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AN FP„, -CONJECTURE FOR NILPOTENT-BY-ABELIÂN GROUPS

by Kai-Uwe Bux

Let G be a finitely generated metabelian group, i.e., we have a short exact

sequence

A' —> G —è Q

witlr N and Q Abelian groups, wherein the quotient Q is finitely generated and

the kernel N is finitely generated as a ZQ-module. For any homomorphism
let Qx {q e Q \ x(Q) > 0} be the monoid of elements in Q

that are non-negative with respect to x • R- Bieri and R. Strebel defined the

geometric invariant of G as

'Lq(N) I \ g Hom(ß,R) | N is finitely generated over ZQX}

Note that homomorphisms that are positive scalar multiples of one another

define the same non-negative sub-monoid of Q. Thus, the geometric invariant
is a conical subset of the real vector space Hom(ß, R). Also note that go Q,
whence the geometric invariant contains 0 since G is finitely generated.

Bieri-Strebel showed that 'Lq(N) determines whether G is finitely
presented. However, this information is more easily extracted from the complement

v,;i.V!: IIonng.R! X,T\'!.

Theorem 20.1 (Bieri-Strebel [4]). The following are equivalent:

(1) G is finitely presented.

2) G is of type FP2.

(3) The complement TTQ(N) does not contain two antipodal points, i.e.,

whenever y 6 then
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Bieri conjectured that the information about higher finiteness properties
of G is also encoded in Z.q(N) Recall that a group G is of type FP„, if
the« is a partial resolution

Prn 7 Pm— 1 —>•••'—>• :P~l -> Pq —^ z
of Z, regarded as the trivial ZG-module, by finitely generated projective
ZG-modules.

CQNJECTLTRB 20.2 (Bieri). For any m > 2, the following are equivalent :

(1) G is of type FPm.

(2) The complement 1&(N) is m-tame.

Flere, we call a conical subset G of a real vector space m-tame if
0 <ÉU+U±--- + U

V '
m summands

Evidence for this conjecture is mounting. It has been proved for many special

cases. In particular, H. Âberg settled the case when N is virtually torsion free

of finite rank [2], and the case m - 3 was settled by R. Bieri and J. Harlander
for the case of split extensions [3J.

Now, let G be nilpotent-by-Abelian, i.e., suppose G fits into a short exact

sequence
N —> G —> Q

where N is nilpotent and Q is Abelian. Again, we assume that G is finitely
generated. In that case, every Abelian factor Mt :-=? NijNl+\ along the lower
central series N — N% > AO > N3 > - is a finitely generated ZQ-module
to which we can associate, as above, a geometric invariant Ig(M;) and a

complement denoted by
Note that a necessary condition for G to be of type FPm is that the

homology groups H;(G;Z) are finitely generated in dimensions up to m.
Therefore, the most optimistic and most straightforward generalization of the

FP„,-conjecture to the class of nilpotent-by-Abelian groups would be that

the metabelian quotient of G contains all of the relevant information needed

besides the obvious homological restrictions. We thus arrive at:

Conjecture 20.3. For m > 2, the following are equivalent:

(1) G is of type FPm.

(2) The complement 12 (A/;) is m-tame and the homology groups H#/;Z)
are finitely generated as ZQ-modules for all dimensions i G {1,2,..., wz}.
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Surprisingly, this very optimistic conjecture has some support: by results

of H. Abels, the conjecture holds for m — 2 if G is a solvable Y-arithmetic

group over a number field [1], My own results on solvable S-arithmetic

groups over function fields [5] are also compatible with the conjecture.
However, the conjecture appears too optimistic, so a better question might
be:

Is there a way to characterize the higher FPm-properties of a nilpotent-
by-Abelian group G in terms of its homology and the geometric invariants of
the modules M,
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