{\chi}^{\prime} \sim L_{\chi}-q_{\chi} C, \quad B_{f}^{\prime}=R, \quad B_{f^{\prime}}^{\prime}=B_{f^{\prime}}+C \quad \text { and } \quad B_{g}^{\prime}=B_{g} \quad \text { if } g \neq f, f^{\prime}
$$

to get a new covering - if $f(\psi)=1$ and $v r-q m=1$, then over $X \backslash\left(R \cup \bigcup_{g \neq f} B_{g}\right)$ the covering Y is simple defined by $\mathcal{L}_{\psi}, \mathcal{L}_{\psi w} \simeq \mathcal{L}_{\psi}^{Q w}$ and Y^{\prime} is simple and defined by $\mathcal{L}_{\psi^{\psi}{ }^{\prime}}^{\prime}$ as in Example 2.5 - and finish the normalization procedure along C.

EXAMPLE 2.6. On \mathbf{P}^{2} let $\mathcal{L}_{\chi}=\mathcal{O}(1)$ and $n L_{\chi} \sim H_{0}+(n-1) H_{\infty}$, where H_{0} and H_{∞} are two different fixed lines. The simple cyclic n-covering $Y \rightarrow \mathbf{P}^{2}$ given by the set of reduced building data \mathcal{L}_{χ} and $B_{f}=H_{0}+(n-1) H_{\infty}$, where $f(\chi)=1$, is not normal above H_{∞}. Applying the second step of the normalization procedure, if $f^{\prime}: \widehat{G} \rightarrow \mathbf{Z} / n \mathbf{Z}$ is defined by $f^{\prime}(\chi)=n-1$, we obtain the normalization Y^{\prime} of Y as the n-cyclic covering with building data $\mathcal{L}_{\chi}^{\prime}=\mathcal{O}(1), B_{f}=H_{0}$ and $B_{f^{\prime}}=H_{\infty}$. Clearly Y^{\prime} has a singular point above P, the intersection of H_{0} and H_{∞}. Actually we may obtain a desingularization of Y using the theory of cyclic coverings. We consider the blow-up surface $\mathrm{Bl}_{P} \mathbf{P}^{2}$, with E the exceptional divisor and the induced simple cyclic covering $S \rightarrow \mathrm{Bl}_{P} \mathbf{P}^{2}$ with building data $L_{\chi}=\mathcal{O}_{\mathrm{Bl}_{\rho} \mathbf{P}^{2}}(H)$ and $B_{f}=H_{0}+(n-1) H_{\infty}+n E$. Curves on \mathbf{P}^{2} and their strict transforms are denoted by the same symbol. This time the normalization procedure requires the first and the second step and leads to $S^{\prime} \rightarrow \mathrm{Bl}_{P} \mathbf{P}^{2}$ defined by $n L_{\chi}^{\prime} \sim H_{0}+(n-1) H_{\infty}$, with $\mathcal{L}_{\chi}^{\prime}=\mathcal{O}_{\mathrm{Bl}_{\rho} \mathbf{P}^{2}(H-E)}$, $B_{f}=H_{0}$ and $B_{f^{\prime}}=H_{\infty}$. Incidentally, the surface S^{\prime} may be identified. The lines in the plane through P tell us that S^{\prime} is a geometrically ruled surface. Besides, the pull-back of E is a rational section with self-intersection -n, hence S^{\prime} is the Hirzebruch surface \boldsymbol{F}_{n}.

EXAMPLE 2.7. On \mathbf{P}^{2} let B be a reduced curve of degree b, H_{∞} a fixed line and $n \geq 2$ a fixed integer. For an integer $r \geq 0$, the identity $n L_{\psi} \sim B+r H_{\infty}$ defines a simple n-covering $S_{r} \rightarrow \mathbf{P}^{2}$ if and only if n divides $r+b$. A set of reduced building data for the covering is represented by $\mathcal{L}_{\psi j} \sim \mathcal{O}_{\mathbf{p}^{2}}((r+b) / n)$ and $B_{f}=B+r H_{\infty}$, with $f(\psi)=1$. If $r>1$, the normalization procedure leads to the standard cyclic covering S^{\prime} which is independent of r. It is defined by $\mathcal{L}_{\psi}^{\prime}=\mathcal{O}_{\mathbf{p}} 2(\lceil b / n\rceil), B_{f}^{\prime}=B$ and $B_{g}=H_{\infty}$, where $f: \widehat{G} \rightarrow \mathbf{Z} / n, f(\psi)=1$, and

$$
g: \widehat{G} \rightarrow \mathbf{Z} / \frac{n}{\operatorname{gcd}(n,\lceil b / n\rceil n-b)}, \quad g(t)=\frac{\lceil b / n\rceil n-b}{\operatorname{gcd}(n,\lceil b / n\rceil n-b)} .
$$

We shall justify the assertion when the integers n and r are relatively prime and leave the more involved case as an exercise. The normalization procedure is reduced to the second step and $g: \widehat{G} \rightarrow \mathbf{Z} / n$ is the composition of f with the multiplication by r in \mathbf{Z} / n. Then

$$
g(\psi)^{\cdot}=r-\left\lfloor\frac{r}{n}\right\rfloor n=\frac{r+b}{n} n-b-\left\lfloor\frac{r}{n}\right\rfloor n=\left\lceil\frac{b}{n}\right\rceil n-b
$$

and

$$
\mathcal{L}_{\psi}^{\prime}=\mathcal{L}_{\psi} \otimes \mathcal{O}_{\mathbf{p}^{2}}\left(-\left\lfloor\frac{r}{n}\right\rfloor\right) \simeq \mathcal{O}_{\mathbf{p}^{2}}\left(\frac{b+r}{n}\right) \otimes \mathcal{O}_{\mathbf{p}^{2}}\left(-\left\lfloor\frac{r}{n}\right\rfloor\right)=\mathcal{O}_{\mathbf{p}^{2}}\left(\left[\frac{b}{n}\right\rceil\right) .
$$

2.3 MULTIPLIER IDEALS

In this subsection we briefly recall the notion of multiplier ideal of divisors, the other foremost tool of the paper. We refer the reader to [12] for the many contexts where multiplier ideals appear and for the results that are cited below.

Let X be a smooth variety, $D \subset X$ be an effective Q -divisor and $\mu: Y \rightarrow X$ be a \log resolution for D, i.e. the support of the Q -divisor $K_{Y \mid X}-\mu^{*} D$ is a union of irreducible smooth divisors with normal crossing intersections. Then $\mu_{*} \mathcal{O}_{Y}\left(K_{Y \mid X}-\left\lfloor\mu^{*} D\right\rfloor\right)$ is an ideal sheaf $\mathcal{J}(D)$ on X. We will denote by $Z(D)$ the subscheme defined by this ideal. Hence $\mathcal{I}_{Z(D)}=\mathcal{I}(D)$. Showing that $\mathcal{J}(D)$ is independent of the choice of the resolution, we have:

DEFINTION. The ideal $\mathcal{J}(D)=\mu_{*} \mathcal{O}_{Y}\left(K_{Y \mid X}-\left\lfloor\mu^{*} D\right\rfloor\right)$ is called the multiplier ideal of D.

EXAMPLES 2.8. 1) Let X be a smooth surface and $B \subset X$ a smooth curve except at the point P where B has a simple double point - a node. Then for any rational $0<\xi<1$ we have that

$$
\mathcal{J}(\xi \cdot B)=\mu_{*} \mathcal{O}_{Y}\left(K_{Y \mid X}-\left\lfloor\mu^{*} \xi \cdot B\right\rfloor\right)=\mu_{*} \mathcal{O}_{Y}(E-\lfloor 2 \xi\rfloor E)=\mathcal{O}_{X},
$$

since the blow-up of X at P is a \log resolution for B and $\mu_{*} \mathcal{O}_{Y}(E)=$ $\mu_{*} \mathcal{O}_{Y}=\mathcal{O}_{X}$.
2) We keep the same notation, but suppose that the singularity of B at P is a simple triple point, i.e. in local coordinates it is given by $x^{3}+y^{3}=0$. Then $\mathcal{J}(\xi \cdot B)=\mu_{*} \mathcal{O}_{Y}(E-\lfloor 3 \xi\rfloor E)$, so $\mathcal{J}(\xi \cdot B)=0$ for any $0<\xi<2 / 3$ and $\mathcal{J}(\xi \cdot B)=\mathcal{I}_{P}$ for any $2 / 3 \leq \xi<1$.

The sheaf computing the multiplier ideal verifies the following local vanishing result: for every $i>0, R^{i} \mu_{*} \mathcal{O}_{Y}\left(K_{Y \mid X}-\left\lfloor\mu^{*} D\right\rfloor\right)=0$. Therefore, applying the Leray spectral sequence, we obtain that for every i and any Cartier divisor L on X,

In the example below we consider a simple instance of how the multiplier ideals appear in the computation of the irregularity of multiple planes.

EXAMPLE 2.9. Let L_{1}, L_{2} and L_{3} be three lines in the plane that intersect in P and let S_{0} be the simple cyclic 3-covering given by the line bundle $\mathcal{O}_{\mathbf{P}^{2}}(1)$ and by $B=B_{f}=L_{1}+L_{2}+L_{3}$ with $f(\psi)=1$. After blowing up
the plane at P and normalizing the induced triple covering, we obtain the desingularization of S_{0}, a smooth simple 3-covering $S \xrightarrow{\pi} \mathrm{Bl}_{P} \mathbf{P}^{2}$ given by $\mathcal{L}_{\psi}=\mathcal{O}_{\mathrm{Bl}_{\rho} \mathbf{P}^{2}}(H-E)$ and ramified over the strict transforms of the lines L_{j}. The exceptional divisor has been denoted by E. The covering being simple, the canonical divisor of S is $K_{S}=\pi^{*}\left(K_{\mathrm{Bl} \rho} \mathbf{P}^{2}+2 L_{\psi \psi}\right)$. We have

$$
h^{1}\left(S, \pi^{*}\left(K_{\mathrm{Bl}_{\rho} \mathbf{P}^{2}}+2 L_{\psi}\right)\right)=h^{1}\left(\mathrm{Bl}_{P} \mathbf{P}^{2}, K_{\mathrm{Bl}_{P} \mathbf{P}^{2}}+2 L_{\psi}\right)=h^{1}\left(\mathrm{Bl}_{P} \mathbf{P}^{2},-H-E\right)
$$

hence $q(S)=h^{1}\left(\mathbf{P}^{2}, \mathcal{I}_{P}(-1)\right)$. To see how the notion of multiplier ideal appears in this computation, in fact how \mathcal{I}_{P} is naturally seen as $\mathcal{J}\left(\frac{2}{3} \cdot B\right)$, notice that $\mu: \mathrm{Bl}_{P} \mathbf{P}^{2} \rightarrow \mathbf{P}^{2}$ is a \log resolution for the divisor $B=L_{1}+L_{2}+L_{3}$ at the triple point and that $2 L_{\psi}=2\left(L_{1}+L_{2}+L_{3}\right) / 3=2 H-\left\lfloor\mu^{*} 2 B / 3\right\rfloor$. We have

$$
K_{\mathrm{Bl}_{p} \mathbf{P}^{2}}+2 L_{\psi}^{*} \sim \mu^{*} K_{\mathbf{P}^{2}}+2 H+\left(K_{\mathrm{Bl}_{\rho} \mathbf{P}^{2} \mid \mathbf{P}^{2}}-\left\lfloor\mu^{*} \frac{2}{3} B\right\rfloor\right)
$$

and using (2.5),

$$
q(S)=h^{1}\left(S, K_{S}\right)=h^{1}\left(\mathbf{P}^{2}, \mathcal{O}_{\left.\mathbf{p}^{2}(-1) \otimes \mathcal{J}(2 / 3 \cdot B)\right) .}\right.
$$

For multiplier ideals, the basic global vanishing theorem is the following:

Kawamata-Viehweg-Nadel Vanishing Theorem. Let X be a smooth projective variety. If L is a Cartier divisor and D is an effective \mathbf{Q}-divisor on X such that $L-D$ is a nef and big Q -divisor, then

$$
h^{i}\left(X, \mathcal{O}_{X}\left(K_{X}+L\right) \otimes \mathcal{I}_{Z(D)}\right)=0
$$

for every $i>0$.

DEFINTION-LEMMA (see [5]). Let $B \subset X$ be an effective divisor and $P \in B$ be a fixed point. Then there is an increasing discrete sequence of rational numbers $\xi_{i}=\xi(B, P)$,

$$
0=\xi_{0}<\xi_{1}<\ldots
$$

such that

$$
\mathcal{J}(\xi B)_{P}=\mathcal{J}\left(\xi_{i} B\right)_{P} \quad \text { for every } \quad \xi \in\left[\xi_{i}, \xi_{i+1}\right),
$$

and $\mathcal{J}\left(\xi_{i+1} B\right)_{P} \sqsubseteq \mathcal{J}\left(\xi_{i} B\right)_{P}$. The rational numbers ξ_{i} 's are called the jumping numbers of B at P.

3. THE IRREGULARITY OF CYCLIC MULTIPLE PLANES

THEOREM 3.1. Let B be a plane curve of degree b and let H_{∞} be a line transverse to B. Let S be a desingularization of the projective n-cyclic multiple plane associated to B and H_{∞}. If

$$
J(B, n)=\left\{\xi \mid \xi \text { jumping number of } B, 0<\xi<1, \xi \in \frac{1}{\operatorname{gcd}(b, n)} \mathbf{Z}\right\},
$$

then

$$
q(S)=\sum_{\xi \in J(B, n)} h^{1}\left(\mathbf{P}^{2}, \mathcal{I}_{Z(\xi B)}(-3+\xi b)\right),
$$

with $Z(\xi B)$ the subscheme defined by the multiplier ideal $\mathcal{J}(\xi \cdot B)$.
Proof. To compute the irregularity of a desingularization of S_{0} we need either to desingularize S_{0}, or to find a smooth surface birationally equivalent to S_{0}. We shall follow the latter possibility. Let $S_{1} \rightarrow \mathbf{P}^{2}$ be the normal standard covering defined by the reduced building data $\mathcal{L}_{\psi \psi}^{\prime}=\mathcal{O}_{\mathbf{P}^{2}}(\lceil b / n\rceil), B_{f}=B$ and $B_{g}=H_{\infty}$, where ψ is a generator of $\widehat{G}, f: \widehat{G} \rightarrow \mathbf{Z} / n, f(\psi)=1$, and

$$
g: \widehat{G} \rightarrow \mathbf{Z} / \frac{n}{\operatorname{gcd}(n,\lceil b / n\rceil n-b)}, \quad g(\psi)=\frac{\lceil b / n\rceil n-b}{\operatorname{gcd}(n,\lceil b / n\rceil n-b)} .
$$

It might be noticed that by Example 2.7 the surface S_{1} is the normalization of any n-standard covering of the plane ramified along B and along a multiple of the line at infinity. The relation defining S_{1} is

$$
n L_{\psi}^{\prime} \sim B+(\lceil b / n\rceil n-b) H_{\infty} .
$$

Over $\mathbf{A}^{2}=\mathbf{P}^{2} \backslash H_{\infty}$ the covering S_{1} coincides with the affine surface $\boldsymbol{\Sigma}$ defined by $z^{n}=f(x, y)$, with $f(x, y)=0$ an equation for $B \backslash H_{\infty} \subset \mathbf{A}^{2}$. The surfaces S_{1} and the normalization S_{0}^{\prime} of S_{0} are birationally equivalent. In fact, since they are normal and $S_{1} \rightarrow \mathbf{P}^{2}$ is finite, $S_{0}^{\prime} \rightarrow S_{1}$ is a birational morphism.

We compute the irregularity of the multiple plane S_{0} using the standard covering S_{1}. If $\mu: X \rightarrow \mathbf{P}^{2}$ is a desingularization of B such that its total transform on X is a divisor with normal crossing intersections, i.e. if μ is a \log resolution for B, then the standard cyclic covering S_{1} pulls back to a standard cyclic covering S_{2} of X. The normalization procedure yields a normal surface S with only Hirzebruch-Jung singularities (see [20], Proposition 3.3). We have the diagram shown in Figure 1.

If \mathcal{L}_{ψ} denotes the line bundle defining S, we need to control the line bundles $\mathcal{L}_{\psi^{\psi^{k}}}$ in order to express the irregularity of a desingularization of S as a sum of some h^{1} 's. The proof will be concluded by applying the Kawamata-Viehweg-Nadel vanishing theorem. We need two preliminary results.

Figure 1

Proposition 3.2. Let X be smooth and let $\pi: Y \rightarrow X$ be a standard cyclic covering of degree n determined by the set of reduced building data \mathcal{L}_{ψ} and $B_{f}, f \in \mathfrak{F}$, i.e. by $\left.n L_{\psi} \sim \sum_{f \in \mathfrak{F}} n / m_{f} f(\psi)\right)^{*} B_{f}$. For a fixed $g \in \mathfrak{F}$, the branching divisor B_{g} is supposed to have a multiple component, say $B_{g}=r C+R$ with $r>1$. Let $Y^{\prime \prime} \rightarrow X$ be the standard cyclic covering obtained from Y after the normalization procedure has been applied to the multiple component $r C$. If $Y^{\prime \prime}$ is associated to

$$
n L_{\psi}^{\prime \prime} \sim \sum_{f \in \mathfrak{F}} \frac{n}{m_{f}} f(\psi)^{\circ} B_{f}^{\prime \prime}
$$

then for every $k=1, \ldots, n-1$,

$$
L_{\psi \psi^{k}}^{\prime \prime} \sim k L_{\psi}-\left\lfloor\frac{k r g(\psi))^{\cdot}}{m_{9}}\right\rfloor C-\left\lfloor\frac{k g(\psi)^{\cdot}}{m_{9}}\right\rfloor R-\sum_{f \neq g}\left\lfloor\frac{k f(\psi))^{\cdot}}{m_{f}}\right\rfloor B_{f} .
$$

Proof. We present the proof in case both steps of the normalization procedure from the Subsection 2.2 are needed. Otherwise the argument is easier. So suppose that $\left(r, m_{g}\right)=d>1$ and consider the map

$$
g^{\prime}: \widehat{G} \xrightarrow{g} \mathbf{Z} / m_{g} \rightarrow \mathbf{Z} / \frac{m_{g}}{d} .
$$

For any $\chi \in \widehat{G}$ the integer $g(\chi)^{\bullet}$ satisfies

$$
\begin{equation*}
g(\chi)^{\cdot}=q_{\chi} \frac{m_{g}}{d}+g^{\prime}(\chi)^{\cdot} \tag{3.1}
\end{equation*}
$$

The covering data are modified to

$$
\begin{gather*}
L_{\chi}^{\prime} \sim L_{\chi}-q_{\chi} \frac{r}{d} C, \quad B_{g}^{\prime}=R, \quad B_{g^{\prime}}^{\prime}=B_{g^{\prime}}+\frac{r}{d} C \tag{3.2}\\
B_{f}^{\prime}=B_{f} \quad \text { for } f \neq g, g^{\prime}
\end{gather*}
$$

Now the multiplicity r / d of C is an integer greater than 1 and prime to m_{g} / d.
Consider the map $g^{\prime \prime}: \widehat{G} \xrightarrow{g^{\prime}} \mathbf{Z} / \frac{m_{g}}{d} \xrightarrow{r / d} \mathbf{Z} / \frac{m_{g}}{d}$. We have

$$
\begin{equation*}
\frac{r}{d} g^{\prime}(\chi)^{\bullet}=q_{\chi}^{\prime} \frac{m_{3}}{d}+g^{\prime \prime}(\chi)^{\bullet} \tag{3.3}
\end{equation*}
$$

and the covering data are modified to

$$
\begin{gather*}
L_{\chi}^{\prime \prime} \sim L_{\chi}^{\prime}-q_{\chi}^{\prime} C, \quad B_{g^{\prime}}^{\prime \prime}=B_{g^{\prime}}^{\prime}, \quad B_{g^{\prime \prime}}^{\prime \prime}=B_{g^{\prime \prime}}^{\prime}+C, \tag{3.4}\\
B_{f}^{\prime \prime}=B_{f}^{\prime} \text { for } f \neq g^{\prime}, g^{\prime \prime} .
\end{gather*}
$$

Using (3.2) and (3.4) we have $L_{\chi}^{\prime \prime} \sim L_{\chi}-\left(q_{\chi} r / d+q_{\chi}^{\prime}\right) C$ for any $\chi \in \widehat{G}$. By Proposition 2.3, $L_{\psi^{k}}^{\prime \prime} \sim k L_{\psi}^{\prime \prime}-\sum_{f}\left\lfloor k f(\psi)^{\circ} / m_{f}\right\rfloor B_{f}^{\prime \prime}$ for any $k=0, \ldots, n-1$, so $L_{\psi_{\psi^{k}}}^{\prime \prime}$ is linearly equivalent to
$k L_{\psi}^{\prime \prime}-\left\lfloor\frac{k g(\psi)^{\prime}}{m_{9}}\right\rfloor R-\left\lfloor\frac{\left.k g^{\prime}(\psi)\right)^{\circ}}{m_{9} / d}\right\rfloor B_{g^{\prime}}-\left\lfloor\frac{\left.k g^{\prime \prime}(\psi)\right)^{\circ}}{m_{g} / d}\right\rfloor\left(C+B_{g^{\prime \prime}}\right)-\sum_{f \neq g, g^{\prime}, g^{\prime \prime}}\left\lfloor\frac{k f(\psi))^{\circ}}{m_{f}}\right\rfloor B_{f}$,
or linearly equivalent to

$$
k L_{\psi}^{\psi}-\left(\left\lfloor\frac{\left.k g^{\prime \prime}(\psi)\right)^{\prime}}{m_{g} / d}\right\rfloor+k q_{\psi} \frac{r_{1}}{d}+k q_{\psi}^{\prime}\right) C-\left\lfloor\frac{k g(\psi))^{*}}{m_{3}}\right\rfloor R-\sum_{f \neq g}\left\lfloor\frac{k f(\psi)^{\cdot}}{m_{f}}\right\rfloor B_{f}
$$

Now, from (3.3) and (3.1), we get successively

$$
\left\lfloor\frac{k g^{\prime \prime}(\psi) \cdot}{m_{3} / d}\right\rfloor=\left\lfloor\frac{k r g^{\prime}(\psi)}{m_{3}}\right\rfloor-k q_{\psi}^{\prime}=\left\lfloor\frac{k r g(\psi))^{\cdot}}{m_{3}}\right\rfloor-k q_{\psi}^{\prime} \frac{r}{d}-k q_{\psi}^{\prime}
$$

LEMMA 3.3. Let $S \rightarrow X$ be a normal standard cyclic covering of surfaces defined by the line bundle \mathcal{L}_{ψ} with X smooth. If S has only rational singularities and $\widetilde{S} \rightarrow S$ denotes a desingularization of S, then

$$
q(\widetilde{S})=q(X)+\sum_{j=1}^{n-1} h^{1}\left(X, \omega_{X} \otimes \mathcal{L}_{\psi j}\right) .
$$

Proof. Since the singularities are rational, if $\widetilde{S} \xrightarrow{\varepsilon} S$ is a resolution of the singular points of S, then $R^{i} \varepsilon_{*} \mathcal{O}_{\tilde{S}}=0$, for all $i \geq 1$. From the Leray spectral sequence it follows that $h^{i}\left(\widetilde{S}, \mathcal{O}_{\tilde{S}}\right)=h^{i}\left(S, \mathcal{O}_{S}\right)$ for all i. Since by Serre duality $q(\widetilde{S})=h^{1}\left(\widetilde{S}, \mathcal{O}_{\tilde{S}}\right)$, we have

$$
q(\tilde{S})=h^{1}\left(S, \mathcal{O}_{S}\right)=h^{1}\left(X, \pi_{*} \mathcal{O}_{S}\right)=\sum_{j=0}^{n-1} h^{1}\left(X, \mathcal{L}_{\psi j}^{-1}\right)
$$

Using the Serre duality, the required equality follows.

One more notation is in order. Let P be a singular point of B and let $\mu: X \rightarrow \mathbf{P}^{2}$ be a \log resolution of B at P with $E_{P, 1}, E_{P, 2}, \ldots, E_{P, r}$ the irreducible components of the fibre $\mu^{-1}(P) \subset X$. This finite array of irreducible curves will be denoted by \boldsymbol{E}_{P}. If \boldsymbol{c}_{P} is a finite array of rational numbers $c_{P_{, \alpha}}$, then

$$
\begin{equation*}
\boldsymbol{c}_{P} \cdot \boldsymbol{E}_{P}=\sum_{\alpha=1}^{r} c_{P, \alpha} E_{P, \alpha} \tag{3.5}
\end{equation*}
$$

End of proof of Theorem 3.1. We have seen that if $\mu: X \rightarrow \mathbf{P}^{2}$ is a \log resolution for B, it is sufficient to compute the irregularity of a desingularization of S_{2} which is the pull-back to X of S_{1}, the standard cyclic covering of the plane defined by $n L_{\psi}^{\prime} \sim B+([b / n\rceil n-b) H_{\infty}$. If the constants $c_{P, \alpha}$ are the multiplicities of the strict transforms of the exceptional divisors that appear in the pull-back of B, i.e. $\mu^{*} B=\widetilde{B}+\sum_{P} \boldsymbol{c}_{P} \cdot \boldsymbol{E}_{P}$, then the standard cyclic covering S_{2} is defined by

$$
n L_{\psi}^{\prime \prime} \sim \widetilde{B}+(\lceil b / n\rceil n-b) \widetilde{H}_{\infty}+\sum_{P} c_{P} \cdot \boldsymbol{E}_{P}
$$

Notice that $L_{\dot{\psi}}^{\prime \prime} \sim\lceil b / n\rceil \widetilde{H}$ and $\widetilde{H}_{\infty} \sim \widetilde{H}$. By Proposition 3.2, the normalization S of S_{2} is defined by the line bundle \mathcal{L}_{ψ} and

$$
\begin{align*}
L_{\psi \psi_{k}} & \sim k L_{\psi}^{\prime \prime}-\left\lfloor\frac{k}{n}(\lceil b / n\rceil n-b)\right\rfloor \widetilde{H}_{\infty}-\sum_{P}\left\lfloor\frac{k}{n} \boldsymbol{c}_{P}\right\rfloor \cdot \boldsymbol{E}_{P} \tag{3.6}\\
& \sim\left\lceil\frac{k b}{n}\right\rceil \tilde{H}-\sum_{P}\left\lfloor\frac{k}{n} \boldsymbol{c}_{P}\right\rfloor \cdot \boldsymbol{E}_{P}
\end{align*}
$$

the last equality resulting from $\lceil b / n\rceil k-\lfloor k(\lceil b / n\rceil n-b) / n\rfloor=\lceil k b / n\rceil$. Here, $\left\lfloor k c_{P} / n\right\rfloor \cdot \boldsymbol{E}_{P}$ denotes $\sum_{\alpha}\left\lfloor k c_{P_{, \alpha},} / n\right\rfloor E_{P, \alpha}$. By Lemma 3.3, $q(S)=$ $\sum_{k=1}^{n-1} h^{1}\left(X, K_{X}+L_{\psi^{k}}\right)$. Now,

$$
K_{X}+L_{\psi \psi^{k}} \sim \mu^{*} K_{\mathbf{P}^{2}}+\left\lceil\frac{k b}{n}\right\rceil \widetilde{H}+K_{X \mid \mathbf{P}^{2}}-\sum_{P}\left\lfloor\frac{k}{n} \boldsymbol{c}_{P}\right\rfloor \cdot \boldsymbol{E}_{P}
$$

and

$$
\sum_{P}\left\lfloor\frac{k}{n} \boldsymbol{c}_{P}\right\rfloor \cdot \boldsymbol{E}_{P} \sim\left\lfloor\mu^{*} \frac{k}{n} B\right\rfloor,
$$

since the curve $B \subset \mathbf{P}^{2}$ is reduced. By the local vanishing (2.5), it follows that

$$
\begin{aligned}
H^{1}\left(X, K_{X}+L_{\psi \psi^{k}}\right) & =H^{1}\left(X, \mu^{*} \mathcal{O}_{\mathbf{P}^{2}}\left(-3+\left\lceil\frac{k b}{n}\right\rceil\right) \otimes \mathcal{O}_{X}\left(K_{X \mid \mathbf{P}^{2}}-\left\lfloor\mu^{*} \frac{k}{n} B\right\rceil\right)\right) \\
& \simeq H^{1}\left(\mathbf{P}^{2}, \mathcal{O}_{\mathbf{P}^{2}}\left(-3+\left\lceil\frac{k b}{n}\right\rceil\right) \otimes \mathcal{I}_{Z\left(\frac{k}{n} B\right)}\right),
\end{aligned}
$$

hence

$$
q(S)=\sum_{k=1}^{n-1} h^{1}\left(\mathbf{P}^{2}, \mathcal{O}_{\mathbf{P}^{2}}\left(-3+\left\lceil\frac{k b}{n}\right\rceil\right) \otimes \mathcal{I}_{Z\left(\frac{k}{n} B\right)}\right)
$$

If $k / n \notin J(B, n)$, then either k / n is not a jumping number of B, or it is, but $k b / n$ is not an integer. In the former case, if ξ is the biggest jumping number for B smaller than k / n, then, since $\lceil k b / n\rceil-\xi>0$,

$$
h^{1}\left(\mathbf{P}^{2}, \mathcal{O}_{\mathbf{P}^{2}}\left(-3+\left\lceil\frac{k b}{n}\right\rceil\right) \otimes \mathcal{I}_{Z\left(\frac{k}{n} B\right)}\right)=h^{1}\left(\mathbf{P}^{2}, \mathcal{O}_{\mathbf{P}^{2}}\left(-3+\left\lceil\frac{k b}{n}\right\rceil\right) \otimes \mathcal{I}_{Z(\xi B)}\right)=0
$$

by the Kawamata-Viehweg-Nadel vanishing theorem. In the latter case, we apply the same argument, now using $\lceil k b / n\rceil-k b / n>0$. The result follows.

4. APPLICATIONS

We shall now apply Theorem 3.1 to illustrate how to compute in a uniform way, the irregularity for some examples of cyclic multiple planes. Of course, we shall need to control the multiplier ideals and the jumping numbers attached to the branch curves. In this section we shall deal with curves having singularities only of type $A_{m}, m \geq 1$. In the appendix, more involved singularities will be considered.

We recall that a singularity of type A_{m} is defined locally by $x^{2}+y^{m+1}=0$. The multiplier ideals and their jumping numbers are easy to compute; see for example [4] and [5], or [11]. A different argument for these computations using the theory of clusters will be given in Example A. 13.

LEMMA 4.1. Let B be a curve on a smooth surface and let P be a singular point of B of type A_{m}. The jumping numbers <1 of B at P are

$$
\xi_{a}=\frac{1}{2}+\frac{a}{m+1}
$$

with $a=1, \ldots,\lfloor m / 2\rfloor$. If locally around P the curve B is defined by $x^{2}+y^{m+1}=0$, then, for every a, the multiplier ideal $\mathcal{J}\left(\xi_{a} \cdot B\right)$ is $\left(x, y^{a}\right)$, i.e. the ideal that defines $Z_{P}^{[a]}$, the 0 -dimensional curvilinear subscheme along B supported at P and of length a.

Theorem 3.1 becomes the following:

COROLLARY 4.2. Let B be a reduced plane curve such that its singularities are either simple nodes or of type A_{m} with $m \geq 2$ given. Let H_{∞} be a line transverse to B and let S be a desingularization of the n-cyclic multiple plane associated to B and H_{∞}.
i) If $m=2 r-1$, then

$$
q(S)=\sum_{\substack{a=1 \\ \frac{a+r}{2 r} \in \frac{1}{\operatorname{gcd}(b, n)} \mathbf{Z}}}^{r-1} h^{1}\left(\mathbf{P}^{2}, I_{\mathcal{Z}^{[a]}}\left(-3+\frac{a b}{2 r}+\frac{b}{2}\right)\right)
$$

ii) If $m=2 r$, then S may be irregular only if n and b are even, and in this case

$$
q(S)=\sum_{\frac{a}{a=1}}^{r} h^{1}\left(\mathbf{P}^{2}, \mathcal{I}_{Z[a]}^{2 r+1} \in \frac{1}{\operatorname{gcd}(b, n)} \mathbf{Z}\right.
$$

In both formulae, $\mathcal{Z}^{[a]}=\bigcup_{P} Z_{P}^{[a]}$.

ZARISKI'S EXAMPLE

The curve B is irreducible, of degree 6 and has six cusps as singularities. If n is divisible by 6 , in the formula for the irregularity of the n-cyclic multiple plane from Corollary 4.2ii) we have $a=1$ since $m=1$. Hence $q(S)=h^{1}\left(\mathbf{P}^{2}, \mathcal{I}_{\mathcal{Z}}(2)\right)$, where \mathcal{Z} is the support of the cusps. So either the cusps lie on a conic and the irregularity is 1 , or they do not, and the irregularity is 0 .

ARTAL-BARTOLO'S FIRST EXAMPLE IN [1]

Let $C \subset \mathbf{P}^{2}$ be a smooth elliptic curve and let P_{1}, P_{2}, P_{3} be three inflexion points of C, with L_{i} the tangent lines at P_{i} to C. Taking $B=C+L_{1}+L_{2}+L_{3}$ we construct the multiple cyclic plane with three sheets S_{0} associated to B. The curve B has three points of type A_{5} at the P_{i} 's, hence $n=3, b=6$ and $r=3$ in Corollary 4.2i). We have $a=1$ and

$$
q(S)=h^{1}\left(\mathbf{P}^{2}, \mathcal{I}_{\left\{P_{1}, P_{2}, P_{3}\right\}}(1)\right)
$$

So the irregularity is 1 if the three inflexion points are chosen on a line. If the points are not on a line, then the irregularity is 0 . These two configurations give an example of a Zariski pair.

ARTAL-BARTOLO'S SECOND EXAMPLE IN [1]

Let P be a fixed point and $K=\left\{P_{1}, \ldots, P_{9}\right\}$ a cluster centered at P, all its points being free. It represents a curvilinear subscheme $Z=Z_{K}$. In [1], ArtalBartolo considers sextics with an A_{17} type singularity at P, with P_{2}, \ldots, P_{9} the infinitely near points of the minimal resolution.

1) If P_{3} lies on the line L determined by P_{1} and P_{2} and if K does not impose independent conditions on cubics, then all sextics are reducible. Let B be the union of two smooth cubics from $\left|\mathcal{I}_{Z}(3)\right|$. If S_{0} is the 3 -cyclic multiple plane associated to B, then by Corollary 4.2 i),

$$
q(S)=h^{1}\left(\mathbf{P}^{2}, \mathcal{I}_{Z^{[3]}}(1)\right)=1 .
$$

Similarly, if S_{0} is the 6 -cyclic multiple plane, then

$$
q(S)=h^{1}\left(\mathbf{P}^{2}, I_{Z^{[B]}}(1)\right)+h^{1}\left(\mathbf{P}^{2}, I_{Z^{[6]}}(2)\right)=2,
$$

since there is no irreducible conic through $Z^{[6]}$ - i.e. through the points $P_{1}, \ldots, P_{6}-$ but the double line $2 L$: if $K^{\prime}=\left\{P_{1}^{2}, P_{2}^{2}, P_{3}^{2}\right\}$, then $Z^{[6]} \subset Z_{K^{\prime}}$.

More generally, if S_{0} is the n-cyclic multiple plane associated to B and a transverse line H_{∞}, then by the same argument it follows that $q(S)=2$ when $n \equiv 0 \bmod 6, q(S)=1$ when $n \equiv 3 \bmod 6$, and $q(S)=0$ otherwise.
2) If $P_{3} \notin L$ and $P_{6} \in \Gamma$, the conic through P_{1}, \ldots, P_{5}, then there exists an irreducible sextic with an A_{17} type singularity at P, such that the intersection with Γ is supported only at P. If S_{0} is the n-cyclic multiple plane associated to B and to a transverse line to it, then

$$
q(S)=h^{1}\left(\mathbf{P}^{2}, I_{Z^{[6]}(2)}\right)=1
$$

when n is divisible by 6 , and $q(S)=0$ otherwise.
3) If $P_{3} \notin L$ and $P_{6} \notin \Gamma$, then for every reduced sextic B with an A_{17} type singularity at P, the n-cyclic multiple plane associated to B and to a transverse line to it is regular.

REMARK. In [1] it is shown that in the third case above, two configurations may appear: either P_{1}, \ldots, P_{9} do not impose independent conditions on cubics and B is the union of two smooth cubics, or the points do impose independent conditions on cubics and B is irreducible. Using these and the two configurations in 1) and 2), two more Zariski couples are thus produced there.

OKA's EXAMPLE IN [19] WHEN $p=2$
In [19], if p and q are relatively prime integers, Oka constructs the curve $C_{p, q}$ of degree $p q$ enjoying the following property: $C_{p, q}$ has $p q$ cusp singularities each of which is locally defined by the equation $x^{p}+y^{q}=0$. For the construction, let C_{p} and C_{q} be smooth curves of degree p and q that intersect transversely. If $f=0$ and $g=0$ are homogeneous equations for C_{q} and C_{p}, then $C_{p q}$ is defined globally by $f^{p}+g^{q}=0$.

PROPOSITION 4.3. The normalization of the pq-multiple plane associated to the curve $C_{p, q}$ is irregular, the irregularity being equal to $(p-1)(q-1) / 2$.

REMARK 4.4. We shall establish the result in the appendix and discuss here the particular case $p=2$. All the ideas are already present in this situation. In the general computation the argument that uses the trace-residual exact sequence will need the description of the multiplier ideals developed in the appendix and based on the theory of clusters.

Proof when $p=2$. The integer q must be odd, so let $q=2 r+1$. To simplify the notation, let $C=C_{2 r+1}$ and Γ be the conic transverse to C. The curve $C_{2,2 r+1}$ is a curve of degree $4 r+2$ with $4 r \div 2$ singular points of type $A_{2 r}$. Let S_{0} be the ($4 r+2$)-cyclic multiple plane associated to $C_{2,2 r+1}$ and let S be the normal cyclic covering constructed in Section 3. We apply Corollary 4.2 ii) to obtain $q(S)=\sum_{\alpha=1}^{r} h^{1}\left(\mathbf{P}^{2}, \mathcal{I}_{\mathcal{Z}[\mathrm{N}]}(2 r+2 \alpha-2)\right)$, where $\mathcal{Z}^{[\kappa]}=\bigcup_{P} Z_{P}^{[\alpha]}$ and $Z_{P}^{[\alpha]}$ is the curvilinear subscheme associated to the cluster $\left\{P_{1}=P, P_{2}, \ldots, P_{\alpha}\right\}$. We shall apply the trace-residual exact sequence with respect to Γ (see [10]) to show that all the terms of the sum equal 1 and to get $q(S)=r$.

DEFintions. Let X be a projective variety, D be a Cartier divisor on X and ξ be a closed subscheme of X. The schematic intersection $\operatorname{Tr}_{D} \xi=D \cap \xi$ defined by the ideal sheaf $\left(\mathcal{I}_{D}+\mathcal{I}_{\xi}\right) / \mathcal{I}_{D}$ is called the trace of ξ on D. The closed subscheme $\operatorname{Res}_{D} \xi \subset X$ defined by the conductor ideal $\left(\mathcal{I}_{\xi}: \mathcal{I}_{D}\right)$ is called the residual of ξ with respect to D. The canonical exact sequence

$$
0 \longrightarrow \mathcal{I}_{\operatorname{Reg} \xi}(-D) \longrightarrow \mathcal{I}_{\xi} \longrightarrow \mathcal{I}_{\mathrm{Tr} \xi} \longrightarrow 0
$$

is called the trace-residual exact sequence of ξ with respect to D.
In our situation, the trace-residual exact sequence with respect to Γ becomes

$$
0 \longrightarrow \mathcal{I}_{\mathcal{Z}[\alpha-1]}(2 r+2 \alpha-4) \longrightarrow \mathcal{I}_{\mathcal{Z}[k]]}(2 r+2 \alpha-2) \longrightarrow \mathcal{O}_{\mathbf{p}^{1}(4 \alpha-6) \longrightarrow 0}
$$

Since $C \in\left|\mathcal{I}_{\mathcal{Z}^{[r+1]}}(2 r+1)\right|$, the map $H^{0}\left(\mathbf{P}^{2}, \mathcal{I}_{\mathcal{Z}^{[\mu]}(2 r+2 \alpha-2)}\right) \longrightarrow$ $H^{0}\left(\mathbf{P}^{1}, \mathcal{O}_{\mathbf{P}^{1}}(4 \alpha-6)\right)$ from the long exact sequence in cohomology is surjective for every $1 \leq \alpha \leq r$. Hence

$$
h^{1}\left(\mathbf{P}^{2}, \mathcal{I}_{\mathbb{Z}^{[]]}}(4 r-2)\right)=\cdots=h^{1}\left(\mathbf{P}^{2}, \mathcal{I}_{\mathcal{Z}^{[l]}}(2 r)\right)=h^{1}\left(\mathbf{P}^{1}, \mathcal{O}_{\mathbf{P}^{1}(-2)}\right)=1,
$$

establishing the proposition in the particular case $p=2$.
REMARK. The irregularity of the n-cyclic multiple plane associated to B and to a line H_{∞} transverse to B, n being an arbitrary positive integer, may be computed by the same argument. Of course, if $2 r+1$ is a prime number, then it might be shown that $q(S)=0$ unless $4 r+2$ divides $n-$ one should use Theorem 3.1 and the result form [22] cited in the introduction. But if $2 r+1$ is not a prime number, then irregular cyclic multiple planes exist for other values of n. For example, if $2 r+1=15$ and $n=40$, then

$$
q(S)=h^{1}\left(\mathbf{P}^{2}, \mathcal{I}_{\mathcal{Z}}^{[3]}(18)\right)+h^{1}\left(\mathbf{P}^{2}, \mathcal{I}_{\mathbb{Z}^{[6]}}(24)\right)=2
$$

A SPECIALIZATION OF OKA'S EXAMPLE WHEN $p=2$

Keeping the notation from the previous paragraph, the conic Γ is now the union of two distinct lines that intersect at O and C is a smooth curve of degree $2 r+1$ passing through O and intersecting transversely the lines of Γ at this point. The curve B has $4 r$ points of type $A_{2 r}$ and one singular point at O of type $A_{4 r+1}$. It can be shown that the irregularity of the $(4 r+2)$-cyclic multiple plane associated to B is again r. We develop the computation for $r=2$. In this case, B is a curve of degree 10 with 8 points of type A_{4} and one point of type A_{9}. By Theorem 3.1 and using the notation from Corollary 4.2 , the irregularity is given by

$$
h^{1}\left(\mathbf{P}^{2}, \mathcal{I}_{\left.\xi^{[1]}\right] Z_{o}^{[2]}}(4)\right)+h^{1}\left(\mathbf{P}^{2}, \mathcal{I}_{\left.\xi^{[2]}\right] Z_{o}^{[4]}(6)}\right),
$$

where $\xi^{[1]}$ is the support of the points of type A_{4} and $\xi^{[2]}=\bigcup_{P \text { of type } A_{4}} Z_{P}^{[2]}$ is the support plus the tangent directions. Now, 10 points on a conic do not impose independent conditions on quartics, hence the first term is 1 . The second term is seen to be equal to the first after applying the trace-residual exact sequence with respect to the two lines of Γ. So the irregularity is 2 .

The computations for $r=1$ lead to a branching curve of degree 6 with four cusps and an A_{5} singularity at O. The irregularity of a 6 -cyclic multiple plane is 1 , given by $h^{1}\left(\mathbf{P}^{2}, I_{\xi}^{[1]} U Z_{o}^{2}\right)$. If in addition, the two lines of the
degenerate conic Γ are brought together such that the cusps collapse two by two, the branching curve has three A_{5} singularities. For a 6 -multiple plane, $q=2$, with the contributions of the superabundance of the singularities with respect to the lines and the conics both equal to 1 . The branching curve is reducible; it is Artal-Bartolo's first example.

LINE ARRANGEMENTS FOLLOWING [7]

In this example we consider as branch curve a line arrangement $B=\bigcup_{i=1}^{b} L_{i} \subset \mathbf{P}^{2}$ that has only nodes and ordinary triple points as singularities. We revisit, from the point of view developed here, results obtained in [7]. See also [2] where line arrangements are examined using the techniques from [1].

Using Example 2.8 or Corollary A.2, we have that for an ordinary triple point $2 / 3$ is the only jumping number <1. The multiplier ideal is \mathcal{I}_{P}. By Theorem 3.1, if H_{∞} is a line transverse to $B=\bigcup_{i=1}^{b} L_{i}$, then the normal n-cyclic covering S corresponding to the n-cyclic multiple plane associated to B and H_{∞} is irregular if and only if 3 divides both b and n, and $\left|\mathcal{I}_{\mathcal{Z}}\left(-3+\frac{2 b}{3}\right)\right|$ is superabundant, in which case

$$
q(S)=h^{1}\left(\mathbf{P}^{2}, \mathcal{I}_{\mathcal{Z}}\left(-3+\frac{2 b}{3}\right)\right) .
$$

In case S is irregular, it can be shown that the irregularity is bounded by a constant depending on the arrangement B.

PROPOSITION 4.5. Let $B=\bigcup_{i=1}^{b} L_{i}, H_{\infty}$ and S be as above with b and n divisible by 3 . If t_{i} is the number of triple points lying on the line L_{i} for each i, then

$$
q(S) \leq \min _{i=1, \ldots, b} t_{i} .
$$

For the proof (see [7] for a different argument), we need a preliminary lemma.

LEMMA 4.6. If 3 divides both b and n and if one line of the arrangement contains no triple point, then $q(S)=0$.

Proof. Let B^{\prime} be the arrangement of the $b-1$ lines of B except the one with no triple point. If S^{\prime} is the normal n-cyclic covering corresponding to the n-cyclic multiple plane associated to B^{\prime} and H_{∞}, then $q\left(S^{\prime}\right)=0$ since 3 does not divide $\operatorname{deg} B^{\prime}$. Taking $k=2 n / 3$ in Theorem 3.1 we obtain

$$
0=h^{1}\left(\mathbf{P}^{2}, \mathcal{I}_{\mathcal{Z}}\left(-3+\left\lceil\frac{2(b-1)}{3}\right\rceil\right)\right)=h^{1}\left(\mathbf{P}^{2}, \mathcal{I}_{\mathcal{Z}}\left(-3+\frac{2 b}{3}\right)\right)=q(S)
$$

where \mathcal{Z} is the support of the triple points.
Proof of Proposition 4.5. Let us suppose that L_{1} is the line containing the minimum number of triple points. If $B^{\prime}=L_{1}^{\prime} \cup \bigcup_{i \neq 1} L_{i}$ is a line arrangement with no triple point on L_{1}^{\prime} and if \mathcal{Z}^{\prime} denotes the support of the triple points of B^{\prime}, then by the previous lemma, $h^{1}\left(\mathbf{P}^{2}, \mathcal{I}_{Z^{\prime}}(-3+2 b / 3)\right)=0$. Since $h^{1}\left(\mathbf{P}^{2}, I_{\mathcal{Z}}(-3+2 b / 3)\right)$ measures how much \mathcal{Z} fails to impose independent conditions of the curves of degree $2 b / 3-3$,

$$
h^{1}\left(\mathbf{P}^{2}, \mathcal{I}_{\mathcal{Z}}\left(-3+\frac{2 b}{3}\right)\right) \leq h^{1}\left(\mathbf{P}^{2}, \mathcal{I}_{\mathcal{Z}}\left(-3+\frac{2 b}{3}\right)\right)+\operatorname{card}\left(\mathcal{Z}-\mathcal{Z}^{\prime}\right)=t_{1}
$$

hence the result.

EXAMPLE. Let B be the line arrangement of 9 lines with 9 triple points represented below (Figure 2). In a convenient affine coordinate system (x, y), the triple points that lie in the affine plane are the following:
$(0,0),(\pm 2,-2),(-2,0),(0, s),(2, s)$ and $\frac{2 s}{(s+4)}(-1,1)$, with $s \neq-2,0$ and 2 .

Figure 2

It is easy to see that there are two cubics - each the union of three lines - through the 9 triple points, i.e. the system of cubics through the points is superabundant. It follows that the irregularity of the n-cyclic multiple plane associated to B and to a line H_{∞} transverse to B, is 1 if and only if 3 divides n.

If $s=2$, then the arrangement specializes to an arrangement with 10 triple points, 4 of them lying on the line $x+y=0$. But these points lie on a cubic, the union of three of the lines of B, and again $h^{1}\left(\mathbf{P}^{2}, I_{\mathcal{Z}}(3)\right)=1$, hence the irregularity is 1 in this case too.

REMARK 4.7. The irregularity depends on the position of the line H_{∞} with respect to B. To see this, let B be the line arrangement below of 5 lines with 2 triple points from Figure 3.

Figure 3

If H_{∞} is transverse to B, then the irregularity of the 6 -cyclic multiple plane is 0 . But if H_{∞} is the line through the double points P and Q then the irregularity jumps to 1 .

A. CLusters and multiplier ideals

Among the examples treated in Section 4 there is Oka's example. The irregularity of the surface involved is computed in Proposition 4.3. The proposition was proved only in the particular case when the singularities of the branch curve are of type A_{m}. The general proof may be supplied along the lines developed in the particular case on condition that the multiplier ideals involved in the formula for the irregularity have a description fit for use in the trace-residual exact sequence.

Throughout this appendix we work under the following hypothesis: B is a curve on a smooth surface such that each of its singular points is locally characterized by an equation of type $x^{m}+y^{n}=0$. We shall give a new description of the multiplier ideals attached to B. They are determined only by the study of the coefficients of the last exceptional curves in a log resolution of B.

Proposition A.1. Let $\mu: Y \rightarrow X$ be a \log resolution of B in X and denote by E_{P} the last exceptional curve in the resolution above each singular point P. If c_{P} is the coefficient of E_{P} in $-K_{Y \mid X}+\left\lfloor\mu^{*} \xi B\right\rfloor$, then the multiplier ideal $\mathcal{J}(\xi \cdot B)$ is given by

$$
\mathcal{J}(\xi \cdot B)=\mu_{*} \bigotimes_{P} \mathcal{O}_{Y}\left(-c_{P} E_{P}\right)
$$

Moreover, if P is locally given by $x^{m}+y^{n}=0$ with $d=\operatorname{gcd}(m, n)$ and $m=d p, n=d q$, then

$$
\mu_{*} \mathcal{O}_{Y}\left(-c_{P} E_{P}\right)=\mu_{*} \mathcal{O}_{Y}\left(-\bar{c}_{P} E_{P}\right), \quad \text { with } \quad \bar{c}_{P}=\min _{\substack{a p+b q \geq c_{P} \\ a, b \geq 0}}(a p+b q)
$$

and $\mu_{*} \mathcal{O}_{Y}\left(-c E_{P}\right) \varsubsetneqq \mu_{*} \mathcal{O}_{Y}\left(-\bar{c}_{P} E_{P}\right)$ for any $c>\bar{c}$.

We refer the reader to [11] for a different description of these multiplier ideals.

COROLLARY A. 2 (see [4, 5, 11]). Let P be a singular point of a curve B on a smooth surface S. If P is locally given by $x^{m}+y^{n}=0$, then the jumping numbers of B at P are

$$
\frac{a}{m}+\frac{b}{n}
$$

with a and b positive integers.

Above a singular point P, through the log resolution μ, lies an exceptional configuration, a \mathbf{Z}-linear combination of strict transforms of exceptional divisors. The proof of Proposition A. 1 will mainly deal with this configuration. To prepare the way for the proof we need to formalize the setup and recall some results from the theory of clusters.

A. 1 CLUSTERS AND ENRIQUES DIAGRAMS

Let X be a surface and $P \in X$ a smooth point. A point Q is called infinitely near to P if $Q \in X^{\prime}$ with $\mu: X^{\prime} \rightarrow X$ a composition of blowing ups and Q lying on the exceptional configuration that maps to P. The points infinitely near to P are partially ordered. The point Q precedes the point R if and only if R is infinitely near to Q.

DEFintion. A cluster in X centered at a smooth point P is a finite set of weighted infinitely near points to $P, K=\left\{P_{1}^{z D_{1}}, \ldots, P_{r}^{z D_{r}}\right\}$, with $P_{1}=P$ and such that the ordering of the points is compatible with the partial order of the infinitely near points - if $\alpha<\beta$ then either P_{β} is infinitely near to P_{α} or there is $\gamma<\alpha$ such that P_{α} and P_{β} are infinitely near to P_{γ}. The point P_{1} is called the proper point of the cluster.

In the sequel, if K is a cluster, then all points preceding a point that belongs to K will belong to K, possibly with weight 0 .

Let $Y=Y_{r+1} \rightarrow Y_{r} \rightarrow \cdots \rightarrow Y_{1}=X$ be the decomposition of $\mu: Y \rightarrow X$ into successive blowing ups with $Y_{\alpha+1}=\mathrm{Bl}_{P_{\alpha}} Y_{\alpha}$. Each point $P_{\alpha \chi}$ corresponds to an exceptional divisor $E_{\alpha} \subset Y_{\alpha+1}$. All its strict transforms will also be denoted by E_{α} and the total transform of each E_{α} by W_{α}. When needed, the strict transform of E_{α} on Y_{β} will be denoted by $E_{\alpha}^{(\beta)}$, and similarly for the total transform. For example $W_{\alpha}^{(\alpha+1)}=E_{\alpha}^{(\alpha+1)}$.

The strict transforms E_{α} and the total transforms W_{α} form two different bases of the \mathbf{Z}-module $\bigoplus_{\alpha} \mathbf{Z} E_{\alpha} \subset \operatorname{Pic} Y$. The combinatorics of the configuration of the strict transforms on Y is codified in the notion of proximity for the points of the cluster: a point P_{β} is said to be proximate to $P_{\alpha}, P_{\beta} \prec P_{\alpha}$, if P_{β} lies on $E_{\beta}^{(\beta)} \subset Y_{\beta}$, the strict transform on Y_{β} of the exceptional divisor corresponding to the blow-up at $P_{\alpha \alpha}$. Besides, a point that is infinitely near, i.e. that is not proper, is always proximate to at most two other points of the cluster. It is said to be free if it is proximate to exactly one point and satellite if it is proximate to exactly two points of the cluster.

Let $\Pi=\left\|p_{\alpha \beta}\right\|$ be the decomposition matrix of the strict transforms in terms of the total transforms on Y. Since

$$
E_{\alpha}=W_{\alpha}-\sum_{P_{\beta}<P_{\alpha}} W_{\beta},
$$

$p_{\alpha \alpha}=1$ for any α and $p_{\alpha \beta}$ equals -1 if P_{β} is proximate to P_{α} and 0 otherwise. Notice that along the α column of Π the non-zero elements not on the diagonal correspond to the points to which P_{α} is a satellite. The matrix $-\Pi \cdot{ }^{t} \Pi$ is the intersection matrix of the curves E_{α} on the surface Y. For any α,

$$
E_{\alpha}^{2}=-\left(1+p_{\alpha}\right)
$$

where $p_{\alpha \alpha}$ is the number of points P_{β} proximate to $P_{\alpha \alpha}$. Since the intersection matrix of the curves W_{α} is minus the identity, there exist effective divisors B_{α} that form the dual basis for the divisors $-E_{\alpha}$'s with respect to the intersection form. In the sequel this basis will be referred to as the branch basis. Clearly,
the decomposition matrix of the basis of strict transforms in terms of the branch basis is $\Pi{ }^{t} \Pi$.

The points of a cluster K, their weights and proximity relations were encoded by Enriques in a convenient tree diagram now called the Enriques diagram of the cluster (see $[3,6,8]$). If the weights are omitted, the tree reflects the combinatorics of the configuration of the strict transforms $E_{\alpha} \subset Y$.

DEFINTIION. An Enriques tree is a couple (T, ε), where $T=T(\mathfrak{V}, \mathfrak{E})$ is an oriented tree (a graph without loops) with a single root, with \mathfrak{V} the set of vertices and \mathfrak{E} the set of edges, and where ε is a map

$$
\varepsilon: \mathfrak{e} \longrightarrow\{\text { 'slant', 'horizontal', 'vertical' }\}
$$

fixing the graphical representation of the edges. An Enriques diagram is a weighted Enriques tree.

EXAMPLE A.3. Let $p<q$ be relatively prime positive integers. $T_{p, q}$ will denote the Enriques tree associated to the Euclidean algorithm. It is a unibranch tree. Let $r_{0}=a_{1} r_{1}+r_{2}, \ldots, r_{m-2}=a_{m-1} r_{m-1}+r_{m}$ and $r_{m-1}=a_{m} r_{m}$, with $r_{0}=q$ and $r_{1}=p$. The oriented tree has $\mathfrak{V}=\left\{P_{\alpha} \mid 1 \leq \alpha \leq a_{1}+\cdots+a_{m}\right\}$ and $\mathfrak{A}=\left\{\left[P_{\alpha \chi} P_{\alpha+1}\right] \mid 1 \leq \alpha \leq a_{1}+\cdots+a_{m}-1\right\}$. The map ε is locally constant on the a_{j} edges $\left[P_{\alpha} P_{\alpha+1}\right]$ with $a_{1}+\cdots+a_{j-1}+1 \leq \alpha \leq a_{1}+\cdots+a_{j}$. The first constant value of $\varepsilon-$ on the first a_{1} edges - is 'slant'. The other constant values are alternatively either 'horizontal' or 'vertical', starting with 'horizontal'. The Enriques trees $T_{1,3}, T_{2,3}$ and $T_{5,7}$ are represented in Figure 4. The tree $T_{5,7}$ together with the weights $w_{1}=5, w_{2}=u_{3}=2$

Figure 4
and $w_{4}=w_{5}=1$ becomes the Enriques diagram that reflects the Euclidean algorithm for $p=5$ and $q=7:$ if P_{α} is the initial vertex of one of the a_{j} edges on which ε has constant value, then $w_{\alpha}=r_{j}$. The configuration of exceptional curves is the configuration obtained when desingularizing the curve $x^{5}+y^{7}=0$.

The fact that clusters and Enriques diagrams carry the same information is asserted by the following lemma. One more piece of terminology first. Let T be an Enriques tree. A horizontal (respectively vertical) L-shaped branch of T is an ordered chain of edges such that the final vertex of each is the starting vertex of the next, and such that all edges, but the first, are horizontal (respectively vertical) through ε. An edge is an L-shaped branch, regardless its value through g. It is a horizontal L-shaped branch if its value through ε is either slant or vertical and it is a vertical L-shaped branch if its value through ε is horizontal.

An L-shaped branch is proper if it contains at least two edges. A maximal L-shaped branch is an L-shaped branch that can not be continued to a longer one.

LEMMA A. 4 (see [8], Proposition 1.2). There exists a unique map from the set of clusters in X centered at a smooth point P to the set of Enriques diagrams such that:

- For every cluster $K=\left\{P_{1}^{3 p_{1}}, \ldots, P_{r}^{3 D_{r}}\right\}$ the set of vertices of the image tree is $\mathfrak{V}=\left\{P_{1}, \ldots, P_{r}\right\}$ with the weights given by the integers $w_{1}, w_{2}, \ldots, w_{r}$. The root of the tree is the proper point.
- At every point there ends at most one edge.
- A point P_{α} is satellite if and only if there is either a horizontal or a vertical edge that ends at the vertex P_{α}.
- If there is an edge that begins at the vertex P_{0} and ends at the vertex P_{β} then $P_{\beta} \in E_{\alpha}^{(\beta)}$, and the converse is true if P_{β} is free.
- The point P_{β} is proximate to P_{α} if and only if there is an L-shaped branch that starts at P_{α} and ends at P_{β}.
- The strict transforms E_{α} and E_{β} intersect on Y if and only if the Enriques diagram contains a maximal L-shaped branch that has P_{α} and P_{β} as its extremities.
- An edge that begins at a vertex of a free point and ends at a vertex of a satellite point is horizontal.

EXAMPLE A.5. The Enriques tree $T_{5,7}$ seen in the previous example has two maximal horizontal L-shaped branches. These branches are shown in Figure 5 together with the configuration of the strict transforms of the exceptional curves.

A. 2 UnLOADED CLUSTERS

Let $K=\left\{P_{1}^{q D_{1}}, \ldots, P_{r}^{i b_{r}}\right\}$ be a cluster centered at P. It defines a divisor $D_{K}=\sum w_{\alpha} W_{\alpha}$ on Y, an ideal sheaf $\mu_{*} \mathcal{O}_{Y}\left(-D_{K}\right)$ on X and hence a

Figure 5
subscheme Z_{K} of X. The decomposition matrix Π is also called the proximity matrix of the cluster. Using it,

$$
D_{K}=\sum_{\alpha} w_{\alpha} W_{\alpha}=\sum_{\alpha} c_{\alpha} E_{\alpha}=\sum_{\alpha} b_{\alpha} B_{\alpha},
$$

with $\boldsymbol{w}=\boldsymbol{c} \cdot \Pi$ and $\boldsymbol{b}=\boldsymbol{c} \cdot \Pi{ }^{i} \Pi$, where $\boldsymbol{w}=\left(w_{1}, \ldots, w_{r}\right), \boldsymbol{c}=\left(c_{1}, \ldots, c_{r}\right)$ and similarly $\boldsymbol{b}=\left(b_{1}, \ldots, b_{r}\right)$. The lemma below clarifies the comparison between the divisor D_{K} and the ideal sheaf $\mu_{*} \mathcal{O}_{Y}\left(-D_{K}\right)$ or, equivalently, the subscheme Z_{K}.

LEMMA A.6. Let $D_{K}=\sum_{\alpha \beta} b_{\alpha \beta} B_{\alpha}$. If $b_{\beta}<0$ for a certain β, then

$$
\mu_{*} \mathcal{O}_{Y}\left(-D_{K}\right)=\mu_{*} \mathcal{O}_{Y}\left(-D_{K}-E_{\beta}\right)
$$

Proof. We take μ_{*} on the exact sequence

$$
0 \longrightarrow \mathcal{O}_{Y}\left(-D_{K}-E_{\beta}\right) \longrightarrow \mathcal{O}_{Y}\left(-D_{K}\right) \longrightarrow \mathcal{O}_{E_{\beta}}\left(-\left.D_{K}\right|_{E_{\beta}}\right) \longrightarrow 0 .
$$

Since

$$
\operatorname{deg}\left(-\left.D_{K}\right|_{E_{\beta}}\right)=-\left(\sum b_{\alpha} B_{\alpha}\right) \cdot E_{\beta}=b_{\beta}<0
$$

we have $\mu_{*} \mathcal{O}_{E_{\beta}}\left(-\left.D_{K}\right|_{E_{\beta}}\right)=0$.
A cluster K is said to satisfy the proximity relations if for every P_{α} in K,

$$
\bar{w}_{\alpha}=\sum_{P_{\beta}\left\langle P_{\alpha \gamma}\right.} w_{\beta} \leq w_{\alpha} .
$$

Corollary A. 7 (see [3], Theorem 4.2). Let $K=\left\{P_{1}^{2 \theta_{1}}, \ldots, P_{r}^{2 v_{r}}\right\}$ be a cluster that contains a point P_{α} at which the proximity relation is not satisfied. If $K^{\prime}=\left\{P_{1}^{3 w_{1}^{\prime}}, \ldots, P_{r}^{3 w_{r}^{\prime}}\right\}$ is the cluster defined by $w_{\alpha}^{\prime}=w_{\alpha}+1, w_{\beta}^{\prime}=w_{\beta}-1$ for every β with P_{β} proximate to P_{α}, and $w_{\gamma}^{\prime}=w_{\gamma}$ otherwise, then K and K^{\prime} define the same subscheme in X, i.e. $\mu_{*} \mathcal{O}_{Y}\left(-D_{K}\right)=\mu_{*} \mathcal{O}_{Y}\left(-D_{K^{\prime}}\right)$.

Proof. Let $D_{K}=\sum_{\alpha} w_{\alpha} W_{\alpha}=\sum c_{\alpha} E_{\alpha}=\sum_{\alpha} b_{\alpha} B_{\alpha}$ and $D_{K^{\prime}}=$ $\sum_{\alpha} b_{\alpha}^{\prime} B_{\alpha}$. The coefficients b_{α} are given by $\boldsymbol{b}=\boldsymbol{c} \cdot \Pi \cdot{ }^{t} \Pi=\boldsymbol{w} \cdot{ }^{t} \boldsymbol{\Pi}=\boldsymbol{w}-\overline{\boldsymbol{w}}$. Then

$$
\boldsymbol{b}^{\prime}=\boldsymbol{w}^{\prime}-\overline{\boldsymbol{w}}^{\prime}=\boldsymbol{w}-\overline{\boldsymbol{w}}+\left(\Pi{ }^{t} \boldsymbol{\Pi}\right)_{\alpha}=\boldsymbol{b}+\left(\Pi{ }^{t} \boldsymbol{\Pi}\right)_{\alpha}
$$

and

$$
\begin{aligned}
\boldsymbol{c}^{\prime}=\boldsymbol{b}^{\prime} \cdot\left(\Pi{ }^{i} \Pi\right)^{-1} & =\boldsymbol{b} \cdot\left(\Pi \cdot{ }^{t} \Pi\right)^{-1}+\left(\Pi{ }^{t} \Pi\right)_{\alpha} \cdot\left(\Pi{ }^{i} \Pi\right)^{-1} \\
& =\boldsymbol{c}+(0, \ldots, 1, \ldots, 0),
\end{aligned}
$$

hence $D_{K^{\prime}}=D_{K}+E_{\alpha \chi}$. But $b_{\alpha \alpha}=w_{\alpha \alpha}-\bar{w}_{\alpha \alpha}<0$ and the result follows from the previous lemma.

The cluster K^{\prime} is said to be obtained from K by the unloading procedure. Starting from K, iterated applications of this procedure lead to a cluster \bar{K} that satisfies the proximity relations and defines the same subscheme in X. The cluster \bar{K} is called the unloaded cluster associated to K. Notice that a cluster is unloaded if and only if the coefficients of its divisor in the branch basis are non-negative.

EXAMPLE. Let $\left\{P_{1}^{5}, P_{2}^{2}, P_{3}^{2}, P_{4}^{1}, P_{5}^{1}\right\}$ and $\left\{P_{1}^{4}, P_{2}^{2}, P_{3}^{0}, P_{4}^{2}, P_{5}^{1}\right\}$ be two clusters with the proximity encoded by the Enriques tree $T_{5,7}$. The former is unloaded. The latter does not satisfy the proximity relation at P_{3}. The unloaded associated cluster \bar{K}_{2} is $\left\{P_{1}^{4}, P_{2}^{2}, P_{3}^{1}, P_{4}^{1}, P_{5}^{0}\right\}$ and $D_{\bar{K}_{2}}=B_{2}+B_{4}$.

A. 3 The proof of Proposition A. 1

We consider $\Re_{p, q}$, the set of unloaded clusters whose lattice tree is $T_{p, q}$ with $p<q$ relatively prime positive integers. Given a positive integer c, we want to characterize the unloaded cluster in $\mathfrak{K}_{p, q}$ whose associated ideal is $\mu_{*} \mathcal{O}_{Y}\left(-c E_{r}\right)$, with E_{r} the last exceptional divisor.

All along this subsection the W_{α} 's, $1 \leq \alpha \leq r$, denote the total transforms of the exceptional divisors in the process of blowing up the points of the clusters in $\mathfrak{K}_{p, q}$, the E_{α} 's the strict transforms and the B_{α} 's the elements of the branch basis. The integer r is given by $r=a_{1}+\cdots+a_{m}$, where $q=a_{1} p+r_{2}$, $p=a_{2} r_{2}+r_{3}, \ldots, r_{m-1}=a_{m} r_{m}$. Finally, $\varphi: \bigoplus_{\alpha} \mathbf{Z} E_{\alpha} \rightarrow \mathbf{Z} \simeq \mathbf{Z} E_{r}$ denotes the projection of $\bigoplus_{\alpha} \mathbf{Z} E_{\alpha}$ on its last factor.

We need four lemmas. In the following lemma two finite sequences closely linked to the Euclidean algorithm are introduced.

LEMMA A.8. If $\left(f_{j}\right)_{-1 \leq j \leq m}$ and $\left(\delta_{j}\right)_{1 \leq j \leq m+1}$ are two finite sequences defined by

$$
f_{j}=f_{j-2}+a_{j} \delta_{j} \quad \text { for any } 1 \leq j \leq m
$$

and

$$
\delta_{j}=\delta_{j-2}+a_{j-1} f_{j-2} \quad \text { for any } 2 \leq j \leq m+1
$$

and such that $f_{-1}=f_{0}=0$ and $\delta_{0}=\delta_{1}=1$, then the remainder r_{j} in the Euclidean algorithm is given by $-f_{j-1} q+\delta_{j} p$ if j is odd and $\delta_{j} q-f_{j-1} p$ if j is even.

Proof. Left to the reader.
REMARK A.9. If m is odd, then $f_{m}=q$ and $\delta_{m+1}=p$, and if m is even, then $f_{m}=p$ and $\delta_{m+1}=q$. Indeed, let us suppose that m is odd. Then the equalities follow since for any $1 \leq j \leq m$ the integers f_{j} and δ_{j+1} are relatively prime and $0=r_{m+1}=\delta_{m+1} q-f_{m} p$.

LEMMA A.10. If $\left(f_{j}\right)_{-1 \leq j \leq m}$ and $\left(\delta_{j}\right)_{1 \leq j \leq m+1}$ are the finite sequences defined in Lemma A.8, then for any $1 \leq j \leq m$ and any $1 \leq k \leq a_{j}$, the coefficient of the last strict transform in $B_{a_{1}+\cdots+a_{j-1}+k}$ equals either $\left(f_{j-2}+k \delta_{j}\right) p$ if j is odd or $\left(f_{j-2}+k \delta_{j}\right) q$ if j is even.

Proof. The proof proceeds by induction on j and k. It is clear for $j=1$ and any k. Suppose that j is even, $k<a_{j}$ and that $\varphi\left(B_{a_{1}+\cdots+a_{j-1}+k}\right)=$ $\left(f_{j-2}+k \delta_{j}\right) q$. We recall that B_{α} is given by the Enriques diagram for which the weight of the point P_{α} is $w_{\alpha}=1$, the weights of all the points that do not precede P_{α} are 0 , and all the others are computed by imposing equalities in the proximity relations. Then

$$
B_{a_{1}+\cdots+a_{j-1}+k+1}=B_{a_{1}+\cdots+a_{j-1}+k}+W_{a_{1}+\cdots+a_{j-1}+k+1}+B_{a_{1}+\cdots+a_{j-1}}
$$

and

$$
\begin{aligned}
\varphi\left(B_{a_{1}+\cdots+a_{j-1}+k+1}\right) & =\left(f_{j-2}+k \delta_{j}\right) q+r_{j}+\left(f_{j-3}+a_{j-1} \delta_{j-1}\right) p \\
& =\left(f_{j-2}+k \delta_{j}\right) q+\delta_{j} q-f_{j-1} p+f_{j-1} p \\
& =\left(f_{j-2}+(k+1) \delta_{j}\right) q .
\end{aligned}
$$

The argument is similar in all the other cases, i.e. when either $k=a_{j}$ or j odd.

LEMMA A.11. If $K \in \mathfrak{K}_{p, q}$, then the coefficient of E_{r} in D_{K} is of the form $a p+b q$, with a, b non-negative integers.

Proof. Since $D_{K}=\sum_{\alpha}\left(w_{\alpha}-\bar{w}_{\alpha}\right) B_{\alpha}$ the result follows from the previous lemma.

NOTATION. The cluster $K_{p, q}(a p+b q), a, b \geq 0$, is the unloaded cluster associated to $\left\{P_{1}^{0}, \ldots, P_{r-1}^{0}, P_{r}^{a p+b q}\right\}$, i.e. whose associated ideal is $\mu_{*} \mathcal{O}_{Y}\left(-(a p+b q) E_{r}\right)$.

LEMMA A.12. Let $K \in \mathfrak{K}_{p, q}$ such that $\varphi\left(D_{K}\right)=a p+b q$. Then $K=K_{p, q}(a p+b q)$, the cluster that corresponds to $\mu_{*} \mathcal{O}_{Y}\left(-(a p+b q) E_{r}\right)$, if and only if every ordered chain of maximal L-shaped branches determined by the points $P_{\alpha_{1}, \ldots, P_{\alpha_{t}}}$ - each $P_{\alpha_{k}}$ precedes $P_{\alpha_{j}+1}$ and the jth maximal L-shaped branch starts at $P_{\alpha_{k}}$ and ends at $P_{\alpha_{k+1}}$ - satisfies

$$
\begin{equation*}
\sum_{k=1}^{l}\left(w_{\alpha_{k}}-\bar{w}_{\alpha_{k}}\right)<\sum_{k=1}^{l} p_{\alpha_{k}}+2-l . \tag{*}
\end{equation*}
$$

(Recall that the non-negative integer p_{α} is the number of points P_{β} that are proximate to P_{α}.)

Proof. The proof divides into four steps the third being the main one. First, if an unloaded cluster does not satisfy the condition (*), then an inverse of the unloading procedure may be applied to K with the output an unloaded cluster. Indeed, suppose that there exists an ordered chain of maximal L-shaped branches determined by the points $P_{\alpha_{1}}, \ldots, P_{\alpha_{t}}$ such that $\sum_{k=1}^{l}\left(w_{\alpha_{k}}-\bar{w}_{\alpha_{k}}\right) \geq \sum_{k=1}^{l} p_{\alpha_{k}}+2-l$. We may further assume that all its proper subchains satisfy (*). It follows that

$$
w_{\alpha_{1}}-\bar{w}_{\alpha_{1}}=p_{\alpha_{1}}, \quad w_{\alpha_{t}}-\bar{w}_{\alpha_{t}}=p_{\alpha_{t}}
$$

and for any other α_{k},

$$
w_{\alpha_{k}}-\bar{w}_{\alpha_{k}}=p_{\alpha_{k}}-1
$$

By Lemma A.4, the strict transforms $E_{\alpha_{1}}, \ldots, E_{\alpha_{i}}$ intersect two by two. Then,

$$
\begin{aligned}
\left(D_{K}-\sum_{k=1}^{l} E_{\alpha_{k}}\right) \cdot E_{\alpha_{i}} & =\left(\sum_{\alpha} b_{\alpha} B_{\alpha}-\sum_{k=1}^{l} E_{\alpha_{k}}\right) \cdot E_{\alpha_{i}} \\
& = \begin{cases}-b_{\alpha_{1}}+\left(p_{\alpha_{1}}+1\right)-1, & i=1 \\
-b_{\alpha_{i}}-1+\left(p_{\alpha_{i}}+1\right)-1, & 1<i<l \\
-b_{\alpha_{t}}-1+\left(p_{\alpha_{i}}+1\right), & i=l\end{cases}
\end{aligned}
$$

hence $\left(D_{K}-\sum_{k=1}^{l} E_{\alpha_{k}}\right) \cdot E_{\alpha_{i}} \leq 0$ for any α_{i}. We conclude that the cluster K^{\prime} whose divisor is $D_{K}-\sum_{k=1}^{l} E_{\alpha_{k}}$ is still unloaded and the coefficient of E_{r} in $D_{K^{\prime}}$ is unchanged. Clearly, $\mu_{*} \mathcal{O}_{Y}\left(-D_{K}\right) \subset \mu_{*} \mathcal{O}_{Y}\left(-D_{K^{\prime}}\right)$.

Second, if K is a cluster that satisfies (*), then for any $1 \leq \beta \leq r$ and any ordered chain of maximal L-shaped branches determined by the points $P_{\alpha_{1}}, \ldots, P_{\alpha_{t}}$ such that the last one ends in P_{β},

$$
\begin{equation*}
\sum_{j=1}^{l} b_{\alpha_{j}} \varphi\left(B_{\alpha_{j}}\right) \leq \varphi\left(B_{\beta}\right) . \tag{A.1}
\end{equation*}
$$

Let us suppose that P_{β} is the final vertex of a maximal horizontal L-shaped branch (the argument being similar if the branch is vertical). There are two cases: the last maximal L-shaped branch is either proper or it is not, i.e. there exists $i \leq r-1$ such that $\beta=a_{1}+\cdots+a_{i}+k$ with in the first case $k=1$ and in the second $2 \leq k \leq a_{i+1}$ (see Figure 6).

Figure 6

In the first case, due to the condition (*) and using the formulae of Lemma A.8,

$$
\begin{aligned}
\sum_{j=1}^{l} b_{\alpha_{j}} \varphi\left(B_{\alpha_{j}}\right) & \leq \sum_{j=1}^{l-1}\left(p_{\alpha_{j}}-1\right) \varphi\left(B_{\alpha_{j}}\right)+p_{\alpha_{i}} \varphi\left(B_{\alpha_{i}}\right) \\
& \leq\left(a_{2} f_{1}+a_{4} f_{3}+\cdots+\left(a_{i}+1\right) f_{i-1}\right) p \\
& =\left(-\delta_{1}+\delta_{1}+a_{2} f_{1}+a_{4} f_{3}+\cdots+\left(a_{i}+1\right) f_{i-1}\right) p \\
& =\left(-\delta_{1}+\delta_{i+1}+f_{i-1}\right) p \\
& =-p+\varphi\left(B_{a_{1}+\cdots+a_{i}+1}\right) .
\end{aligned}
$$

For the second inequality we have supposed that $\beta<r$ and hence $p_{\alpha_{t}}=$ $p_{a_{1}+\cdots+a_{i-1}}=a_{i}+1$. If $\beta=r$, then $\alpha_{l}=a_{1}+\cdots+a_{m-1}$ and $p_{\alpha_{l}}=a_{m}$ and we get
$\sum_{j=1}^{l} b_{\alpha_{j}} \varphi\left(B_{\alpha_{j}}\right) \leq\left(a_{2} f_{1}+a_{4} f_{3}+\cdots+a_{m} f_{m-1}\right) p=\left(-\delta_{1}+\delta_{m+1}\right) p=-p+\varphi\left(B_{r}\right)$.
Similarly, in the second case, i.e. when $\beta=a_{1}+\cdots+a_{i}+k$ with $2 \leq k \leq a_{i+1}$,

$$
\begin{aligned}
\sum_{j=1}^{l} b_{\alpha_{j}} \varphi\left(B_{\alpha_{j}}\right) & \leq \sum_{j=1}^{l-1}\left(p_{\alpha_{j}}-1\right) \varphi\left(B_{\alpha_{j}}\right)+p_{\alpha_{i}} \varphi\left(B_{\alpha_{i}}\right) \\
& \leq\left(a_{2} f_{1}+a_{4} f_{3}+\cdots+a_{i} f_{i-1}+\left(f_{i-1}+(k-1) \delta_{i+1}\right)\right) p \\
& =\left(-\delta_{1}+\delta_{i+1}+\left(f_{i-1}+(k-1) \delta_{i+1}\right)\right) p \\
& =-p+\varphi\left(B_{a_{1}+\cdots+a_{i}+k}\right)
\end{aligned}
$$

Third, if both K and K^{\prime} are unloaded and satisfy the condition (*) and are such that $\varphi\left(D_{K}\right)=\varphi\left(D_{K^{\prime}}\right)$, then $K=K^{\prime}$. To justify this, let $D_{K}=b_{1} B_{1}+\cdots+b_{r} B_{r}$ and $D_{K^{\prime}}=b_{1}^{\prime} B_{1}^{\prime}+\cdots+b_{r}^{\prime} B_{r}^{\prime}$. We want to show that for any $\alpha, b_{\alpha}=b_{\alpha}^{\prime}$. Then, if $P_{\alpha} \rightsquigarrow \mathrm{L}_{h}$ indicates that the vertex P_{α} is the initial vertex of a maximal horizontal L-shaped branch,

$$
\varphi\left(D_{K}\right)=\sum_{\substack{\alpha<r \\ P_{\alpha \gamma} \leadsto \mathrm{L}_{h}}} b_{\alpha} \varphi\left(B_{\alpha}\right)+\sum_{\substack{\alpha \alpha<r \\ P_{\alpha} \leadsto \mathrm{L}_{\psi}}} b_{\alpha \alpha} \varphi\left(B_{\alpha}\right)+b_{r} \varphi\left(B_{r}\right)=a p+b q+b_{r} p q,
$$

with a, b non-negative integers. By the previous step applied to $\beta=r$, it follows that $q>a$ and $p>b$. Analogously, $\varphi\left(D_{K^{\prime}}\right)=a^{\prime} p+b^{\prime} q+b_{r}^{\prime} p q$, with $q>a^{\prime} \geq 0$ and $p>b^{\prime} \geq 0$. We get

$$
\left(b_{r}^{\prime}-b_{r}\right) p q=\left(a-a^{\prime}\right) p+\left(b-b^{\prime}\right) q
$$

with $\left|a-a^{\prime}\right|<p$ and $\left|b-b^{\prime}\right|<q$, and hence $b_{r}=b_{r}^{\prime}, a=a^{\prime}$ and $b=b^{\prime}$ since the integers p and q are relatively prime. Now, the equality among the other coefficients is established similarly. Keeping the above notation, suppose that $b_{\alpha}=b_{\alpha}^{\prime}$ for any $\alpha>\beta$, with $\beta<r$ the initial edge of a maximal horizontal L-shaped branch. If $b_{\beta}<b_{\beta}^{\prime}$, then

$$
\begin{aligned}
a p & =\sum_{\substack{\alpha<\beta \\
P_{\alpha} \rightsquigarrow \mathrm{L}_{h}}} b_{\alpha \alpha} \varphi\left(B_{\alpha}\right)+b_{\beta} \varphi\left(B_{\beta}\right)+\sum_{\substack{\beta<\alpha<r \\
P_{\alpha} \rightsquigarrow L_{h}}} b_{\alpha} \varphi\left(B_{\alpha}\right) \\
& <\varphi\left(B_{\beta}\right)+b_{\beta} \varphi\left(B_{\beta}\right)+\sum_{\substack{\beta<\alpha<r \\
P_{\alpha} \rightsquigarrow L_{h}}} b_{\alpha}^{\prime} \varphi\left(B_{\alpha}\right) \leq a^{\prime} p
\end{aligned}
$$

contradicting the identity $a=a^{\prime}$ obtained previously.
To finish the proof of the lemma, we notice that the unloaded cluster whose associated ideal is $\mu_{*} \mathcal{O}_{Y}\left(-(a p+b q) E_{r}\right)$ satisfies the condition (*) since the subscheme supported at $P=P_{1}$ defined by this ideal is the smallest subscheme such that its pull-back on Y contains E_{r} with multiplicity $a p+b q$. We have seen in the first step that (*) characterizes this minimality condition.

Now we are ready to identify the unloaded cluster whose associated ideal is $\mu_{*} \mathcal{O}_{Y}\left(-c E_{r}\right)$. We have

$$
\mu_{*} \mathcal{O}_{Y}\left(-c E_{r}\right)=\mu_{*} \mathcal{O}_{Y}\left(-\bar{c} E_{r}\right) \text { with } \quad \bar{c}=\min _{\substack{a p+b q \geq c \\ a, b \geq 0}}(a p+b q) .
$$

So the unloaded cluster whose associated ideal is $\mu_{*} \mathcal{O}_{Y}\left(-c E_{r}\right)$ is $K_{p, q}(\bar{c})$.
Proof of Proposition A.1. We shall argue on the cluster associated to the divisor $-K_{Y \mid X}+\left\lfloor\mu^{*} \xi B\right\rfloor$. To find the multiplier ideal is equivalent to determine the unloaded corresponding cluster. Let the pull-back of B be $\sum_{1}^{r} c_{\alpha} E_{\alpha}+B=\boldsymbol{c} \cdot \boldsymbol{E}+B$. Then $-K_{Y \mid X}+\left\lfloor\mu^{*} \xi B\right\rfloor=\sum_{1}^{r} w_{\alpha} W_{\alpha}=\boldsymbol{w} \cdot \boldsymbol{w}$, with $\boldsymbol{w}=-\boldsymbol{\omega}+\lfloor\xi \boldsymbol{c}\rfloor \cdot \Pi$ and $\boldsymbol{\omega}=(1, \ldots, 1)$.

Let $P_{x_{1}, \ldots,} P_{\alpha_{t}}$ be ordered points that determine a chain of maximal L-shape branches. Then

$$
\begin{equation*}
\boldsymbol{w}-\overline{\boldsymbol{w}}=\boldsymbol{w} \cdot{ }^{t} \Pi=\lfloor\xi \boldsymbol{c}\rfloor \cdot \Pi{ }^{t} \Pi-\boldsymbol{w} \cdot{ }^{t} \Pi . \tag{A.2}
\end{equation*}
$$

The matrix $-\Pi{ }^{t} \Pi$ is the intersection matrix of the strict transforms E_{α} on the surface Y. So for every $1 \leq j \leq l$,

$$
w_{\alpha_{j}}-\bar{w}_{\alpha_{j}}=-\left\lfloor\xi c_{\alpha_{j}-1}\right\rfloor+\left(p_{\alpha j}+1\right)\left\lfloor\xi c_{\alpha j}\right\rfloor-\left\lfloor\xi c_{\alpha j j+1^{1}}\right\rfloor+\left(p_{\alpha_{j}}-1\right)
$$

and $\sum_{j=1}^{l}\left(w_{\alpha_{j}}-\bar{w}_{\alpha_{j}}\right)$ is equal to

$$
-\left\lfloor\xi c_{\alpha_{0}}\right\rfloor+p_{\alpha_{1}}\left\lfloor\xi c_{\kappa_{i}}\right\rfloor+\sum_{j=2}^{l-1}\left(p_{\alpha_{i}}-1\right)\left\lfloor\xi c_{\alpha_{j}}\right\rfloor+p_{\alpha_{l}}\left\lfloor\xi c_{\alpha_{i}}\right\rfloor-\left\lfloor\xi c_{\alpha_{i+1}}\right\rfloor+\sum_{j=1}^{l}\left(p_{\alpha_{j}}-1\right) .
$$

Since $\boldsymbol{c} \cdot \Pi \cdot{ }^{t} \Pi=(0, \ldots, 0, d)$, we have

$$
\begin{equation*}
-2<\sum_{j=1}^{l}\left(w_{\alpha_{j}}-\bar{w}_{\alpha_{j}}\right)<\sum_{j=1}^{l} p_{\alpha_{j}}+2-l . \tag{A.3}
\end{equation*}
$$

Putting $l=1$ we observe that if the proximity relation is not satisfied at P_{α}, then $w_{k}-\bar{w}_{\alpha k}=-1$. But the unloading procedure of Lemma A. 7 at P_{α} changes the vector $\boldsymbol{w}-\overline{\boldsymbol{w}}$ into the vector $\boldsymbol{w}-\overline{\boldsymbol{w}}+\left(\Pi^{,}{ }^{i} \Pi\right)_{\alpha}$. It follows that the unloading procedure does not change the inequalities in (A.3) for the new cluster. So the associated unloaded cluster satisfies (*). Lemma A. 12 gives the result.

Proof of Corollary A.2. Let $d=\operatorname{gcd}(m, n)$ and $m=d p$ and $n=d q$. Let ξ be a jumping number for B at P and consider the cluster whose associated divisor is the exceptional configuration in $\left\lfloor\mu^{*}(\xi B)\right\rfloor$. The coefficient of E_{r}, the last strict transform for a \log resolution of B at P - the Enriques diagram associated to the configuration of strict transforms above P is $T_{p, q}$ with the weights corresponding to $d B_{r}-$ must be of the form $a p+b q+1$, for some $a, b \geq 0$. But the last coefficient is $\lfloor\xi d p q\rfloor-(p+q-1)$, hence ξ is the minimal rational number such that

$$
\lfloor\xi d p q\rfloor=(a+1) p+(b+1) q,
$$

and the result follows.

EXAMPLES A.13. Let $P \in B$ be a singular point of type $A_{2 r}$ locally given by $x^{2}+y^{2 r+1}=0, r \geq 1$. The Enriques diagram of the minimal log resolution of B at P is $T_{2,2 r+1}$ with the weights as shown in Figure 7.

Figure 7
By Corollary A.2, the jumping numbers <1 of B at P are $\xi_{a}=1 / 2+$ $a /(2 r+1)$, with $a=1, \ldots, r$. Then
$\mathcal{J}\left(\xi_{a} \cdot B\right)_{P}=\mu_{*} \mathcal{O}_{Y}\left(-(2 a-1) E_{r+2}\right)=\mu_{*} \mathcal{O}_{Y}\left(-2 a E_{r+2}\right)=\mu_{*} \mathcal{O}_{Y}\left(-W_{1}-\cdots-W_{a}\right)$ for any a. The corresponding subscheme $Z_{2,2 r+1}(\overline{2 a-1})=Z_{P}^{[a]}$ is the curvilinear subscheme defined by the unloaded cluster $\left\{P_{1}, \ldots, P_{a}\right\}$.

Let $P \in B$ be a singular point locally given by $x^{2}+y^{2 r}=0, r \geq 1$. As before the Enriques diagram of the minimal \log resolution of B at P is $T_{1, r}$. It consists of r free points with all the weights equal to 2 . By Corollary A.2, the jumping numbers <1 of B at P are $\xi_{a}=1 / 2+a /(2 r)$ with $a=1, \ldots, r-1$, and by Proposition A. 1 the multiplier ideals are $\mathcal{J}\left(\xi_{a} \cdot B\right)_{P}=\mu_{*} \mathcal{O}_{Y}\left(-a E_{r}\right)=\mu_{*} \mathcal{O}_{Y}\left(-W_{1}-\cdots-W_{a}\right)$. The subscheme $Z_{1, r}(\bar{a})$ is $Z_{P}^{[a]}$, the curvilinear subscheme corresponding to the unloaded cluster $\left\{P_{1}, \ldots, P_{a}\right\}$ for any $1 \leq a \leq r-1$.

A. 4 OKA'S EXAMPLE AND THE PROOF OF PROPOSITION 4.3

Keeping the set-up and notation of Section 4, suppose that $p<q$. By Theorem 3.1 and Proposition A.1, the irregularity of the $p q$-multiple plane associated to the curve $C_{p, q}$ is given by

$$
q(S)=\sum_{\substack{\alpha, \beta \geq 1 \\ \alpha p+\beta q<p q}} h^{1}\left(\mathbf{P}^{2}, \mathcal{I}_{\mathcal{Z}_{p, q}(\overline{(\alpha-1) p+(\beta-1) q+1)}}(-3+\alpha p+\beta q)\right) .
$$

The sum consists of $(p-1)(q-1) / 2$ terms, and as in the particular case $p=2$, we shall show that each of them equals 1 . For an arbitrary couple (α, β), with $\alpha \geq 2$, we first apply the trace-residual exact sequence $\alpha-1$ times with respect to C_{p}. If \mathcal{Z} denotes the subscheme $\mathcal{Z}_{p, q}(\overline{(\alpha-1) p+(\beta-1) q+1})$, using the lemma hereafter, we have the short exact sequence

$$
\begin{aligned}
0 \longrightarrow & \mathcal{I}_{\mathcal{Z}_{p, q}(\overline{(\alpha-2) p+(\beta-1) q+1)}}(-3+\alpha(p-1)+\beta q) \\
& \longrightarrow \mathcal{I}_{Z}(-3+\alpha p+\beta q) \xrightarrow{p} \mathcal{I}_{\mathrm{Tr}_{c_{p}}} z(-3+\alpha p+\beta q) \longrightarrow 0
\end{aligned}
$$

Let P be any point in the support of \mathcal{Z} and w_{1} be the weight of $P=P_{1}$ in the unloaded cluster $K_{p, q}(\overline{(\alpha-1) p+(\beta-1) q+1})$. The subscheme \mathcal{Z} is contained in $w_{1} C_{q}$, hence using the multiplication with the equation of C_{q} at the power w_{1}, the global sections of $\mathcal{O}_{\mathbf{p}^{2}}\left(-w_{1} q+n\right)$ live in $H^{0}\left(\mathbf{P}^{2}, \mathcal{I}_{Z}(n)\right)$ for any integer n. Since $\operatorname{Tr}_{C_{p}} \mathcal{Z}=\left.w_{1} C_{q}\right|_{c_{p}}$, the global sections of $\mathcal{I}_{\operatorname{Tr}_{c_{p}} Z}(-3+n)$ are cut out by the curves of degree $-3+n-w_{1} q$, hence $H^{0} \rho$ is surjective. We conclude that

$$
\begin{align*}
h^{1}\left(\mathbf{P}^{2}, \mathcal{I}_{\mathcal{Z}_{p, q}(\overline{(\alpha-1) p+(\beta-1) q+1)}}\right. & (-3+\alpha p+\beta q)) \tag{A.4}\\
& =h^{1}\left(\mathbf{P}^{2}, \mathcal{I}_{\mathcal{Z}_{p, q}(\overline{(\beta-1) q+1})}(-3+p+\beta q)\right)
\end{align*}
$$

whenever $\alpha \geq 2$. Then, in case $\beta \geq 2$, we apply $\beta-1$ times the traceresidual exact sequence with respect to C_{q} starting with the subscheme $\mathcal{Z}=\mathcal{Z}_{p, q}(\overline{(\beta-1) q+1})$. As before, we have

$$
\begin{aligned}
0 \rightarrow \mathcal{I}_{\mathcal{Z}_{p, q}((\beta-2) q+1)}(-3+p+(\beta-1) q) \rightarrow & \mathcal{I}_{\mathcal{Z}}(-3+p+\beta q) \\
& \xrightarrow[\rightarrow]{ } \mathcal{I}_{\mathrm{Tr}_{C_{q}} Z}(-3+p+\beta q) \rightarrow 0
\end{aligned}
$$

the surjectivity of $H^{0} \rho$ being given this time by the inclusion $\mathcal{Z} \subset w C_{p}$, with w the sum of the weights of the points $P_{1}, P_{2}, \ldots, P_{a_{1}}, P_{a_{1}+1}$ in the cluster $K_{p, q}(\overline{(\beta-1) q+1})$. So
(A.5) $\quad h^{1}\left(\mathbf{P}^{2}, I_{\left.\mathcal{Z}_{p, q},(\bar{\beta}-1) q+1\right)}(-3+p+\beta q)\right)=h^{1}\left(\mathbf{P}^{2}, I_{\mathcal{Z}(\overline{1})}(-3+p+q)\right)$.

Finally, $\mathcal{Z}_{p, q}(\overline{1})=\bigcup_{P} P$ and we apply once more the trace-residual exact sequence for this subscheme with respect to C_{p} to get

$$
0 \longrightarrow \mathcal{O}_{\mathbf{p}^{2}}(-3+q) \longrightarrow \mathcal{I}_{\mathcal{Z}_{p, q}(\overline{1})}(-3+p+q) \longrightarrow \mathcal{O}_{C_{p}}(-3+p) \longrightarrow 0
$$

Since $q>p, h^{1}\left(\mathbf{P}^{2}, \mathcal{I}_{\mathcal{Z}_{p, q}(\overline{1})}(-3+p+q)\right)=h^{1}\left(C_{p}, \mathcal{O}_{C_{p}}(-3+p)\right)=1$. Together with (A.4) and (A.5) this concludes the proof of the proposition.

LEMMA A.14. Let $Z=Z_{p, q}(\overline{\alpha p+\beta q+1})$ be the subscheme associated to the unloaded cluster $K_{p, q}(\overline{\alpha p+\beta q+1})$ and centered at a point of intersection of C_{p} and C_{q}. If $\alpha \geq 1$, then $\operatorname{Res}_{C_{p}} Z=Z_{p, q}(\overline{(\alpha-1) p+\beta q+1})$, and if $\beta \geq 1$, then $\operatorname{Res}_{C_{q}} Z=Z_{p, q}(\overline{\alpha p+(\beta-1) q+1})$.

Proof. We first show that if $K_{p, q}(\overline{\alpha p+\beta q+1})=\left\{P_{1}^{2 p_{1}}, \ldots, P_{r}^{2 v_{r}}\right\}$, then the subscheme $\operatorname{Res}_{C} Z$ corresponds to the unloaded cluster associated to $K=\left\{P_{1}^{i D_{1}-1}, \ldots, P_{r}^{i p_{r}}\right\}$. To see this, let us denote by ε the blowing up of the plane at $P=P_{1}$ and by μ^{\prime} the sequence of the remaining blowing ups that compose $\mu: X \xrightarrow{\mu^{\prime}} X_{2}=\mathrm{Bl}_{P} \mathbf{P}^{2} \xrightarrow{\varepsilon} X_{1}=\mathbf{P}^{2}$. Then

$$
\mathcal{I}_{Z}=\mu_{*} \mathcal{O}_{X}\left(-D_{K}\right)=\varepsilon_{*}\left(\mathcal{O}_{\mathrm{Bl}_{\rho} \mathrm{P}^{2}}\left(-w_{1} W_{1}^{(2)}\right) \otimes \mu_{*}^{\prime} \mathcal{O}_{X}\left(-D_{K}+w_{1} W_{1}\right)\right)
$$

The ideal $\mu_{*}^{\prime} \mathcal{O}_{X}\left(-D_{K}+w_{1} W_{1}\right)$ is associated to the cluster $K^{\prime}=\left\{P_{2}^{2 w_{2}}, \ldots, P_{r}^{3 w_{r}}\right\}$ centered at P_{2}. If ε is given locally around P_{2} by $x=x^{\prime} y^{\prime}$ and $y=y^{\prime}$, then the equation of the exceptional divisor $E_{1}^{(2)}=W_{1}^{(2)} \subset \mathrm{Bl}_{P} \mathbf{P}^{2}$ is $y^{\prime}=0$. It follows that

$$
\begin{align*}
\left(\mathcal{I}_{Z}: \mathcal{I}_{C_{P}}\right) & =\left(\varepsilon_{*}\left(\mathcal{O}_{\mathrm{Bl}_{P} \mathbf{P}^{2}}\left(-w_{1} W_{1}^{(2)}\right) \otimes \mu_{*}^{\prime} \mathcal{O}_{X}\left(-D_{K}+w_{1} W_{1}\right)\right): \mathcal{I}_{W_{1}^{(2)}}\right) \tag{A.6}\\
& =\varepsilon_{*}\left(\mathcal{O}_{\left.\mathrm{Bl}_{\rho} \mathbf{P}^{2}\left(-\left(w_{1}-1\right) W_{1}^{(2)}\right) \otimes \mu_{*}^{\prime} \mathcal{O}_{X}\left(-D_{K}+w_{1} W_{1}\right)\right),} .\right.
\end{align*}
$$

hence the result. Next, suppose that $\overline{\alpha p+\beta q+1}=a p+b q$. From the proof of Lemma A.12, since the cluster $\left\{P_{1}^{2 v_{1}}, \ldots, P_{r}^{2 v_{r}}\right\}$ satisfies condition (*), it follows that K satisfies this condition too and hence \bar{K} is of the type $K_{p, q}(\bar{c})$ with
$c=\varphi\left(\left(w_{1}-1\right) W_{1}+\sum_{\alpha \geq 2} W_{\alpha}\right)=\varphi\left(\sum_{\alpha} W_{\alpha}\right)-\varphi\left(W_{1}\right)=a p+b q-p=(a-1) p+b q$.
Here φ is as before the projection $\varphi: \bigoplus_{\alpha} \mathbf{Z} E_{\alpha} \rightarrow \mathbf{Z} \simeq \mathbf{Z} E_{r}$. So $\bar{c}=c$ and $\operatorname{Res}_{C_{p}} Z=Z_{p, q}((a-1) p+b q)$. To finish the proof of the first assertion, it is sufficient to show that $\overline{(\alpha-1) p+\beta q+1}=(a-1) p+b q$, where $\alpha \geq 1$ and $\overline{\alpha p+\beta q+1}=a p+b q$. But this is clear, since if there existed non-negative integers a^{\prime}, b^{\prime} such that

$$
(a-1) p+b q>a^{\prime} p+b^{\prime} q \geq(\alpha-1) p+\beta q+1
$$

then $\overline{\alpha p+\beta q+1}$ would be equal to $\left(a^{\prime}+1\right) p+b^{\prime} q$.
The proof of the second assertion is similar; the argument in formula (A.6) has to be repeated $a_{1}+1$ times, i.e. for all the free points of the Enriques diagram.

REFERENCES

[1] Artal-Bartolo, E. Sur les couples de Zariski. J. Algebraic Geom. 3 (1994), 223-247.
[2] - Combinatorics and topology of line arrangements in the complex projective plane. Proc. Amer. Math. Soc. 121 (1994), 385-390.
[3] CASAS-ALVERO, E. Infinitely near imposed singularities and singularities of polar curves. Math. Ann. 287 (1990), 429-454.
[4] EIN, L. Multiplier ideals, vanishing theorems and applications. In: Algebraic Geometry-Santa Cruz 1995, 203-219. Proc. Sympos. Pure Math 62, Part 1. Amer. Math. Soc., Providence, RI., 1997.
[5] Ein, L., R. Lazarsfeld, K. E. Smith and D. Varolin. Jumping coefficients of multiplier ideals. Duke Math. J. 123 (2004), 469-506.
[6] Enriques, F. e O. Chisint. Lezioni sulla teoria geometrica delle equazioni e delle funzioni algebriche. N. Zanichelli, Bologna, 1915.
[7] Esnault, H. Fibre de Milnor d'un cône sur une courbe plane singulière. Invent. Math. 68 (1982), 477-496.
[8] Evain, L. La fonction de Hilbert de la réunion de 4^{h} gros points génériques de \mathbf{P}^{2} de même multiplicité. J. Algebraic Geom. 8 (1999), 787-796.
[9] Hartshorne, R. Algebraic Geometry. Graduate Texts in Mathematics 52, Springer-Verlag, 1977.
[10] HRSCHOWITZ, A. La méthode d'Horace pour l'interpolation à plusieurs variables. Manuscripta Math. 50 (1985), 337-388.
[11] Howald, J. A. Multiplier ideals of monomial ideals. Trans. Amer. Math. Soc. 353 (2001), 2665-2671.
[12] LAZARSFELD, R. Positivity in Algebraic Geometry. A Series of Modern Surveys in Mathematics, Springer-Verlag, Berlin, 2004.
[13] Libgober, A. Alexander polynomial of plane algebraic curves and cyclic multiple planes. Duke Math. J. 49 (1982), 833-851.
[14] - Homotopy groups of the complements to singular hypersurfaces. Bull. Amer. Math. Soc. (N. S.) 13 (1985), 49-52.
[15] - Position of singularities of hypersurfaces and the topology of their complements. J. Math. Sci. 82 (1996), 3194-3210.
[16] - Characteristic varieties of algebraic curves. In: Applications of Algebraic Geometry to Coding Theory, Physics and Computation (Eilat, 2001), 215-254. NATO Sci. Ser. II Math. Phys. Chem. 36. Kluwer Acad. Publ., Dordrecht, 2001.
[17] - Hodge decomposition of Alexander invariants. Manuscripta Math. 107 (2002), 251-269.
[18] - Lectures on topology of complements and fundamental groups. arXiv: math.AG/0510049 (2005).
[19] OKA, M. Some plane curves whose complements have nonabelian fundamental groups. Math. Ann. 218 (1978), 55-65.
[20] Pardini, R. Abelian covers of algebraic varieties. J. Reine Angew. Math. 417 (1991), 191-213.
[21] VAQUIE, M. Irrégularité des revêtements cycliques des surfaces projectives non singulières. Amer. J. Math. 114 (1992), 1187-1199.
[22] ZARISKI, O. On the linear connection index of the algebraic surfaces $z^{n}=$ $f(x, y)$. Proc. Natl. Acad. Sci. USA 15 (1929), 494-501.
[23] - On the irregularity of cyclic multiple planes. Ann. of Math. (2) 32 (1931), 485-511.
(Reçu le 2 février 2007)

Daniel Naie
Département de Mathématiques
Université d'Angers
F-40045 Angers
France
e-mail: Daniel.Naie@univ-angers.fr

