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METASTABLE EMBEDDING, 2-EQTITVAT ENGE

AND GENERIC RIGIDITY OF FLAG MANIFOLDS

by Henry Glover

Conjecture 34.1. Any 2-equivalent manifolds embed in the same meta-
stable dimension. I.e., let M" and N" be two simply connected closed

differentiable manifolds such that their 2-localizations are homotopy equivalent.

If M" embeds in R"+<:, k> (n + 3)/2, then N" embeds in euclidean space

of the same dimension, cf. [7].

R. Rigdon [15] proved this result in the case that there exists a global

map, /: M -4 N realizing this 2-equivalence, e.g., an odd covering. Glover,
Mislin [8] and independently Bendersky [1] proved an analogous result
for immersing manifolds in euclidean space. Glover, Mislin [9] proved an

analogous result for the number of linearly independent tangent vector fields

on a smooth manifold. Although the embedding result would just be a technical

generalization of Rigdon's result it still seems interesting and would apply to
such situations as the Hilton, Roitberg criminal H-manifolds [11], or manifolds
made by Zabrodsky mixing [16],

Conjecture 34.2. All complex flag manifolds are genetically rigid. I.e.,

given a simply connected space X of finite type, let Ç(X) denote the (Mislin)
genus of X, the set of all homotopy types [T], of simply connected, finite type

spaces Y, such that the p-localization of X is homotopy equivalent to the

p-localization of Y, for all primes p. We say that a simply connected, finite
type X is genetically rigid or genetically trivial if Q(X) — {[NT]}, the single

homotopy type. A complex flag manifold is any space G/H, where G — U(n)
and H U(n\) x U(nf) x • • • x H(%), with 1^«; «= n.

See [9] for cases when Conjecture 34.2 has been proved. These include

complex Grassmann manifolds and complete flag manifolds U(n)/T', where
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T" — II"=1f7(l). Note that Papadima has proved this result in the context of G

any compact Lie group and H its maximal torus [14],
A survey df the Mislin genus is given in [13]. Many simply

connected spaces of finite type fail to be generically trivial, First examples are

ö(HP")| 2k, where k is the number of primes p, such that 2 < p < 2n — 1.

This conjecture began with the author's question to Albrecht Dold in 1973

of why we didn't know more manifolds with the fixed point property (every
self map has a fixed point). The obvious ones at that point were the real,

complex projective spaces of even dimension and all quaternionic projective
spaces (except HP1 as shown by the Lefschetz fixed-point formula. Dold
suggested the Grassmann manifold of complex 2-planes through the origin) in
5-dimensional complex space, U(5)/(U(2) x t/(3)). This was correct as seen

by applying the Lefschetz fixed-point formula to the integral cohomology ring

H*(U(p + q)/(U(p) x £%»; Z) Z[c, c]/{cc 1}

showing there were only Adams maps, ct- m- AT; for i — 1,2,.. .,p, in this

case p — 2, q — 3. Here c is the total Chern class of the canonical p -plane
bundle over this Grassmann manifold and c the total Chern class of the

canonical q-plane bundle. In [4] it is shown that this result is true in general
for p > |, This result led to the independent proofs by Stephen Brewster

(OSU PhD thesis 1978) [2] and Mike Hoffman [12] that the only cohomology
ring endomorphisms of Grassmann manifolds U(p + q)/(U(p) x U{q)) were

given by Adams maps when p ^ q, and A 7^ 0, and a cï, L— 1, 2,... ,p,
when p q.

The results in [5] give a conjecture for all the integral cohomology ring
endomorphisms of the general complex flag manifold and as a consequence
give the conjecture that all the rational cohomology ring automorphisms are

given by Adams maps, and actions of the Weyl group N/H, where N is the

normalizer of H — Hf=1 £/(«,-), SjLfR,- — n, in G — U(n). It is this conjecture,

proved in special cases, that gives the results in [10] and would prove
Conjecture 34.2. Another consequence of the cohomology ring endomorphism
conjecture would be a complete classification of which complex flag manifolds
have the fixed point property (cf. [6]). There are a number of other applications
of the cohomology ring endomorphism and automorphism theorems, e.g., by
S. Papadima [14] to isometry invariant geodesies, and P. Gilkey [3] to the

classification of Hermitian Riemannian manifolds.
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