Continua as minimal sets of homeomorphisms of \mathbf{S}^{2}

Autor(en): Matsumoto, Shigenori / Nakayama, Hiromichi
Objekttyp: Article
Zeitschrift: L'Enseignement Mathématique

Band (Jahr): 57 (2011)

$$
\text { PDF erstellt am: } \quad 21.07 .2024
$$

Persistenter Link: https://doi.org/10.5169/seals-283537

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

CONTINUA AS MINIMAL SETS OF HOMEOMORPHISMS OF S^{2}
 by Shigenori Matsumoto and Hiromichi NaKayama

Abstract

Let f be an orientation preserving homeomorphism of S^{2} which has a continuum X as a minimal set. Then there are exactly two connected components of $S^{2} \backslash X$ which are left invariant by f and all the others are wandering. The Carathéodory rotation number of an invariant component is irrational.

1. INTRODUCTION

Let f be an orientation preserving homeomorphism of S^{2} which has a continuum X as a minimal set. By a continuum we mean a compact connected subset which is not a single point. There are a great variety of examples of such homeomorphisms. The simplest one is an irrational rotation on S^{2}, with a round circle as a minimal set. Besides this, a pathological diffeomorphism of S^{2} is constructed in [Ha] which has a pseudo-circle as a minimal set. See also [He] for a curious diffeomorphism. Also a homeomorphism of S^{2} with a minimal set homeomorphic to a variant of the Warsaw circle is constructed in [W]. The fast approximation by conjugacy method is discussed in [FK], which may produce such diffeomorphisms with various topological natures.

In all these examples the minimal sets X separate S^{2} into two domains. So it is natural to ask if this is the case with any minimal continuum. It is well known that for any $n \in \mathbf{N}$, there is a continuum X in S^{2} which separates S^{2} into n open domains U_{1}, \ldots, U_{n} such that the frontier of each U_{i} coincides with X ([K]).

A connected component U of $S^{2} \backslash X$ is called an invariant domain if $f U=U$, a periodic domain if $f^{n} U=U$ for some $n \geq 1$, and a wandering domain otherwise.

THEOREM 1.1. Consider an orientation preserving homeomorphism of S^{2} which admits a continuum as a minimal set. Then there are exactly two invariant domains and all the other domains are wandering. The Carathéodory rotation numbers of both invariant domains are identical and irrational.

The overall strategy to prove Theorem 1.1 is to use the Carathéodory prime end theory and to apply the Cartwright-Littlewood theorem. Sections 2 and 3 are expositions of the prime end theory and the Cartwright-Littlewood theorem, which are included since they are short and self-contained, and some special features pointed out in these sections are needed in the development of Section 4, which is devoted to the proof of Theorem 1.1. Both Sections 2 and 3 concern simply connected domains of closed oriented surfaces of any genus, and Section 4 solely orientation preserving homeomorphisms of the sphere S^{2}. In Section 5 we will construct a homeomorphism which actually admits a wandering domain.

2. PRIME ENDS

Denote by $\mathbf{\Sigma}$ a closed oriented surface equipped with a smooth Riemannian metric g and the associated area form dvol. Let $U \subset \Sigma$ be a hyperbolic domain, i.e. an open simply connected subset such that $\Sigma \backslash U$ is not a singleton. (A nonhyperbolic simply connected domain exists only on the 2 -sphere.) The purpose of this section is to show that a homeomorphism of U which extends to a homeomorphism of the closure \bar{U} does extend to a homeomorphism of the so called Carathéodory compactification \widehat{U}, a closed disc. Here we are only concerned with a simply connected domain in Σ. But there are generalizations to more general domains, which can be found in $[\mathrm{E}]$ and $[\mathrm{M}]$. As general references of prime end theory, see also Sect. 17, [Mi] and Chapter IX, [T]. The proof of the main lemma here (Lemma 2.2) is taken from [E].

Let $0 \in U$ be a base point. A real line properly embedded in U and not passing through 0 is called a cross cut. A cross cut c separates U into two hyperbolic domains, as can be seen by considering the one point compactification of U and applying the Jordan curve theorem. The one not containing 0 is called the content of c and denoted by $U(c)$. A sequence of cross cuts $\left\{c_{i}\right\}_{i=1}^{\infty}$ is called a chain if $c_{i+1} \subset U\left(c_{i}\right)$ for each i. Two chains $\left\{c_{i}\right\}$ and $\left\{c_{i}^{\prime}\right\}$ are called equivalent if for any i, there is a j such that $c_{j}^{\prime} \subset U\left(c_{i}\right)$ and $c_{j} \subset U\left(c_{i}^{\prime}\right)$. An equivalence class of chains is called an end of U. (This is quite different from the notion of ends for general noncompact spaces developed by

Figure 1
Topological chains
H. Freudenthal et al., and set out e.g. in [E2].) A homeomorphism between two hyperbolic domains induces in an obvious way a bijection between the sets of ends. Given an end ξ, the relatively closed set $C(\xi)=\cap_{i} U\left(c_{i}\right)$ is independent of the choice of a chain $\left\{c_{i}\right\}$ from the end ξ, and is called the content of ξ.

A chain $\left\{c_{i}\right\}$ is called topological if the closures \bar{c}_{i} of c_{i} in Σ are mutually disjoint and the diameter $\operatorname{diam}\left(c_{i}\right)$ converges to 0 as $i \rightarrow \infty$. Examples of topological chains, $\left\{c_{i}\right\}$ and $\left\{c_{i}^{\prime}\right\}$, are given in Figure 1. An end is called prime if it admits a topological chain.

LEMMA 2.1. The content $C(\xi)$ of a prime end ξ is empty.

Proof. Assume the contrary and choose a point x from $C(\xi)$. Consider an arc γ in U joining 0 to x. See Figure 2. Then the distance from a point in γ to $\Sigma \backslash U$ is a continuous function on γ, and thus has a positive minimum. This contradicts the assumption that ξ is prime.

Figure 2

A positive valued continuous function ρ on U is called admissible if

$$
\int_{U} \rho^{2} d v o l<\infty
$$

Given a subset c in U, ρ-diam (c) denotes the diameter of c with respect to the Riemannian metric $\rho^{2} g$. (Function theorists often denote the same metric by $\rho|d z|$.) An end ξ is called conformal if for any admissible function ρ there is a chain $\left\{c_{i}\right\}$ representing ξ such that ρ-diam $\left(c_{i}\right) \rightarrow 0$.

If $\phi: U \rightarrow V$ is a conformal equivalence and if $\rho: V \rightarrow(0, \infty)$ is admissible, then the function $\sigma: U \rightarrow(0, \infty)$ defined by $\sigma(z)=\rho(\phi(z))\left|\phi^{\prime}(z)\right|$ is admissible, and for $c \subset V$, we have ρ - $\operatorname{diam}(c)=\sigma$-diam $\left(\phi^{-1}(c)\right)$. This shows that ϕ induces a bijection between the sets of the conformal ends of the two hyperbolic domains.

LEMMA 2.2. An end ξ is prime if and only if it is conformal.
Proof. First of all assuming that ξ is a prime end which is represented by a topological chain $\left\{c_{i}\right\}$, we shall show that ξ is a conformal end. By passing to a subsequence one may further assume that \bar{c}_{i} converges to a point x_{0}. Since x_{0} belongs to at most one \bar{c}_{i}, one may also assume that $x_{0} \notin \bar{c}_{i}$ for any i. Take polar coordinates (r, θ) around x_{0}. Let ρ be an arbitrary admissible function on U, extended to the whole Σ by letting $\rho=0$ outside U. Then by the Schwarz inequality

$$
\left(\int_{0}^{\epsilon} \int_{0}^{2 \pi} \rho(r, \theta) r d \theta d r\right)^{2} \leq \pi \epsilon^{2} \cdot \int_{r \leq c} \rho^{2} d v o l .
$$

Since ρ is admissible, $\int_{r \leq \epsilon} \rho^{2} d v o l \rightarrow 0$ as $\epsilon \rightarrow 0$, and we have

$$
\frac{1}{\epsilon} \int_{0}^{\epsilon} \int_{0}^{2 \pi} \rho(r, \theta) r d \theta d r \rightarrow 0 \quad(\epsilon \rightarrow 0)
$$

Therefore we can find a sequence $\epsilon_{k} \downarrow 0$ such that

$$
\int_{0}^{2 \pi} \rho\left(\epsilon_{k}, \theta\right) \epsilon_{k} d \theta \rightarrow 0 \quad(k \rightarrow \infty)
$$

Notice that the left-hand side above coincides with the ρ-length of the union of arcs $\left\{r=\epsilon_{k}\right\} \cap U$.

Now from the sequences $\left\{c_{i}\right\}$ and $\left\{\epsilon_{k}\right\}$, let us construct subsequences $\left\{c_{i}^{\prime}\right\}$ and $\left\{\epsilon_{k}^{\prime}\right\}$ in the following fashion. See Figure 3. First define $c_{1}^{\prime}=c_{1}$ and choose ϵ_{1}^{\prime} to be any ϵ_{k} from the sequence such that $\bar{c}_{1}^{\prime} \cap\left\{r \leq \epsilon_{1}^{\prime}\right\}=\varnothing$. Then choose c_{2}^{\prime} to be any c_{i} from the sequence such that $\bar{c}_{2}^{\prime} \subset\left\{r<\epsilon_{1}^{\prime}\right\}$.

Figure 3

Next choose ϵ_{2}^{\prime} such that $\bar{c}_{2}^{\prime} \cap\left\{r \leq \epsilon_{2}^{\prime}\right\}=\varnothing, c_{3}^{\prime}$ such that $\bar{c}_{3}^{\prime} \subset\left\{r<\epsilon_{2}^{\prime}\right\}$, and so forth.

Then there is a connected component $c_{i}^{\prime \prime}$ of $\left\{r=\epsilon_{i}^{\prime}\right\} \cap U$ which separates the cross cut c_{i+1}^{\prime} from c_{i}^{\prime}. To see this, construct a graph Γ; the vertices are connected components of $U \backslash\left\{r=\epsilon_{i}^{\prime}\right\}$ and the edges connected components of $U \cap\left\{r=\epsilon_{i}^{\prime}\right\}$. See Figure 4. By a transversality argument any two distinct vertices can be joined by a finite edge path. Actually Γ is a tree, since U is simply connected and any edge corresponds to a cross cut of U. Thus

Figure 4
there is a unique shortest edge path joining the two vertices corresponding to the components, one containing c_{i}^{\prime}, the other c_{i+1}^{\prime}. The component $c_{i}^{\prime \prime}$ of $U \cap\left\{r=c_{i}^{\prime}\right\}$ corresponding to any edge of σ separates c_{i+1}^{\prime} from c_{i}^{\prime}. Clearly the chains $\left\{c_{i}^{\prime}\right\}$ and $\left\{c_{i}^{\prime \prime}\right\}$ are equivalent and the latter satisfies ρ $\operatorname{diam}\left(c_{i}^{\prime \prime}\right) \rightarrow 0$, showing that ξ is conformal.

Next assume that ξ is conformal. First of all if we choose an admissible function ρ_{0} which is constantly equal to 1 on U, we can find a chain $\left\{c_{i}\right\}$ such that $\operatorname{diam}\left(c_{i}\right) \rightarrow 0$ as $i \rightarrow \infty$. Passing to a subsequence if necessary, one may assume $c_{i} \rightarrow x_{0}$. Again let (r, θ) be the polar coordinates around x_{0}. Define a function ρ by

$$
\rho(r, \theta)=\left\{\begin{array}{cl}
-\frac{1}{r \log r} & \text { if } r \leq 1 / 2 \\
\frac{2}{\log 2} & \text { otherwise } .
\end{array}\right.
$$

Computation shows that the restriction of ρ to U is admissible. Now for any small $\epsilon>\delta$, the ρ-distance of the ϵ-circle and the δ-circle is given by

$$
-\int_{\delta}^{\epsilon} \frac{d r}{r \log r}=\log (\log \delta / \log \epsilon)
$$

which diverges to ∞ if we fix ϵ and let $\delta \rightarrow 0$. Let c_{i}^{\prime} be a chain representing ξ such that ρ-diam $\left(c_{i}^{\prime}\right) \rightarrow 0$. Since ρ is bigger than a constant multiple of ρ_{0}, this implies also that diam $\left(c_{i}^{\prime}\right) \rightarrow 0$.

First consider the case where c_{i}^{\prime} converges to x_{0} (passing to a subsequence). See Figure 5. The above computation shows that for i large enough \bar{c}_{i}^{\prime} is

a compact subset of $\{0<r<1 / 2\}$ and we can take a subsequence such that the closures \bar{c}_{i}^{\prime} are mutually disjoint. Thus we obtain a topological chain representing ξ.

In the remaining case, we may assume that c_{i}^{\prime} converges to a point x_{1} distinct from x_{0}. See Figure 6 . We shall still use the polar coordinates (r, θ)

FIGURE 6
around x_{0}. Recall that we have another chain $\left\{c_{i}\right\}$ converging to x_{0}. The chain $\left\{c_{i}\right\}$ has no particularly good property other than diam $\left(c_{i}\right) \rightarrow 0$. In the worst case x_{0} may belong to any \bar{c}_{i}. However passing to subsequences of $\left\{c_{i}^{\prime}\right\}$ and $\left\{c_{i}\right\}$ (denoted by the same letters) and choosing a sequence of positive numbers $\epsilon_{i} \downarrow 0$, we may assume the following:
(1) the cross cut c_{i} is contained in $\left\{r<c_{i}\right\}$;
(2) all the c_{i}^{\prime} are disjoint from $\left\{r \leq c_{1}\right\}$;
(3) the sequence $c_{1}^{\prime}, c_{1}, c_{2}^{\prime}, c_{2}, \cdots$ forms a chain.

Then there is a component $c_{i}^{\prime \prime}$ of $\left\{r=\epsilon_{i}\right\} \cap U$ which separates c_{i} from c_{i}^{\prime}. The chain $\left\{c_{i}^{\prime \prime}\right\}$ is the desired topological chain.

A cross cut $c: \mathbf{R} \rightarrow U$ is called extendable if the limits $\lim _{t \rightarrow-\infty} c(t)$ and $\lim _{t \rightarrow \infty} c(t)$ exist. Then \bar{c} is either a compact arc or a Jordan curve in Σ. A topological chain $\left\{c_{i}\right\}$ is called extendable if each c_{i} is extendable. The proof of the above lemma also establishes the following lemma useful in the sequel.

LEMMA 2.3. A prime end is represented by an extendable topological chain.

For a hyperbolic domain U of Σ, denote by $\mathcal{P}(U)$ the set of prime ends of U. The union $\widehat{U}=U \cup \mathcal{P}(U)$, topologized in a standard way, is called the Carathéodory compactification of U. Let us explain it in more detail. A neighbourhood system in \widehat{U} of a point in U is the same as a given system in U. Choose a point $\xi \in \mathcal{P}(U)$ represented by a topological chain $\left\{c_{i}\right\}$. The set of points in the content $U\left(c_{i}\right)$, together with the prime ends represented by topological chains contained in $U\left(c_{i}\right)$ for each i, forms a neighbourhood system of ξ.

Lemma 2.2 shows that a conformal equivalence $\phi: U \rightarrow V$ extends to a homeomorphism $\hat{\phi}: \widehat{U} \rightarrow \widehat{V}$. In particular \widehat{U} is homeomorphic to $\widehat{\mathbf{D}}$ by the natural extension $\hat{\phi}$ of a Riemann mapping $\phi: U \rightarrow \mathbf{D}$, and for \mathbf{D} it is clear that $\widehat{\mathbf{D}}$ is homeomorphic to the closed disc $\mathbf{D} \cup \partial_{\infty} \mathbf{D}$. Thus \widehat{U} is homeomorphic to a closed disc for any hyperbolic domain U. On the other hand by the definition of topological chains, a homeomorphism f of U which extends to a homeomorphism of the closure \bar{U} does extend to a homeomorphism \widehat{f} of the compact disc \widehat{U}. Especially important is the rotation number of the restriction of \widehat{f} to $\mathcal{P}(U)$, which is called the Carathéodory rotation number.

A proper embedding $\gamma:[0, \infty) \rightarrow U$ is called a ray. A ray γ is said to belong to a prime end ξ if ξ is represented by a chain $\left\{c_{i}\right\}$ and for any i, there is $t>0$ such that $\gamma[t, \infty) \subset U\left(c_{i}\right)$. The ray γ is called extendable if the limit $\lim _{t \rightarrow \infty} \gamma(t)$, called the end point of γ, exists. The end point of an extendable ray in U belongs to the frontier $\operatorname{Fr}(U)$.

A prime end ξ of U is called extendable if there is an extendable ray belonging to ξ. Denote by $\mathcal{E P}(U)$ the set of extendable prime ends.

LEMMA 2.4. The end points of two extendable rays $\gamma_{i}(i=1,2)$ belonging to the same prime end ξ coincide.

Proof. The end point of γ_{i} is the limit point of any topological chain representing ξ.

Lemma 2.4 enables us to define a natural map $\Phi: \mathcal{E} \mathcal{P}(U) \rightarrow \operatorname{Fr}(U)$.
LEMMA 2.5. Any extendable ray belongs to some prime end.

Proof. Given an extendable ray γ with end point $x \in \operatorname{Fr}(U)$, one can construct a topological chain from the concentric circles centered at x, by much the same argument as in the proof of Lemma 2.2.

The above lemma says that a ray γ extendable in $U \subset \boldsymbol{\Sigma}$ is extendable in the closed disc \widehat{U}.

By an identification $\hat{\phi}: \mathcal{P}(U) \rightarrow \partial_{\infty} \mathbf{D}$ induced from a Riemann mapping $\phi: U \rightarrow \mathbf{D}$, the Lebesgue measure on $\partial_{\infty} \mathbf{D}$ is transformed to a probability measure on $\mathcal{P}(U)$. It depends upon the choice of the Riemann mapping ϕ, but its class (called the Lebesgue class) is unique.

LEMMA 2.6. The set $\mathcal{E P}(U)$ of extendable prime ends is conull with respect to the Lebesgue class. Especially $\mathcal{E} \mathcal{P}(U)$ is dense in $\mathcal{P}(U)$.

Proof. Let $\psi: \mathbf{D} \rightarrow U$ be the inverse Riemann mapping. Then another application of the Schwarz inequality shows that

$$
\int_{0}^{2 \pi} \int_{1 / 2}^{1}\left|\psi^{\prime}\left(r e^{i \theta}\right)\right| r d r d 0<\infty .
$$

That is, for Lebesgue almost all θ_{0}, we have

$$
2 \int_{1 / 2}^{1}\left|\psi^{\prime}\left(r e^{i \theta_{0}}\right)\right| d r<4 \int_{1 / 2}^{1}\left|\psi^{\prime}\left(r e^{i \theta_{0}}\right)\right| r d r<\infty .
$$

Notice that the left-hand side is the length of the ray $\psi\left\{r e^{i D_{0}} \mid 1 / 2 \leq r<1\right\}$.
REMARK 2.7. It is not the case that an extendable prime end always admits a ray of finite length. See Figure 7.

Figure 7

3. THE CARTWRIGHT-LITTLEWOOD THEOREM

Let $f: \Sigma \rightarrow \boldsymbol{\Sigma}$ be an orientation preserving homeomorphism which leaves a hyperbolic domain U in Σ invariant. Now f induces an orientation preserving homeomorphism on the Carathéodory compactification, $\widehat{f}: \widehat{U} \rightarrow \widehat{U}$. The purpose of this section is to give a proof of the following theorem due to M. L. Cartwright and J. E. Littlewood ([CL]).

THEOREM 3.1. Let f and U be as above. Assume that there is no fixed point in $\operatorname{Fr}(U)$ and that the Carathéodory rotation number of U is 0 . Then the restriction of \widehat{f} to $\mathcal{P}(U)$ is Morse-Smale, and if $\xi \in \mathcal{P}(U)$ is an attractor (resp. repellor) of the restriction of \widehat{f} to $\mathcal{P}(U)$, then ξ is an attractor (resp. repellor) of the homeomorphism \widehat{f} of \widehat{U}.

Figure 8

See Figure 8. One consequence of this is the famous Cartwright-Littlewood fixed point theorem stated as Theorem 4.5 at the end of Section 4. Before giving the proof, we shall give two examples of an invariant domain with Carathéodory rotation number 0 .

EXAMPLE 3.2. There is a simple homeomorphism h of S^{2} which satisfies the following conditions:
(1) the homeomorphism h preserves a continuum X;
(2) there is no periodic point in X;
(3) $S^{2} \backslash X$ consists of three open discs U_{+}, U_{-}and V;
(4) all three open discs are invariant by h;
(5) the Carathéodory rotation number of V is 0 .

To construct h, we start with a Morse-Smale diffeomorphism g of the interval $[0,1]$ whose fixed points are 0 and 1 . Consider the suspension flow of g on the annulus $S^{1} \times[0,1]$. Define h to be the time α map of the flow, where α is any irrational number. Choose an orbit Y from $S^{1} \times(0,1)$ and let $X=S^{1} \times\{0,1\} \cup Y$ and $V=S^{1} \times[0,1] \backslash X$. Finally extend h to S^{2} in an obvious way. See Figure 9. Then the homeomorphism \widehat{f} on the Carathéodory compactification \widehat{V} has two fixed prime ends.

Figure 9

Figure 10

EXAMPLE 3.3. Let g be a Denjoy C^{1} diffeomorphism of S^{1} whose minimal set is a Cantor set \mathfrak{N}. We put the suspension $T^{2}=S^{1} \times \mathbf{R} /(x, y) \sim$ $(g(x), y+1)$. For an irrational number α, we define $f: T^{2} \rightarrow T^{2}$ by $f([x, y])=[x+\alpha, y]$. Then the minimal set of f is $\mathfrak{N} \times \mathbf{R} / \sim$. Its complement U is a simply connected invariant domain. For the same reason as in Example 3.2, the Carathéodory rotation number of U is 0 . See Figure 10 .

Proof of Theorem 3.1. By the assumption on the Carathéodory rotation number, the homeomorphism \widehat{f} has a fixed point ξ in $\mathcal{P}(U)$. Let $\left\{c_{i}\right\}$ be an extendable topological chain representing ξ. Recall that the \bar{c}_{i} are mutually disjoint in $\boldsymbol{\Sigma}$. Also a ray that is a half-ray in c_{i} is extendable and therefore belongs to some prime end by Lemma 2.5. This implies that the cross cut c_{i} is extendable in the Carathéodory compactification \widehat{U}. The closure of c_{i} in \widehat{U} is denoted by \hat{c}_{i}. By Lemma 2.4 the \hat{c}_{i} are also mutually disjoint.

Assume, by contradiction, that $\widehat{f} \hat{c}_{i} \cap \hat{c}_{i} \neq \varnothing$ for infinitely many i. Then again by Lemma 2.4 we have $f \bar{c}_{i} \cap \bar{c}_{i} \neq \varnothing$. Since diam $\left(c_{i}\right) \rightarrow 0$, the point of accumulation of c_{i} must be a fixed point of f. Therefore we can assume that $\widehat{f} \hat{c}_{i} \cap \hat{c}_{i}=\varnothing$ for any i.

Let $\widehat{U}\left(c_{i}\right)$ be the component of $\widehat{U} \backslash \hat{c}_{i}$ not containing the base point $0 \in U$. Notice that $U\left(c_{i}\right)=U \cap \widehat{U}\left(c_{i}\right)$. Then we have for each large i either $\hat{f} \hat{c}_{i} \subset \hat{U}\left(c_{i}\right)$ or $\hat{c}_{i} \subset \widehat{f} \widehat{U}\left(c_{i}\right)$ because ξ is a fixed point of \widehat{f}. Assume, to fix our ideas, that $\widehat{f} \hat{c}_{i} \subset \widehat{U}\left(c_{i}\right)$ for any i, by passing to a subsequence.

Now let N be a neighbourhood of the frontier $\operatorname{Fr}(U)$ which does not intersect the fixed point set $\operatorname{Fix}(f)$ of f. Then since $\cap_{i} \bar{U}\left(c_{i}\right) \subset \operatorname{Fr}(U)$ in Σ by Lemma 2.1, the closure of the domain $U\left(c_{i}\right)$ for some large i is contained in N. Fix once and for all such a c_{i} and denote it by c. The two end points η and ζ of \hat{c} determine an interval $[\eta, \zeta]$ in $\mathcal{P}(U)$ containing the prime end ξ, a fixed point of \widehat{f}. On this interval we have

$$
\eta<\widehat{f} \eta<\widehat{f}^{2} \eta<\cdots<\widehat{f}^{2} \zeta<\widehat{f} \zeta<\zeta
$$

Assume that

$$
\begin{equation*}
\eta^{\infty}=\lim \widehat{f}^{n} \eta<\zeta^{\infty}=\lim \widehat{f}^{n} \zeta \tag{3.1}
\end{equation*}
$$

See Figure 11. A contradiction will show that the map \widehat{f} is Morse-Smale on $\mathcal{P}(U)$.

Figure 11
Hatched area is $U \backslash U_{0}$

Consider a domain

$$
U_{0}=U \backslash \cap_{n} f^{n} U(c)
$$

and notice that $\operatorname{Fix}(f) \cap \operatorname{Fr}\left(U_{0}\right)=\varnothing$, by the choice of c. The chain $\left\{f^{n} c\right\}$ of U is also a chain of U_{0}, and each cross cut $f^{n} c$ is of course extendable.

An important feature of U_{0} is that the intersection of the contents is empty, i.e.

$$
\begin{equation*}
\bigcap_{n=0}^{\infty} f^{n} U_{0}(c)=\varnothing . \tag{3.2}
\end{equation*}
$$

Let us denote by \widehat{f}_{0} the homeomorphism induced by f on the Carathéodory compactification \widehat{U}_{0} of U_{0}. Let η_{0} and ζ_{0} be the prime ends in $\mathcal{P}\left(U_{0}\right)$ corresponding to the end points of c. Then we have

$$
\eta_{0}<\widehat{f}_{0} \eta_{0}<\widehat{f}_{0}^{2} \eta_{0}<\cdots<\widehat{f}_{0}^{2} \zeta_{0}<\widehat{f}_{0} \zeta_{0}<\zeta_{0}
$$

Let $\eta_{0}^{\infty}=\lim \widehat{f}_{0}^{n} \eta_{0}$ and $\zeta_{0}^{\infty}=\lim \widehat{f}_{0}^{n} \zeta_{0}$. It follows from the definition of topological chains that there is an order preserving homeomorphism between $\mathcal{P}(U) \backslash\left[\eta^{\infty}, \zeta^{\infty}\right]$ and $\mathcal{P}\left(U_{0}\right) \backslash\left[\eta_{0}^{\infty}, \zeta_{0}^{\infty}\right]$. Let us show that $\eta_{0}^{\infty}<\zeta_{0}^{\infty}$. Assuming the contrary, we get an extendable topological chain c_{i}^{\prime} representing $\eta_{0}^{\infty}=\zeta_{0}^{\infty}$. Let α_{0}^{i} and β_{0}^{i} be the two prime ends in $\mathcal{P}\left(U_{0}\right)$ corresponding to c_{i}^{\prime}. Then clearly the sequences $\widehat{f}_{0}^{n} \eta_{0}$ and α_{0}^{i} have the same limit $\eta_{0}^{\infty}=\zeta_{0}^{\infty}$. In other words, they are cofinal, that is, for any i, there is an n such that $\alpha_{0}^{i}<\widehat{f}_{0}^{n} \eta_{0}$ and for any n, there is an i such that $\widehat{f}_{0}^{n} \eta_{0}<\alpha_{0}^{i}$. Likewise β_{0}^{i} and $\widehat{f}_{0}^{n} \zeta$ are cofinal. Now c_{i}^{\prime} is also an extendable topological chain of U joining α_{i} and β_{i} in $\mathcal{P}(U)$. since $\mathcal{P}(U) \backslash\left[\eta^{\infty}, \zeta^{\infty}\right]$ and $\mathcal{P}\left(U_{0}\right) \backslash\left[\eta_{0}^{\infty}, \zeta_{0}^{\infty}\right]$ are order preserving homeomorphic, we see that α_{i} and $\widehat{f}^{n} \eta$ are cofinal and β_{i} and $\hat{f}^{n} \zeta$ are cofinal. Since $\left\{c_{i}^{\prime}\right\}$ is also a topological chain of U, this shows that $\eta^{\infty}=\zeta^{\infty}$, against the assumption (3.1).

Since f is fixed point free on $\operatorname{Fr}\left(U_{0}\right)$ and the natural map $\Phi: \mathcal{E} \mathcal{P}\left(U_{0}\right) \rightarrow$ $\operatorname{Fr}\left(U_{0}\right)$ is equivariant, $\Phi \circ \widehat{f}_{0}=f \circ \Phi$, the set of extendable ends $\mathcal{E} \mathcal{P}\left(U_{0}\right)$ is disjoint from $\operatorname{Fix}\left(\widehat{f}_{0}\right)$. Lemma 2.6 implies that the fixed point set of \widehat{f}_{0} is nowhere dense in $\mathcal{P}\left(U_{0}\right)$. Thus there is a point σ in the interval $\left[\eta_{0}^{\infty}, \zeta_{0}^{\infty}\right]$ which is not fixed by \widehat{f}_{0}. See Figure 12.

Figure 12
To fix our ideas assume that $\widehat{f}_{0} \sigma>\sigma$ and let $\widehat{f}_{0}^{-n} \sigma \downarrow \tau$. Let $\left\{c_{i}^{\prime \prime}\right\}$ be an extendable topological chain of U_{0} representing τ. Denote by $U_{0}\left(c_{i}^{\prime \prime}\right)$ the
content of $c_{i}^{\prime \prime}$ in U_{0}. As before we have $\widehat{f}_{0}\left(c_{i}^{\prime \prime}\right) \cap c_{i}^{\prime \prime}=\varnothing$ if we pass to a subsequence. But τ is repelling on its right side. Therefore $U_{0}\left(c_{i}^{\prime \prime}\right) \subset \widehat{f}_{0} U_{0}\left(c_{i}^{\prime \prime}\right)$. If we choose i large enough, we have $U_{0}\left(c_{i}^{\prime \prime}\right) \subset U_{0}(c)$. But this is contrary to (3.2), concluding the proof that \widehat{f} is Morse-Smale on $\mathcal{P}(U)$.

Let us prove the last part of the theorem. Assume that ξ is an attractor of $\left.\widehat{f}\right|_{\mathcal{P}(U)}$. Choose an extendable topological chain $\left\{c_{i}\right\}$ representing ξ. Then as before we can assume that $f U\left(c_{i}\right) \subset U\left(c_{i}\right)$ and $U\left(c_{i}\right) \cap \operatorname{Fix}(f)=\varnothing$ for any large i. Fix some such i and let $c=c_{i}$. Let $U_{1}=U \backslash \cap_{n \geq 1} f^{n} U(c)$. See Figure 13.

Figure 13
No topological chain $\left\{c_{i}^{\prime \prime \prime}\right\}$

Our purpose is to show that $U_{1}=U$. Notice that this implies that ξ is an attractor of \widehat{f}. Denote the two end points of c in $\mathcal{P}\left(U_{1}\right)$ by η_{1} and ζ_{1} and let $\eta_{1}^{\infty}=\lim \widehat{f}_{1}^{n} \eta_{1}$ and $\zeta_{1}^{\infty}=\lim \widehat{f}_{1}^{n} \zeta_{1}$, where \widehat{f}_{1} is the homeomorphism of \widehat{U}_{1} induced by f. We have $\zeta_{1}^{\infty}=\eta_{1}^{\infty}$, for otherwise the same argument as before yields a contradiction. Take an extendable topological chain $\left\{c_{i}^{\prime \prime \prime}\right\}$ representing this prime end in $\mathcal{P}\left(U_{1}\right)$. It is also a topological chain for U and we have

$$
U \backslash U\left(c_{i}^{\prime \prime \prime}\right)=U_{1} \backslash U_{1}\left(c_{i}^{\prime \prime \prime}\right)
$$

Since $\cap_{i} U\left(c_{i}^{\prime \prime \prime}\right)=\cap_{i} U_{1}\left(c_{i}^{\prime \prime \prime}\right)=\varnothing$ by Lemma 2.1, this shows that $U_{1}=U$, as required.

4. Minimal continuum

Let f be an orientation preserving homeomorphism of the 2 -sphere S^{2} which has a continuum X as a minimal set. Recall that a connected component U of $S^{2} \backslash X$ is called an invariant domain if $f U=U$. The purpose of this section is to prove Theorem 1.1. We begin with the following lemma.

LEMMA 4.1. The Carathéodory rotation number of an invariant domain U is nonzero.

Before the proof, let us mention that Example 3.2 shows the necessity of the minimality assumption and that Example 3.3 shows that Lemma 4.1 does not hold for surfaces of nonzero genus.

Proof of Lemma 4.1. Denote by \widehat{f} the homeomorphism that f induces on \widehat{U}. Assume, by contradiction, that the rotation number of $\left.\widehat{f}\right|_{\mathcal{P}(U)}$ is 0 . Then the conclusion of Theorem 3.1 holds. Let α and ω be adjacent repelling and attracting fixed points on $\mathcal{P}(U)$ and choose an interval (α, ω) in $\mathcal{P}(U)$ so that $(\alpha, \omega) \cap \operatorname{Fix}(\widehat{f})=\varnothing$. By Lemma 2.6 there is a prime end $\xi \in(\alpha, \omega)$ belonging to the set $\mathcal{E} \mathcal{P}(U)$ of the extendable prime ends near ω. Then one can choose an extendable curve $\hat{\gamma}$ joining ξ and $\widehat{f} \xi$ such that $\gamma=\hat{\gamma} \cap U$ is contained in an open fundamental domain F of \hat{f}. (Recall that ω is an attractor of the homeomorphism \widehat{f}.) See Figure 14.

Figure 14
\widehat{U}

Notice that the natural map $\Phi: \mathcal{E} \mathcal{P}(U) \rightarrow X$ is equivariant, $f \circ \Phi=\Phi \circ \widehat{f}$. Therefore the closure $\bar{\gamma}$ of the curve γ in S^{2} joins a point, say p, with $f p$. Notice that $p \in X$. The cross cuts $f^{n} \gamma$ in $U(n \in \mathbf{Z})$ are mutually disjoint and its closure $f^{n}(\bar{\gamma})$ joins a point $f^{n}(p)$ with $f^{n+1}(p)$.

Since X is minimal and $p \in X$, there is an $n>0$ such that $f^{n} p$ is arbitrarily near p. Consider a small disc B centered at p such that $B \cap f B=\varnothing$. The
connected component of $f^{-1} \bar{\gamma} \cup \bar{\gamma}$ that contains the point p divides B into two domains. One of them, V, corresponding to \widehat{V} in Figure 14, is contained in U (if we choose B small enough) and the point $f^{n} p$ can be chosen from the component of $B \backslash\left(f^{-1} \bar{\gamma} \cup \bar{\gamma}\right)$ adjacent to V. Choose a small arc δ^{\prime} in B joining p with $f^{n} p$ which does not intersect $f^{-1} \bar{\gamma} \cup \bar{\gamma}$ except at p. Notice that $f \delta^{\prime} \cap \delta^{\prime}=\varnothing$. See Figure 15 .

Figure 15

Consider a long simple curve $\Gamma_{+}=U_{n \geq 0} f^{n} \bar{\gamma}$. Let q be the first point of intersection of $\Gamma_{+} \backslash\{p\}$ with δ^{\prime} (possibly $q=f^{n} p$) and let δ be the subarc of δ^{\prime} joining p and q. Notice that q is not from $\bar{\gamma}$ since $\delta^{\prime} \cap \bar{\gamma}=\{p\}$. The tiny arc δ together with the subarc Γ_{+}^{0} of Γ_{+}that joins p and q form a Jordan curve J. See Figure 16.

Let D be the connected component of $S^{2} \backslash J$ which contains $f q$. Then the half open arc $f \delta^{\prime} \backslash\{f p\}$ cannot intersect J since q is the first intersection point. Thus $f \delta^{\prime} \backslash\{f p\}$ and in particular its end point $f^{n+1} p$ is contained in D.

We also have $f^{-1} \gamma \cap \bar{D}=\varnothing$. In fact f^{-1} is an orientation preserving homeomorphism mapping a neighbourhood of $f p$ to a neighbourhood of p. So the cyclic order of the three curves $\bar{\gamma}, f \delta, f \bar{\gamma}$ emanating from the point $f p$ is the same as the cyclic order of the curves $f^{-1} \bar{\gamma}, \delta, \bar{\gamma}$ emanating from p. That is, the curve $f^{-1} \bar{\gamma}$ tends towards outside of D, and thus $f^{-1} \gamma \cap \bar{D}=\varnothing$.

Another long curve $\Gamma_{-}=\cup_{n<0} f^{n} \bar{\gamma}$ must pass arbitrarily near the point $f^{n+1} p$ which is in D, and therefore must intersect δ. Let s be the first intersection point of $\Gamma_{-} \backslash\{p\}$ with δ. Then an open arc Γ_{-}^{0} in Γ_{-}with end points p and s cannot intersect J and therefore $\Gamma_{-}^{0} \cap D=\varnothing$. By the construction of δ^{\prime}, s is not from $f^{-1} \bar{\gamma}$ and thus $f s \in \Gamma_{-}^{0}$. On the other hand $f s$ lies on $f \delta$ and therefore belongs to D. A contradiction.

Figure 16
The curve J

A closed disc D in S^{2} is called adapted if $\partial D \cap \operatorname{Fix}(f)=\varnothing$ and $D \cup f D \neq S^{2}$. Given an adapted disc D, choosing the point at infinity in $S^{2} \backslash(D \cup f D)$, one may consider $D \cup f D$ to be contained in \mathbf{R}^{2}. Then the degree of the map

$$
i d-f: \partial D \rightarrow \mathbf{R}^{2} \backslash\{0\}
$$

is called the index of f with respect to D and is denoted by $\operatorname{Ind}_{f} D$. An application of the Lefschetz index theorem yields the following lemma.

LEMMA 4.2. Let D_{1}, \ldots, D_{r} be mutually disjoint adapted discs such that there is no fixed point of f in the complement of $\cup_{j=1}^{r} D_{j}$. Then we have

$$
\sum_{j=1}^{r} \operatorname{Ind}_{f} D_{j}=2
$$

Let us return to the hypothesis of Theorem 1.1, that X is a connected minimal set of f. Given an invariant domain U, we have $\operatorname{Fix}(f) \cap U \neq \varnothing$ by Lemma 4.1 and the Brouwer fixed point theorem applied to the Carathéodory compactification \widehat{U}.

LEMMA 4.3. The invariant domains are finite in number.
Proof. Assume there are infinitely many invariant domains and denote them by $U_{i}(i=1,2, \ldots)$. Choose a fixed point x_{i} from U_{i}. Then passing to
a subsequence, x_{i} converges to a point x in S^{2}, which must be a fixed point of f. If x is contained in X, then X has a fixed point, which contradicts the assumption. Otherwise, the U_{i} coincide for large i. A contradiction.

Choose a closed disc D in U which contains $\operatorname{Fix}(f) \cap U$ in its interior. Then D is adapted and its index $\operatorname{Ind}_{f} D$ is independent of the choice of D. Choose one of them and denote it by $D(U)$.

LEMMA 4.4. For any invariant domain U, the index $\operatorname{Ind}_{f} D(U)$ is equal to 1 .

Proof. By Lemma 4.1, the Carathéodory rotation number of U is nonzero. On \widehat{U} the region bounded by $\partial D(U)$ and $\mathcal{P}(U)$ has no fixed point. Thus one needs only compute the index of \widehat{f} with respect to the boundary curve $\mathcal{P}(U)$.

Now let us conclude the proof of Theorem 1.1. Lemmata 4.2, 4.3 and 4.4 clearly show that there are exactly two invariant domains.

For any $n>1$, the minimal set X is minimal for f^{n} since it is connected. Applying the above result to f^{n}, one can show that there is no further invariant domain of f^{n}. Also the Carathéodory rotation number of an invariant domain must be irrational, as is shown by applying Lemma 4.1 to the iterates of f.

Finally that both Carathéodory rotation numbers coincide follows from the main results of $[\mathrm{BG}]$. The proof is complete.

Let us set out the Cartwright-Littlewood fixed point theorem.

THEOREM 4.5. Let f be an orientation preserving homeomorphism of S^{2}. Let X be a continuum invariant by f. Assume that $U=S^{2} \backslash X$ is connected. Then f has a fixed point in X.

Proof. Assume the contrary. If the Carathéodory rotation number of U is nonzero, then Lemma 4.4 shows that $\operatorname{Ind}_{f} D(U)=1$. If the rotation number is 0 , Theorem 3.1 says that the homeomorphism $\left.\widehat{f}\right|_{\mathcal{P}(U)}$ is Morse-Smale, with $2 n(n \geq 1)$ fixed points. Moreover the attractors (resp. repellors) are attractors (resp. repellors) of the whole map \widehat{f}. In this case one can compute the index just following the definition, with the result that $\operatorname{Ind}_{f} D(U)=1-n$. Both cases contradict Lemma 4.2.

5. MINIMAL CONTINUUM WITH WANDERING DOMAIN

In [Ha] a pathological C^{∞} diffeomorphism is constructed which has a pseudo-circle C as a minimal set. See also [He]. It is well known in continuum theory that there are points x in C which are not accessible from both sides. Blowing up x, as well as all the points of its orbit, we can construct a homeomorphism which has a minimal continuum with wandering domain (see [AO]). Conversely if there are wandering domains whose domains $\left\{U_{i}\right\}$ satisfy that $\left\{\overline{U_{i}}\right\}$ is a null-sequence of mutually disjoint discs, one can pinch each domain to a point, which characterize the complement of wandering domains (see [BNW]).

REFERENCES

[AO] AARTS, J. M. and L. G. Oversteegen. The dynamics of the Sierpiński curve. Proc. Amer. Math. Soc. 120 (1994), 965-968.
[BG] BARGE, M. and R. M. GILLETTE. Rotation and periodicity in plane separating continua. Ergodic Theory Dynam. Systems 11 (1991), 619-631.
[BNW] Biś, A., H. NAKAYAMA and P. Walczak. Locally connected exceptional minimal sets of surface homeomorphisms. Ann. Inst. Fourier (Grenoble) 54 (2004), 711-731.
[CL] Cartwright, M. L. and J. E. Littlewood. Some fixed point theorems. Ann. of Math. (2) 54 (1951), 1-37.
[E] Epstein, D. B. A. Prime ends. Proc. London Math. Soc. (3) 42 (1981), 385-414.
[E2] - Ends. In: Topology of 3-Manifolds and Related Topics (Proc. The Univ. of Georgia Institute, 1961), 110-117. Prentice-Hall, Englewood Cliffs, NJ, 1962.
[FK] Fayad, B. and A. Katok. Constructions in elliptic dynamics. Ergodic Theory Dynam. Systems 24 (2004), 1477-1520.
[Ha] HANDEL, M. A pathological area preserving C^{∞} diffeomorphism of the plane. Proc. Amer. Math. Soc. 86 (1982), 163-168.
[He] HERMAN, M. R. Construction of some curious diffeomorphisms of the Riemann sphere. J. London Math. Soc. (2) 34 (1986), 375-384.
[K] Kennedy, J. A. A brief history of indecomposable continua. In: Continua (Cincinnati, OH, 1994), 103-126. Lecture Notes in Pure and Appl. Math. 170. Dekker, New York, 1995.
[M] MATHER, J. N. Topological proofs of some purely topological consequences of Carathéodory's theory of prime ends. In : Selected Studies : PhysicsAstrophysics, Mathematics, History of Science, Th. M. Rassias, G. M. Rassias, eds., 225-255. North-Holland, Amsterdam-New York, 1982.
[Mi]
Milnor, J. Dynamics in One Complex Variable. Third edition. Annals of Mathematics Studies 160. Princeton University Press, Princeton, NJ, 2006.
[T] Tsur, M. Potential Theory in Modern Function Theory. Reprinting of the 1959 original. Chelsea Publishing Co., New York, 1975.
[W] WaLker, R. B. Periodicity and decomposability of basin boundaries with irrational maps on prime ends. Trans. Amer. Math. Soc. 324 (1991), 303-317.
(Reçu le 27 avril 2010)

Shigenori Matsumoto
Department of Mathematics
College of Science and Technology
Nihon University
1-8-14 Kanda-Surugadai, Chiyoda-ku
Tokyo 101-8308
Japan
e-mail: matsumo@math.cst.nihon-u.ac.jp
Hiromichi Nakayama
Department of Physics and Mathematics
College of Science and Engineering
Aoyama Gakuin University
5-10-1 Fuchinobe, Sagamihara
Kanagawa 229-8558,
Japan
e-mail: nakayama@gem.aoyama.ac.jp

