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THE HOPF CONJECTURE AND THE SINGER CONJECTURE

by Michael W. Davis

Conjecture 27.1. Suppose M2k is a closed, aspherical manifold of
dimension 2k. Then |-1 > 0,

The conjecture is true in dimension 2 since the only surfaces which
have positive Etiler characteristic are S2 and RP2 and they are the only two
which are not aspherical. In the special case where M2k is a nonpositively
curved Riemannian manifold this conjecture is usually attributed to Hopf by
topologistS and either to Chern or to both Chern and Hopf by differential

geometers.

When I first heard about this conjecture in 1981, I thought I could come

up with a counterexample by using right-angled Coxeter groups. Given a

finite simplicial complex L which is a flag complex, there is an associated

right-angled Coxeter group W. Its Euler characteristic is given by the

formula

where f denotes the number of /-simplices in L. If L is a triangulation of
5"_1, then W acts properly and cocompactly on a contractible «-manifold.
The quotient of this contractible manifold by any finite index, torsion-free

subgroup T c W is a closed aspherical «-manifold M". Since \(M") is a

positive multiple of \( U't (by [W : F]), they have the same sign. So, this
looked like a good way to come up with counterexamples to Conjecture 27.1.

Conversely, if you believe Conjecture 27.1, then you must also believe the

following

(27.1)
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Conjecture 27.2. If L is any flag triangulation of S2k 1 then

i 1 foil.) ' o.

where n(L) A J/te quantity defined, by the right-hand side of (27.1).

Ruth Charney and I published this conjecture in [2J. It is sometimes called
the Charney-Davis Conjecture.

In the 1970's Atiyali [1] introduced L2 methods into topology. If a

discrete group F acts properly and cocompactly on a smooth manifold or a

CW-complex Y, then one can define the reduced Lr -cohomology spaces of Y

and their "dimensions" with respect to F, the so-called "L2-Betti numbers".

Let LrbfY; T) be the F-dimension of the L2 -cohomology Of Y in dimension i.
It is a nonnegative real number. If Y —s- X is a regular covering of a finite
CW-complex X with group of deck transformations F, the Euler characteristic

of X can be calculated from the Zr -Betti numbers of Y by the formula

(27.2) ^^(-D'L^Lr).
Shortly after Atiyah described this formula in [1], Dodziuk [4] and Singer
realized that there is a conjecture about Lr -Betti numbers which is stronger
than Conjecture 27.1. It is usually called the Singer Conjecture. Beno

Eckmann [5] also discusses it in this volume.

Conjecture 27.3 ([4]). Suppose M" is a closed, asplierical manifold
with fundamental group 7r and universal cover M". Then LrbfM"; «*) — 0

for all i ^ |. (In particular, when n is odd this means all its L2 -Betti numbers

vanish.)

This implies Conjecture 27.1 since, when n — 2k, formula (27.2) gives:

(-1 fx(M2k) - ÛbflM*: TT) > 0.

Of course, there is also the following version of Conjecture 27.3 for Coxeter

groups.

Conjecture 27.4. Suppose that L is a triangulation of S-1 as a flag
complex, that W is the associated right-angled Coxeter group and that T is the

contractible n-manifold on which W acts. Then Üb (X: VF) 0 for all f yZ §.

Boris Okun and I discussed this conjecture in [3] and we proved it
for n < 4. The result for n - 4 implies Conjecture 27.2 when L is a

flag triangulation of S3. So, Conjecture 27.2 is true in the, first dimension for
which it is not obvious.
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