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Lamplighters, metabelian groups, and horocyclic products

Margarita Amchislavska and Timothy Riley

Abstract. Bartholdi, Neuhauser and Woess proved that a family of metabelian groups
including lamplighters have a striking geometric manifestation as 1-skeleta of horocyclic
products of trees. The purpose of this article is to give an elementary account of this result,

to widen the family addressed to include the infinite valence case (for instance ZlZ), and

to make the translation between the algebraic and geometric descriptions explicit.
In the rank-2 case, where the groups concerned include a celebrated example of

Baumslag and Remeslennikov, we give the translation by means of a combinatorial

'lamplighter description'. This elucidates our proof in the general case which proceeds

by manipulating polynomials.

Additionally, we show that the Cayley 2-complex of a suitable presentation of Baumslag

and Remeslennikov's example is a horocyclic product of three trees.

Mathematics Subject Classification (2010). Primary: 20F05, 20F16, 20F65

Keywords. Horocyclic product, lamplighter, metabelian group

1. Introduction

Our conventions throughout will be [a,b] a~lb~1ab and anb banb~l
for group elements a, b and integers n. Our group actions are on the right.

1.1. The original lamplighter group (Z/2Z)?Z. Denote (Z/2Z) <> Z by Ti(2).
As an abelian group the ring (Z/2Z)[x, x~l] is isomorphic to the additive group
®,eZ(Z/2Z) of finitely supported sequences of zeros and ones. By definition

Tt(2) ®ieZ(Z/2Z) >i Z, and so can also be expressed as (Z/2Z)[x,x_1] xZ,
and this provides a convenient description of the action of the Z-factor, namely
a generator of the Z-factor acts on (Z/2Z)[x,x~l] by multiplication by x.

Elements (^2jx fjxJ e r i (2) can be visualized as a street (the real line)

with lamps at all integer locations, a lamplighter located by lamp k, and, for
each fj 1, the lamp at j is lit. We will call this the lamplighter model for
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Figure 1

An element (x-4 + 1 + x + x3,5) of ri(2). The lamps at positions —4,0,1 and 3

are turned on and the lamplighter is standing by the lamp at location 5.

Ti(2). The identity element (0,0) corresponds to all lights being turned off and

the lamplighter at location 0. Figure 1 illustrates (x-4 + 1 + x + x3,5) e Ti (2).
In Section 7, we will explain the classical result that

(a, t | a2 1, [a,a'*] 1 (k e Z))

is a presentation for Ti(2).
Elements of ri (2) expressed as words on a and t can be visualized on

the lamplighter model above by starting with the model for the identity element,

reading off one letter at a time from left to right: upon reading t we move
the lamplighter one unit to the right (hence upon reading t~x we move one

unit to the left), and upon reading a±1 we flip the switch on the lamp at

which the lamplighter is currently located. For example, both t~4at4atat2at2
and at-1 at4at'1at3at2at4 express the element pictured in Figure 1.

1.2. Cayley graphs. The Cayley graph of a group G with respect to a generating
set A is the graph which has elements of G as its vertex set and, for every

g g G and a e A, has a directed edge labeled a from g to ag. The presentation

complex Pq of a group G presented by (A \ R) is a 2-dimensional cell complex
which has a single vertex, one loop at the vertex for each generator of G, and

one 2-cell for each relation in the presentation glued along the corresponding
edge-loop. The universal cover Pq of Pq is called the Cayley 2-complex of
G, and the 1 -skeleton of Pq gives the Cayley graph of G with respect to this

presentation.
A group acts geometrically on a metric space if the action is cocompact,

by isometries, and properly discontinuous (that is, every two points have

neighbourhoods such that only finitely many group elements translate one

neighbourhood in such a way that it intersects the other). For example, if A

is finite, the action of a group G on itself by right-multiplication naturally
extends to such an action on a Cayley graph.

1.3. A primer on horocyclic products of trees. Part of the infinite binary tree

7z/2Z with every vertex having valence 3 and equipped with a height function
h is shown in Figure 2. A horocyclic product is constructed from two copies of
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Figure 2

A part of an infinite binary tree with a height function. Vertices in 7ii(Z/2Z) include

(d,d), (d,e), (d,f), (e,d), (y,c), (v,a), and (a,u). Edges in 7ii(Z/2Z) include

7z/2Z by taking the subset

"Hi(Z/2Z) := {(po, Pi) e 7z/2Z x 7z/2Z | h(p0) + ft(.Pi) 0}

of 7z/2Z x7z/2Z • In Section 3 we will give precise definitions and will generalize
this construction to products of n + 1 trees by taking the subset of (n + 1)-tuples
of points in the tree whose heights sum to zero.

The starting point for this article is that this striking generic construction turns
out to give a Cayley graph of Ti (2) -

Proposition 1.1. The Cayley graph of Vi (2) with respect to the generating set

{a,at) is 'Hi(Z/2Z).

This result originates with P. Neumann and R. Möller in 2000. They
noticed that, with respect to a suitable generating set, the Cayley graph of
Fi (2) (Z/2Z) i Z is a highly-arc-transitive digraph constructed by Möller
in [Mol], which is the horocyclic product 7fi(Z/2Z) of two infinite binary trees

[NM], See also [BW, BW1, Woel],

Proposition 1.1 is a special case (with n 1 and R Z/2Z) of Theorem 1.2

which will identify Cayley graphs of generalized lamplighter groups with the

1-skeleta of horocyclic products of trees. A mild generalization (allowing other

rings in place of Z/2Z) is proved in Section 4.

{(d,e),(h,b)}, {{d,e),(b,k)}, and {(«,«), (i, c)}.
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1.4. Generalized lamplighter groups. Another group we can consider is Z I Z
which we denote by IV Again, as an abelian group the ring Z[x,x_1] is

isomorphic to the additive group ®,eZZ of Z-indexed finitely supported

sequences of integers. So Fi can also be expressed as Z[x,x_1] xi Z where

a generator of the Z-factor acts on Z[x,x_1] by multiplication by x. The model
for Ti is similar to that of T\ (2), except each lamp has Z -worth of brightness
levels. A presentation for Tj is ^ a, t | 1 (k e Z) J, which is similar

to that of r i (2) except that a has infinite order.

Similarly, for any commutative ring with unity R, we can construct a group
Ti(R) R[x,x_1] xi Z and consider the model where the lamps have R|-worth
of brightness levels. In this notation, Fi (2) TT (Z/2Z) and Fi ri(Z). The

case where n 1 of Theorem 1.2 states that the horocyclic product of two
R-branching trees TLi(R) (defined in Section 3.1) is the Cayley graph of Ti(R)
with respect to a suitable generating set (proved in Section 4).

We can generalize these constructions further. The group V2 is a celebrated

example of Baumslag [Baul] and Remeslennikov [Rem]

Z [x, x_1, (1 + x)-1] xi Z2

where, if the Z2-factor is (t, s), the actions of t and s are by multiplication
by x and (1 -l-x), respectively. It was the first example of a finitely presented

group with an abelian normal subgroup of infinite rank - specifically, the derived

subgroup [r2,r2]. We will show in Proposition 7.3 that one of the presentations
for T2 is

[a, s, t | [a, a'] 1, [5, t] 1, as aa').
An analogous lamplighter model for general T2(R) R [x, x~', (1 +x)-1] xi Z2

will be discussed in Section 5.1. Restricting to the case where n 2, Theorem 1.2

states that the 1-skeleton of the horocyclic product of three R -branching trees

7f2(R) is the Cayley graph of F2(R) with respect to a suitable generating set

(proved in Section 5).

We can generalize these constructions even further to obtain the family of
groups F„(R) that figure in Theorem 1.2 defined as follows.

Suppose R is any commutative ring with unity.
For n 1,2,..., let A„(R) be the polynomial ring

R [x,x"\(l + x)-1,..., (n - 1 + x)-1].

For h (h0,..., hn-1) e Z" and / e An(R), define

/• h := fxho(l +x)hl •••(«- 1 Txf»-1.
Then T„(R) := An(R) xi Z" where the group operation is (/,h)(/,h)
(/ + /-h,h + h).
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This definition can be conveniently repackaged as:

rn(R)

a jj-
*'«(1 + x)k< J/1-1+ *)*"-> f /e^(fi)|,

where the matrix multiplication naturally realizes the semi-direct product structure

of the group.
For brevity, define T„ := r„(Z) and F„ (m) := r„(Z/mZ).
It will prove natural for us to index the coordinates of Z" by 0,..., n — 1.

Accordingly, we use e0,...,e„_i to denote the standard basis for Z".
In higher rank, the examples originate with Baumslag, Dyer, and Stammbach

in [BD, BS]. Bartholdi, Neuhauser and Woess [BNW] studied the family
including Yn(m) for m,n 1,2,... such that 2,3,...,« —1 are invertible
in Z/mZ. And recently, Kropholler and Mullaney [KM], building on Groves

and Kochloukova [GK], studied r„(Z[l/(n — 1)!]) xi Z where a generator of the

Z-factor acts as multiplication by in — 1)! on the An(Z[l /(n — 1)!])-factor in

r„(Z[l/(n — 1)!]) and trivially on the Z"-factor. To put it another way, these

groups are A„(Z[l/(n — 1)!]) xi Zn+1, defined like r„(Z[l/(n — 1)!]), but with a

generator of the additional Z-factor acting on A„(Z[l/(n —1)!]) by multiplication
by (n — 1)!.

1.5. Cayley graphs of generalized lamplighter groups. The main theorem we
address in this article is:

Theorem 1.2. For n 1,2,..., if 2,... ,n — 1 are invertible in R, then the

1-skeleton of TL„(R) is the Cayley graph of Yn(R) with respect to the generating
set

{(r,ej),{r,ej){r,ek)~l \ r e R, 0 < j,k < n — 1 and j < k}.
In particular, if |7?| < oo, then Tn(R) acts geometrically on T~Ln(R).

For R finite, this theorem is due to Bartholdi, Neuhauser & Woess [BNW],
(Instead of working with An(R) and insisting that 2,...,n — 1 are invertible in
R, they work more generally with polynomials R[x, (f0 + x)_1,..., (ln-\ +x)-1]
such that the pairwise differences f, — i} are all invertible. Our treatment could
be extended to this generality if desired.) We aim here to give as elementary,

explicit and transparent a proof as possible for general r„(/?). The proof in
[BNW] proceeds via manipulations of formal Laurent series. We will work with
'lamplighter models' as far as possible—the cases n 1 and n 2—and use

these models to illuminate a proof in the general case which involves suitably
manipulating polynomials.
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Theorem 1.2 fits into a broader context which can be found in the introduction
to [Mar] (as we thank C. Pittet for pointing out). In the case where R is the field

Fp, the trees arise from valuations on Fp((je)) (cf. Section 4.2 of [GK]), and this
leads to r2(Fp) being a cocompact lattice in Sol5(Fp((x))) (Proposition 3.4 of
[CTe]), and we presume generalizes to F„ (Fp) in Sol2n+i(Fp ((*))). This provides
the formalism adopted by Bartholdi, Neuhauser & Woess in [BNW] in their

proofs. However our perspective is that the theorem relates two elementary (and

starkly different) objects: horocyclic products of trees and a family of metabelian

groups defined using polynomial rings, and there should be a proof which is

intrinsic to those concepts and is correspondingly elementary. We aim here to

provide such a proof to clarify the relationship and explore how far the ideas can
be pushed.

The n 1 and n — 2 cases of the theorem motivate us to give (in Section 7)

some group presentations which reflect the horocyclic product structure. One such

presentation then features in this embellishment of an n 2 case of Theorem 1.2:

Theorem 1.3. 772(Z) is the Cayley 2-complex with respect to this presentation
of r2.-

(X,,pi,v,(i eZ) | X, vlp/l,Xl+] p,vj(i,j e Z)).

1.6. The organization of this article. In Section 2 we explain the significance
of the family r„(7?). They have compelling applications and properties and other

manifestations and they bear comparison with other important families such as

Bieri-Stallings groups, the Lie groups Sol2„+i, and Baumslag-Solitar groups.
In Section 3 we define the trees Tr and their horocyclic products TLn(R), and

explain some of their features. We prove Theorem 1.2 in the case n 1 in
Section 4. This introduces some of the key ideas in a straight-forward setting. In
Section 5, we give a proof for the n 2 case which contains most of the ideas

of the general proof, but we are able to present them in purely combinatorial
terms using a lamplighter description of T2(R). We explain our proof for general

n in Section 6. In Section 7 we discuss presentations for r„(,R) and then we

prove Theorem 1.3 in Section 8.

2. The significance of the family Tn(R)

Here are some of the applications, properties, and cousins of the groups
Tn(R).

Instances of the family Tn (R) and the related horocyclic products have featured

in some major breakthroughs. Baumslag and Remeslennikov's construction of r2
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precipitated their theorem that every finitely generated metabelian group embeds

in a finitely presented metabelian group [Bau2, Rem].

Grigorchuk, Linnell, Schick, and Zuk showed that the L2-Betti numbers of
Riemannian manifold with torsion-free fundamental group need not be integers

(answering a strong version of a question of Atiyah [Ati]) by constructing a

7-dimensional such manifold with fundamental group T2(2) and third L2-Betti
number 1/3 in [GLSZ].

Diestel and Leader in [DL] put forward the horocyclic product of an infinite
2-branching and an infinite 3-branching tree as a candidate to answer a question
of Woess as to whether there is a vertex-transitive graph not quasi-isometric to

a Cayley graph. Eskin, Fisher and Whyte [EFW2] verified this. (Accordingly,
the 1-skeleta of 77„(Z/wjZ) of Section 3.2 are termed Diestel-Leader graphs in

[BNW].) Woess recently wrote an account of this breakthrough and its history
[Woe2],

Eskin, Fisher and Whyte [EFW2] also classified lamplighter groups up to

quasi-isometry. Dymarz [Dyml] used lamplighter examples to show that quasi-
isometric finitely generated groups need not be bilipshitz equivalent. In both cases,
the horocyclic product view-point was essential to their analyses.

A number of properties of these groups have been identified.

Bartholdi & Woess [BW] studied the asymptotic behaviour of the N -step return

probabilities of a simple random walk on a horocyclic product of two regular
(finitely) branching trees. Woess [Woel] described positive harmonic functions in
terms of the boundaries of the two trees. Bartholdi, Neuhauser & Woess [BNW]
identified the 12 -spectrum of the simple random walk operator and studied the

Poisson boundary for a large class of group-invariant random walks on horocyclic
products of trees.

A group G is of type Fn if there exists a K(G, 1) (an Eilenberg-Maclane
space - a CW-complex whose fundamental group is G and which has contractible
universal cover) with finite n -skeleton. All groups are Fo, being finitely generated
is equivalent to F\, and being finitely presentable is equivalent to F-i. Bartholdi,
Neuhauser & Woess [BNW] show that K„(Z/mZ) is (n — 1)-connected but
not «-connected and deduce that Tn{m) is of type Fn but not of type Fn+\
when 1,...,« —1 are invertible in Z/mZ. Kropholler & Mullaney [KM] use

Bieri-Neumann-Strebel invariants to prove that F„(Z[l/(« — 1)!]) * Z (as defined

in Section 1.4) is of type Fn but not of type Fn+\. The Bieri-Stallings groups
[Bie, Sta] exhibit the same finiteness properties, and bear close comparison with
the family T„(2) in that both are level sets in products of trees (just the height
functions concerned differ).

Cleary & Taback [CTa] showed that, with respect to a standard generating
set, Ti (2) has unbounded dead-end depth: there is no L > 0 such that for every
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group element g, there is a group element further from the identity than g that
is within a distance less than L from g. (Cf. Question 8.4 in [Besl], which
Erschler observed can be resolved using ri(2).) Cleary & Riley [CR] exhibited

r2(2) as the first finitely presentable group known to have the same property. By
finding a combinatorial formula for the word metric, Stein & Taback [ST] showed

that, with respect to generating sets for which the Cayley graphs are horocylcic
products, r„(m) have no regular language of geodesies and have unbounded
dead-end depth. We understand that Cleary has unpublished work and Davids &
Taback have work in progress on whether or not almost convexity holds for T2(2)
with respect to certain generating sets.

De Cornulier & Tessera showed that the Dehn function of T2(2) grows quadrat-

ically [CTe], and Kassabov & Riley [KR] that that of T2 grows exponentially.
The horocyclic product construction can be applied to any family of spaces

with height functions. A fruitful alternative to 7z/mz is the hyperbolic plane
H2, viewed as the upper half of the complex plane, with height function given
by log? (Im z) for some fixed q > 1. The horocyclic product of n copies of H2

(each with the same q > 1) is a manifold Sol2n_i. (Varying q is a dilation.) The

horocyclic product of Tz/Pz and HI2 with parameter q is termed treebolic space
in [BSSW]. When p q it is shown to be a model space for the Baumslag-Solitar

group (a,b \ b~lab ap)—that is, the group acts on the space cocompactly by
isometries.

These constructions and their parallels have been pursued particularly by
Woess and his coauthors [BNW, BW, BSSW, BSW, BW2, Woel], focusing on

stochastic processes, harmonic maps, and boundaries. He gives an introduction
in [Woe2], Additionally, the boundaries of these various horocyclic products
admit similar analyses, which is why the work of Eskin, Fisher & Whyte
[EF, EFW2, EFW1, EFW3] encompasses both S0I3 and lamplighter groups.
Dymarz [Dym2] also exploits the parallels.

The parallel is promoted to absolute agreement when one passes to asymptotic
cones. After all, the asymptotic cones of Tz/mz for m > 2 and of H2 are both
the everywhere 2*° -branching R -tree. The height functions on Tz/mz and H2
induce a height function on this R-tree in such a way that the asymptotic cones

of a horocyclic product of k spaces, each of which is either 7z/mz or H2, is

the horocyclic product of k R-trees. So, for instance, for m > 2, the Baumslag-
Solitar groups BS(l,m), S0I3, and T2(m) all have the same asymptotic cones.

(This observation is essentially in Bestvina [Bes2].)
Another striking manifestation, set out in [BNW, Remark 4.9] (building on the

n — 1 case in [Nek]), of T„(m), when 2,3,...,« — 1 are invertible in Z/mZ,
is as automata groups.
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3. Horocyclic products of trees

3.1. R -branching trees. We let Tr denote the R -branching tree, by which we

mean the simplicial tree in which every vertex has 1 + | R | neighbours, and every
edge is labelled by an element of R in the following manner. Equip the tree with
the natural path metric in which every edge has length one. Choose any infinite
directed geodesic ray p : M -»• Tr with Z c I mapping to the vertices along the

ray. This determines a height (or Busemann) function h : Tr -* E by

Hp) P~\q) + d(p,q)

where q is the point on the ray closest to p. (Figure 3 gives some examples
of calculations of heights.) Label the edges emanating upwards from any given
vertex in Tr by the elements of R in such a way that the edges traversed by p
are all labeled 0.

We can specify a unique address for each vertex in Tr as follows.

Lemma 3.1 (Addresses of vertices in Tr). Vertices v in Tr are in bijective
correspondence with pairs consisting of an integer (the height of v) and a finitely
supported sequence of elements of R (the labels on the edges that a downwards

path starting at v follows).

This lemma is easily proved. The sequences are finitely supported because the

last non-zero entry in the sequence indicates where the downwards path becomes

confluent with p.

Figure 3

The tree Tr with an infinite geodesic ray p determining a height
function h. For example, h(p) p_1(q) + d{p,q) — 1 + 3 2

and h(p') p-1 (q') + d(p',q') 0 + 2 2.
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3.2. The horocyclic product of R -branching trees. The horocyclic product of
n + 1 copies of Tr is

K
n

:„(*):= {(po,...,Pn)£TZ+1 5>(/>») 0 }
(=0

It is naturally an «-complex: (p0,...,pn) is in the k-skeleton if and only if

| {i | h(p,) e Z}| > n — k.

Equivalently, if we view T^+1 as a cubical complex in the natural way, then the

k-cells of %n{R) are the intersections of the (k + 1) -cells of T^+1 with Hn(R).
Figure 4 shows a horocyclic product of two 3-branching rooted trees of depth 2,

and so a portion of 7fi(Z/3Z). Nine upwards- and nine downwards-3-branching
trees are apparent in this graph.

Figure 4

A portion of T-L\{Z/3Z), after a figure by Dymarz in [Dyml]

3.3. Cell-structure. It will not be required in our proofs of theorems that follow,
but we include a description here of the cell-structure of H„ (R), which turns out

to be attractively exotic and so adds to the lure of family groups T„(R). Some

of the details given here were also identified in Section 4.1 of [BNW].
To understand the cell-structure of %n{R) it helps to consider the case Hn(\)

where R is the zero ring (with only one element - we do not insist 0 7M in
a ring), or equivalently Z/1Z. Recall that 71 is simply the real line subdivided

into unit intervals (known as the apeirogon) and %„{ 1) is the horocyclic product
of n + 1 copies of 71. In other words 7f„ (1) is the slice through the standard

tessellation of R"+1 by unit (« + 1)-cubes by the hyperplane

H := { (x0, • • • Xn) e K"+1 I *0 H 1- *n — 0}
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Given that the height-preserving map Tr -» 7i that collapses the branching
induces a map Hn(R) —» ?(„(1), we can view Un(R) as many copies of H„( 1)

branching along T-in-i(R) subcomplexes.
But what is the cell-structure of 3?„(1) What tessellation of R" (alternatively

called a honeycomb) does it give?
The first two examples are readily identified: %\{l) is the apeirogon and

3(2(1) is the tessellation of R2 by equilateral triangles of side-length V2.
The vertices of %n{ 1) are the points where H intersects the 1-skeleton of the

tessellation of R"+1 by unit-cubes, in other words the points (x0,...,xn) such

that x0 + • • • + x„ =0 and at least n (therefore all) of the coordinates x, are

integers. So the vertex set of H„( 1) is {(x0,..., xn) e Z"+1 | x0 + h x„ 0},
which is known as the An lattice.

The vectors {e0 — e7 | 1 < j < n} generate the parallelepiped

P |£o(e°-e?) 0<r/<i

{(x0,..., x„) e R"+1 J — 1 < x\,..., x„ < 0 and xo + xn =0}
whose translates x + P, as x ranges over lattice points, tessellate H. The span of
any k vectors in {e0 — e, | 1 < j <n} is a subspace of R"+1 over which all but
k +1 coordinates are constantly zero, and so is a subset of the (k + 1) -skeleton of
the tessellation by unit cubes. So, for every k, the k -cells of P are a subset of
the k-skeleton of and H„(\) is the tessellation formed by the translates

of some subdivision of P. This subdivision is by hypersimplices (also known as

ambo-simplices).
The (k,n + 1)-hypersimplex (where k \,... ,n) is the «-dimensional

polytope defined in the following three linearly equivalent ways [Dol].

(i) The convex hull of the midpoints of the (k —1) -cells of the regular «-simplex
{(x0,..., x„) e R"+1 ] 0 < x0,..., x„ < 1 and x0 -I V xn 1}.

(ii) The convex hull of the ^ points in M"+1 that have k coordinates all
1 and the remaining « + 1 — k all 0.

(iii) {(xo,...,x„) M"+1 I 0 < xo,...,x„ < 1 and xo + • + x„ k).
Observe that P is the intersection of H with the union of the cubes [k — 1, k] x
[—1,0]" where k 1,...,«. The intersection of H with [k — 1,k] x [—1,0]" is

n

j (xo,... ,x„) e R"+1 I k — 1 < xo 5 k, —1 < xi,... ,x„ < 0 and ^x;- oj,
;=o

which is mapped to the (k,n + 1)-hypersimplex as given by (iii) by the linear

equivalence xq k—xo and xt —xt for / 1,...,«. So P is assembled from
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(k,n + l)-hypersimplices, one for each k 1,... ,n (see [Dol]). For instance, in
the case of the parallelepiped P is assembled by attaching tetrahedra (a

(1,4)- and a (3,4)-hypersimplex) to a pair of opposite faces of an octahedron (a

(2,4) -hypersimplex).
This is the same cellular structure that is obtained from the An lattice in

M" by taking the Delaunay polytopes associated to the holes. See Section 4 of
Conway-Sloane [CS]. The holes of a lattice are those points that are at maximal
distance from lattice points. A Delaunay polytope associated to a hole is the

convex hull of the lattice points closest to the hole.

4. The n 1 case of Theorem 1.2

Theorem 1.2 in the case n 1 states that Hi(R) is the Cayley graph C of
T\(R) with respect to the generating set {Xr := (r, 1) | r e R}. This generating
set is, in fact, profligate - {A0,Ai} suffices to generate Ti(/?). This case includes

Fi Z l Z and lamplighters Ti (m) (Z/mZ) l TL.

Proof of Theorem 1.2 for n 1 (cf [BW, BW1, Woel]). An element of r,(R)
R\x,x~x] x Z is a pair (/, k) where k e Z and / fjxJ with each fj e R

and only finitely many are non-zero. Recall from Lemma 3.1 that vertices in Tr
are uniquely specified by their addresses—pairs consisting of a finitely supported

sequence of elements of R (the edge-labels on the path proceeding downwards

from the vertex) and an integer (the height).
Let be the bijection between V\(R) and the vertices of PL\(R) that sends

(/,k) to the pair of vertices (u,v) with addresses ((fk. fk+x-, fk+2, )> —k)

and ((/fc-i, fk-2, fk-3, -),k), respectively. So, in effect, O splits the bi-infinite

sequence of coefficients of / apart at k to give two infinite sequences as shown

in the middle of Figure 5. The righthand shaded sequence gives the address of
u and the lefthand shaded sequence gives the address of v.

In C, the edge labeled Xr emanating from (f k) leads to (fk)Xr
(/+rxk,k +1), which is mapped by to (u', v') where u! and v' have addresses

((fk+ufk+2, ...),-k-l) and ((fk + r, fk-\, fk-2, •), k + 1), respectively - see

the top of Figure 5. So, as r varies over R, (u',v') varies over all the vertices

adjacent to (u, v) that are reached by moving along the (unique) downwards edge

in Tr emanating from u and moving along one of the R -indexed edges that

emanate upwards from v.
The inverse of Ar (r, 1) is (—rx~l, —1) since

(r, l)(-rx_1,-l) (r + (—rx"1)*1,1 - 1) (0,0).
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fk—5 fk-A fk-3 fk-2 fk-lfk+r fk+1 fk+2 fk+3 fk+4 fk+5
gXr:

g
t Ar

fk—5 fk—A fk-3 fk-2 fk—\ fk fk+1 fk+2 fk+3 fk+A fk+5

gXr '
fk—5 fk-A fk-3 fk-2fk-l — rfk fk+\ fk+2 fk+3 fk+A fk+5

Figure 5

Here we use the lamplighter description of Tj to illustrate right-multiplication
by the generators Xr and their inverses. The middle line represents g {f k)

and the top and bottom represent gXr and gXj1, respectively.

So, similarly, the family (/, k)Xr
1 (/ — rxk 1, k — 1) with r ranging

over R, is mapped by 4> to (u", v") where u" and v" have addresses

((fk-i-r,fk,fk+i,...),-k + l) and ((/*-2, A_3). 1), respectively -
see the bottom of Figure 5. These are the vertices obtained by moving along the

one downwards edge in Tr from v and moving from u upwards along one of
the R -indexed family of edges.

So, vertices that are joined by an edge in C are mapped by <1> to vertices

that are joined by an edge in Hi (/?). Moreover, every pair of vertices that are

joined by an edge in H\{R) can be reached in this way. So 4> extends to a

graph-isomorphism C -+ H\(R), completing our proof.

Remark 4.1. Perhaps the one subtlety in the above proof is that the edge in Tr
from v to v' is labeled by fk + r. The first guess one might make is that it
would be the edge labeled r. But that would not work because (u',v') has to
have some "memory" of fk, else there would be no way for v')X~x) to

equal 4>-1(w,u).

Remark 4.2. In this rank-1 case we could use any group G in place of the

ring R, and identify a Cayley graph of the (restricted) wreath product Gl Z as

a horocyclic product. Specifically, view elements of G IZ as pairs (p, k) where

k e Z and p is a finitely supported function Z -+ G, and let pg denote the

map sending 1 \-+ g and i i-> Ig for all i f \. Then the Cayley graph of
G lZ with respect to the generating set {Ag := (pg, 1) | g e G} is the horocyclic
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product of two G -branching trees. This appears to break down in higher rank
where we would need G to be abelian (e.g., to define the lamplighter description
in Section 5.1).

5. The n — 2 case of Theorem 1.2

In this section we will prove Theorem 1.2 when n — 2: the 1-skeleton of
%2(R) is the Cayley graph of r2(R) with respect to the generating set

{Ar := (r,e0), /ir:=(r,e i), vr := Xrp,r~l | reS}.
This case includes Baumslag and Remeslennikov's metabelian group, which is

r2.

5.1. A lamplighter model for r2(R). Recall that

T2(R) R [x, x~l, (1 + xy1] xi Z2

where, if the Z2-factor is (t, s), the actions of t and s are multiplication by a:

and I + x, respectively.
We will use a lamplighter description of T2 developed from [BNW] and

[CR]. A lamplighter is located at a lattice point in a skewed rhombic Z2 (t,s)
grid, as in Figure 6. (The lattice points are the vertices of the tessellation of the

plane by unit equilateral triangles.) Each vertex has six closest neighbours - one

in each of what we will call the s-, s'1-, t -, t~l -, si-1- and s~] t -directions -
and can be specified using t - and s -coordinates. A configuration K, is a finitely
supported assignment of an element of R to each lattice point.

Figure 6 shows six examples of configurations where R — Z. Vertices where

no element of R is shown should be understood to be assigned zeroes. As an

example of the terminology in action, the integer at (—2,1) in grid (5) is 4 and

its neighbours in the s-, s-1-, t-, f-1-, it-1- and -directions are 0, 2, 6,

1,0, and —4, respectively.
We define an equivalence relation ~ on configurations by setting K, ~ K!

when there is a finite sequence of configurations starting with K, and ending
with K! in which each configuration differs from the next only in one triangle of
adjacent ring elements which is bac in one and is b+ra~rc+r for some r e R

in the other. The six integer-configurations shown in Figure 6 are all equivalent,
for example.

An element / J2i,jez nijx' (1 + X)J °f ^ [x,x_1,(l + x)_1] corresponds
to the configuration which has at (i, j) for all i,j e Z. A motivating result

for these definitions is -
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(3)

1 2 1

- 2 - —3—6 -3
-4 / '

/

(6)

1 7 6 K> 5 -2 -6-3

An example of propagation to a configuration supported on Lo.o

Lemma 5.1. 7vvo such polynomials represent the same element of the ring
R [x, x~l, (1 + a:)-1] if and only if their corresponding configurations are

equivalent.

Proof The relations in R (1 + x)_1] are generated by (1 + x) being
the sum of the terms 1 and jc in a manner that corresponds to the relations
between configurations being generated by altering triangles of entries. Indeed,

multiplying (1 + x) 1 + x through by rx' (1 + x)J gives rx'(l + x)J+1

rxl(\+x)j +rxl+l{\+x)j which corresponds to ba+rc ~ b+rac+r at a suitably
located triangle of entries in a configuration.

The element g — (f,(k,l)) 6 r2(Ä) corresponds to the lamplighter being
located at (kj) and the configuration being that associated to /.

An appealing feature of this model is how it elucidates the way in which

ri(R) sits inside r2(/?) (e.g., Z?Z sits inside Baumslag and Remeslennikov's

group r2) as the elements for which the lamplighter is on the t-axis and the

configuration is equivalent to one that is supported on the t -axis.

Definition 5.2. Using t- and -coordinates, define the half-planes

Hm '= {(P'4) I p + q>m)>
Hm := {(P'l) I P<m),
Hm := {(p,q) | q <m).

For example, Figure 7 displays H^+hi, 77°0_j and H^_1.
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Figure 7

Propagation in the half-planes H®o_l and H^_t Propagation
to levels hi, h\ and ho, respectively, is illustrated using lighter tones.

Propagation to level 0 in each half-plane is illustrated using darker tones.

Our analyses will involve finding opportune representatives in the equivalence
classes of given configurations. Indeed, we will in some instances (in Section 5.2)
be concerned only with the part of a configuration in some half-plane. The

following definition will then be useful.

Propagating to level I in H means converting a configuration to an

equivalent configuration such that the only non-zero entries in H~ are on the

line with s -coordinate I. This can always be done by moving the entries in H
that are above that line by using bac ~ a+b°a+c and moving those below by

using bac ~ b-ca+co • Propagating to level I in H° means converting to an

equivalent configuration such that the only non-zero entries in are on the line
with s-coordinate I. This can be done using bac ~ a+b°a+c and bac ~ oa+bc-b

for entries above and below the line, respectively. And propagating to level I in

means converting to an equivalent configuration such that the only non-zero
entries in H£ are on the line with t-coordinate I. This can be done using
bac ~ oa+bc-b and bac ~ b-ca+co for entries on the left and the right of the

line, respectively.

In each case, propagation produces a finitely supported sequence, namely
the entries in level I of the half-plane concerned. For example, in Figure 6

propagating the integer-configuration (1) to level 0 in Hq°, H°l and H\x yields
configurations which can be read off (6), specifically, 10,5, —2, —6, —3,0,0,... in

Hq°, 6,7,1,0,0,... in H®x, and 5,0,1,0,0,... in H\x. And in Figure 8, the

configuration in the centre grid propagated to level 0 yields 5,3,4,2,0,0,... in

//3°°, 18,5,1,0,0,... in //0°, and 2,3,0,1,0,0,... in H\.
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The following properties of propagation may at first seem surprising because

it is not immediately apparent that the entries outside H£ are of no consequence
for the sequence produced by propagation.

Lemma 5.3. For * oo,0,1 and for all 1,1' e 7L the following hold.

(i) Any two equivalent configurations which are both zero everywhere in
aside from level I, are in fact equal on level I in H£. (So propagation
of a configuration to level I in determines a unique sequence and

propagating any two equivalent configurations to level I in produces
the same sequence.)

(ii) If propagating a configuration K, to level I in produces the sequence

a\, Ü2,. then ap, for p — 1,2,..., depends only on the restriction of K
to

,/* oo

H°m_p+1 if* 0

HZ,_p+1 if* 1.

(iii) The following defines a bijection on the set of finitely supported integer se¬

quences. Given such a sequence, take the configuration which is everywhere-

zero aside from level I of where one reads the sequence, and obtain a

new sequence by propagating to level I' in Indeed, this map is inverted

by propagating back to level I.

Proof. We will explain only the case * oo. The cases * 0,1 are similar.
For (0, recall that the equivalence relation on configurations is generated by

equivalences in which a triangle of only three adjacent entries is altered. Such

alterations do not change the sequence obtained by propagating to level I in Hff
by moving those above the level using bac ~ a+b°a+c and moving those below

by using bac ~ b-ca+co Consideration of the directions in which entries are

moved by these two types of equivalences leads to (ii). For (iii) observe that the

result is true when \i - l'\ 1.

Corollary 5.4. For all k,l Z, each configuration is equivalent to a unique

configuration supported on

Lk,i {0\ I) I i e Z } U {(k, I - 1), (k, 1-2),...},

specifically, that obtained by simultaneously propagating to level I in and

J
and to level k in

In the light of Lemma 5.1, when k I 0 this says that
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{ l,xJ ,x y,(l + x) j | j 1,2,...}

is a basis for R[x, x~l, (1 +x)_1] over R. (This is a special case of Lemma 6.1.)

Figure 6 shows an example of such a propagation with k — I — 0, and the

transition from the central grid to the top grid in Figure 8 is an example with
k 1 and 1 — 2.

5.2. Proof of Theorem 1.2 in the case n 2. We are now ready to show that
the 1-skeleton of %2(R) is the Cayley graph C of F2(jR) with respect to

{Xr := (r, e0), fir := (r, ei), vr := Ar/ur_1 | r e R }.

Figure 8

An example of a calculation of where g is the element of T2 represented

on the central grid. The lamplighter is at (1,2), so h00 — 1 — 2 —3,

ho 1, and hi 2. The right, left, and lower grid illustrate the calculation of
a°° (5,3,4,2,0,0,...), a0 (18,5,1,0,0,...), and a1 (2,3,0,1,0,0,...),
respectively, by propagation to level 0 in H%°, H®, and //,'. The upper grid
illustrates a configuration which is supported on Li,2, is equivalent to that of

the central grid, and yields the sequences b°° (3,1,0,2,0,0,...),
b° (11,3,1,0,0,...), and b1 (—6, —4, — 1, —1,0,0,...), which feature in our

proof of case n 2 of Theorem 1.2.
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We will denote a vertex in %2 (R) by a triple of vertices in Tr, each

designated by their addresses in the sense of Lemma 3.1. First we will establish

a bijection <3> from r2(R) to the vertices of K2(R), defined by sending

g (/, (A0,Ai)) e T2(R) to the vertex ((a°°, /too), (a0, A0), (a1, hi)) found as

follows. Represent / using the lamplighter model as some configuration K.
Let hoo —hQ - hi. Let a°°, a0, and a1 be the sequences obtained by

(independently) propagating K, to level 0 in the half-planes Hj^+h] ^h0~i >

and respectively - see Figure 7 for a general illustration and Figure 8 for

a particular example.
Here is why $ is a bijection. Let K! be the configuration of Corollary 5.4

that is equivalent to K. and is supported on Lh0,hx As that corollary points

out, fC' is determined by the sequences b°°, b°, and b1 obtained from TC by

propagating H^+hi and
^ to level h\, and to level A0. But, given

A0 and h\, the bijection of Lemma 5.3(A7) tells us that b°°, b°, and b1 are

determined by (and determine) a°°, a0, and a1, respectively. So, given any vertex

v ((a°°,ft,»). (a°> ho), (a1, AO) in H2{R), there is a unique g (f,(h0,hi))
such that <E>(g) v: specifically, take the / corresponding to K.'. (This is a

special case of Proposition 6.9.)
Next we claim that for all r e R,

$(gAr)

(((a, a,...), A,» - l), ((r + a, a®, a®.
• • -),ho + l), (a1, Ai)),

f (gA,-1)

(((-r + a', a, a,...), A+ l), ((a", a%,...), A0 - l), (a1, Ai)),

®(gRr)

((fl|°,a|°,.. .),Aoo - 1), (a0, A0), (((-l)Aor + ß,a\, a\,...),hi + l)j,
®(.gRr~l)

(((-r + ^',af),a~,...),A0O + l), (a0, A0), {{a\,a\,.. .),hx - l)),
<F(gvr)

^(a°°, Aoo), ((r + y,a\,al,...),h0 + l), hx - l)),
<f>(gvr_1)

(a°°, Aoo), ((a2,a%,. ..),A0 - l), (((-l)A°r + y',a\,a\,...), hx + l)j
where a, a', ß, ß', y, and y' depend only on g (and not on r).
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Figure 9

Obtaining <3>(gAr), <t>(gßr), <t>(ggLj]), <t>(giv), and ^>(gv~l) from
$(,?) ((a°°,/zcc), (a0, Ao), (a',/!i)). The sequences associated to the former are

denoted here by ä°°, ä°, ä1, b°°, b and b The central grid represents g and the

six outer grids represent gXr, gX~l, gßr, guj1, gvr, and gv~1, as indicated.

As we will see, much of the explanation for these equations is contained in

Figure 9. The central grid represents g: the lamplighter is at (ho, hi and the

sequences a°°, a0, a1, b°°, b°, and b1 associated to / are obtained from the

locations indicated (in the manner set out earlier). On right-multiplying g by Xr,
\~l, /ir, ß~l, vr, or v"1, the lamplighter moves as shown and r is added to

or subtracted from one entry in the configuration (also as shown). The locations

from which the sequences ä°°, ä°, ä1, b°°, b and b associated to the new

configurations are obtained also shift as shown.

Here is the justification for the first coordinates on the righthand sides of the

six equations above.

Here is why the first coordinate of <h(gAr) is ((a%°,af,.. .),/ioo - l)- Since

g^-r (/ + ''• (ho, hi), (h0, hi) + e0) (/ + rxh°(l + x)hl, (h0 + 1, AO),

the representation of gXr in the lamplighter model is obtained from that of g by

adding r to the entry in K. at (ho, hi) and moving the lamplighter to (A0 + 1, Ai).
The second entry is Aoo — 1 because (Aoo — 1) + (A0 + 1) + hi =0, and a°°
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is (a%°, by Lemma 5.3(ii), since the sequence obtained by propagating

H^+hl+1 to level 0 is the same as that obtained by propagating H^+h^ to

level 0 and discarding the first entry.
The first coordinate of 0(g/ir) can be identified likewise.

Similarly, since

gl~l (/, (h0,hi))(-r -(-e0),-eo)

(f-r (ho,h!)-(-e0), (ho,hi)-e0)

{f - rxh°-\\ + x)h\(h0 - \M)),

the representation of gXr~l is obtained by moving the lamplighter left to

(h0 — I, h\) and subtracting r from the entry there. We claim that <E>(gAr_1) has

first coordinate

((-r + a', a,a,...), hoo + l)

where a' depends only on g. The second entry is hoo + 1 because (hoo + 1) +
(ho — 1) + hi — 0. All but the first entry of the sequence a°° can again be

identified by using Lemma 5.3(ii). In propagation in entries on the

boundary line (that through (ho + h\ - 1,0) and (0,h0 + hi — 1)) advance only
along that line: they are unchanged as they propagate and they do not alfect any
other entries in the resulting sequence. So the r subtracted from the entry at

(h0 — I, hi) moves, undisturbed to (h0 + hi — 1,0). The a' is the first entry in
the sequence when the portion of /C in H^)+hi_x is propagated to level 0. So

it depends only on g.
The first coordinate of <t>(giir~l) can be identified likewise.

Since vr Xrßr~l, the representation of gvr is obtained by adding r
to the entry in K, at (h0,hi), moving the lamplighter to (ho + I., hi), then

moving the lamplighter to (ho + l,^i — 1), and then subtracting r from the

entry at (ho + 1, hi — 1). Equivalently, it is obtained by moving the lamplighter to

(ho +1, h\ — 1) and adding r to the entry at (h0, h\ — 1). So the first coordinate of
<T>(gvr) is (a00, hoo): the second entry is h^ because hoo + (ho +1) + (ho-I) 0

and a°° a°° because a°° and a°° are both obtained by propagating in H^+h^,
and the altered entry in the configuration is outside H^+hi.

The first coordinate of 3>(giv-1) is (a°°,hoo) likewise.

The entries in the second and third coordinates are explained analogously

except for <1>(g/rr) and where there is an added complication. When,
in the case of <f>(g/xr), the r added at (ho,h\) is propagated to (0,h\) it changes

sign with each step and so becomes (—1 )h°r. Similarly, for <h(gur_1), the r
subtracted from (h0 — l,^i) changes sign with each step as it propagates to

(0,hi), and so also becomes (— l)ft°—1 (—r) (—1)A°r.
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Finally, we explain why 4> extends to an isomorphism from the Cayley graph
C to the 1-skeleton of TL2(R)

Suppose g e F2(R). The set of vertices V in %2(R) that are reached by
traveling from <E>(g) along a single edge partitions into six subsets: travel along
the unique downwards edge in one coordinate-tree, travel upwards along one

of an R -indexed family of edges in another, and remain stationary in the last.

Since a, a', ß, ß', y, and y' only depend on g, each of gXr i-> 4>(gAr),
gAr_1 i-> 4>(gAr_1), gßr i-+ <3>(gßr), gßr'1 i-> Qig^-1), gvr $(gvr), and

gvr~l i-» <f>(gvr-1) is a map onto one such subset, and together they give a

bijection from the neighbours of g in C to V.
There are no double-edges and no edge-loops in either graph: for the 1-skeleton

of H2(R) this is straightforward from the definition, and it therefore follows from
the above for the Cayley graph. So O extends to an isomorphism between the

two graphs, and this completes our proof.

Remark 5.5. It may be tempting to try to express directly the group multiplication
in r2(R) in terms of the representations of elements as triples of addresses of
vertices in Tr. It is striking how spectacularly awkward this turns out to be, as

the following special case of multiplication by a generator £ e {A^1, (if1,
illustrates.

We have <F(g) ((a°°, hoo), (a0, h0), (a1, hi)). To find <F(g£) we call on the

sequences b°°, b° and b1. Since the propagation (of the bijection established in
Lemma 5.3(iii)) in a half-plane proceeds in the manner of Pascal's triangle, we

can explicitly express a* in terms of b* and b* in terms of a*:

when * oo, 0 and m h\, e i, and 5 0, and when * 1, and m h0,

— \h0\, and 8 i + \h0\. The infinite sums make sense since all but finitely
many entries of the sequences a* and b* are zero.

These formulae could be used to express a, a', ß, ß', y, and y' in terms
of a°°, a0, a1, ho and hj: obtain b°°, b°, and b1 using the second formula,

-m
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then shift them and add or subtract r appropriately to get the b°°, b° and b1

associated to 3>(g£), and finally obtain a, a', ß, ß', y, and y' using the first
formula.

For example, to calculate a' first obtain b°° and b® from a°° and a0 using the

second formula with m — hi, then let b (bf—r, bf, b%°, b,...), then obtain
a°° from b using the first formula with m h\, and then, as —r + a' af3,
we have found a'.

The complexity of the formulae that would result stands in marked contrast to
the " fk + r " in our proof in Section 4 of Theorem 1.2 in the case where n 1.

Remark 5.6. Given that equivalence classes of configurations correspond to

elements of R[x,x_1, (1 +x)_1], the above analysis can all be rephrased in terms

of polynomials—the point-of-view we will take in the next section. In the light of
Lemma 5.1, Corollary 5.4 amounts to the statement that for each pair (k,l) e Z2,

jx^+'O+x/ i e zj U | xfe(l +x)J+l j —1, —2, • • • j

is a basis for R [x, x-1, (1 + x)-1] over R.
The sequence a°° lists the coefficients of x°, x1,... in xh°° f, when expressed

as a linear combination of the basis

{xl | i eZj U { (1 +x)J | j —1, —2, - - -} -

Likewise, a0 lists the coefficients of x_1,x~2,... in x~h°f, and a1 lists those

of (1 Tx)"1^ +x)-2,... in (1 +x)~h'f.
If we multiply / by x~A°(l + x)~h] to give / (in effect, shifting the origin

from (0,0) to (h0,hi)), then b°° lists the coefficients of x°,xl,... in /, and b°

lists the coefficients of x-1,x~2,..., and b1 lists those of (l+x)-1, (l+x)~2,

6. The general case of Theorem 1.2

The standing assumptions in this section are that n is any fixed positive

integer and R is any commutative ring with unity in which 2, 3, n — 1 are

invertible. We will prove Theorem 1.2 in full generality: the 1-skeleton of T-Ln(R)

is the specified Cayley graph.

6.1. Preliminaries. Recall that

An(R) R [x, x_1, (1 + x)~\ (n - 1 +x)-1].

The following lemma generalizes Corollary 5.4 and is vital to the proof of
Theorem 1.2. Baumslag & Stammbach [BS] prove a very similar result as do
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Bartholdi, Neuhauser & Woess [BNW, Section 3], We include a proof for
completeness and because this and the lemmas that follow are where the hypothesis
that 2,3,...,« — 1 are invertible is used.

Lemma 6.1 (adapted from Baumslag & Stammbach, Lemma 2.1, [BS]).

[\,xJ ,x~J + x)~J,...,(« - 1 +x)~J | j 1,2,...}

is a basis for An (R) over R.

Proof First we show that the given set spans.

Suppose S c {0,1,— 1}.
For / S, let

A, := ]1 O'-O-1.
ieS-^{l}

understanding this product to be 1 when S \ {/} 0. This is well defined

because 2,3,...,« — 1 are invertible. Then, by induction on n,

n</+-)-1=£**('+t1
lS leS

in An(R), the crucial calculation for the induction step being that

(I + x)_1(m + x)~l (m — + x)_1 + (/ — m)-1(m + x)-1

for all m e {1,2,..., n — 1} and I e {0,1,... ,m — 1}. So Il/ss^ + x)_1 *s *n

the span.
Next consider xh°{\ +x)Al •••(« — 1 +x)hn~x where each ht is a non-positive

integer. We show it too is in the span by inducting on Y,"=o l^< I
• The base case is

immediate and the previous paragraph gives the induction step: let S {i \ ht < 0}
and

\ 1 if i eS
Si <

[0 if i i S.

for each i, then

xh°(l +x)hl (n-I +x)hn-1

(xAo+eo(l + x)hl+£l (n - 1 + *)*»-!f](/ + x)-1
leS

(x*0+80(l +x)Al+ei •••(«- 1 + x)*-i+«-1)^A,(/ +X)-1.
leS

To complete the proof that the given set spans it is enough to show that

p(x)(m + x)~k is in the span whenever p(x) e /?[x], m e {0,...,« — 1}, and
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k > 0. After all, any element of An (R) is an R -linear combination of products of
powers of x, (1 + x),..., (n — 1 + x) and so by the previous result is an R -linear

combination of some such p(x)(m + xffik. Well, write p(x) (m + x)q(x) + s

for some q(x) e R[x] and s e R. Then

p(x)(m + x)~k (q(x) + s(m + x)~l)(m + x)~k+1

which by induction on \k\ is in the span.

For linear independence, suppose

d-oo ft—1 di

° J2fj'jxJ +Y1 +x^~1
7=0 i=07=1

in An(R) for some ßj, Xid e R. Multiplying through by xd°{\ + x)d{ (n —

1 + x)dn~l and comparing coefficients we see that 0 /xo Mt ••• Pdx
The constant term on the right hand side is A0,^0 ldl 2dl (n — As

2,..., (n — 1) are invertible in R, we must have A0,d0 0. Repeatedly dividing
through by jc and analyzing the constant term gives A0j 0 for all j. Viewing
the resulting polynomial as a polynomial in x — 1 rather than x and applying
the same technique yields Aij =0 for all j. Then viewing it as a polynomial
in x — 2, then x — 3, and so on, gives 0 for all i, j.

In the light of this lemma we will, in the remainder of this section and the

next talk about the (* + x)~J or the xJ coefficient of a p e An(R), meaning
the coefficient of that term when p is expressed as a linear combination of the

basis established in Lemma 6.1.

Lemma 6.2. Suppose * e {0,1,..., n — 1} and qo,..., q„-\ e Z, and q* 0.

Given A*;i, A*,2,... in R, all but finitely many of which are zero, take p to be

any element of An(R) such that the coefficients of (* + x)-1, (* + x)~2,... are

Ak.i.A*^, Let A'% j, A'* 2,... be the coefficients of (* + x)_1, (* +x)~2,... in

p' ;= xqo (1 + x)qi • • • (n — 1 + x)9"-1 p.

Then A'* x, A'* 2, • • • depend only on A*:1, A*;2. • • • and

(A*,i, A*;2>...) >-> (A'^ j, A'^2* • • •)

is a bijection from the set of finitely supported sequences of elements of R to

itself Moreover, if 0 A*;2 A*^ then

(A;>1,A;>2,A;>3i...) (Am (/-*)*<, 0,0,...).
ie{0 n—1}M*}



398 M. Amchislavska and T. Riley

Proof. It is enough to prove this in the special case p' (i +x)p where one of

qo,..., qn-\, denoted qt, is 1 and all others are 0, for a general instance can
be reached by composing a suitable sequences of instances of this special case

(and its 'inverse'). Note that if*, and so we will be able to invert (i — *).
Express

oo n—1 oo

(6.1) p J2fj-jxJ+ ^2^2 h,j(i+x)~j,
j=0 / =0.7 1

oo «—1 oo

(6.2) p' y^^'JxJ + + x^]
}=o /=0;=1

where each p},p'j, Xij, X'{ ] e R (and only finitely many are non-zero) - that

is, as linear combinations of the basis established in Lemma 6.1. We prove the

special case by calculating (p'0, p\,...) and (X'{ l,X'l 2,...).
For i,l e {0,... ,n — 1},

OO

(i + x) ^PjXj ip0 + (Mo + ipi)xl + (p.i + ip2)x2 -I

]=o

and, as (z + x)(l + x)~J (/ + x)--7"1"1 + (i — /)(/ + x)~J

OO OO oo

(i +x)J2 h,j (I + x)~J J2 h,j (I + x)~J+1 + J2 XhJ (i - 0(/ + x)~J
j=1 7=1 J=1

oo

(6.3) Aiti + ^ (Xi,j+1 + Aij (i — /)) (/ + x) 1.

j=i
So

(A^i, X'^^y • •) (A*,2 + A#si(z — *)>A*,3 + A*;2(i — *),...),
and evidently the only coefficients from (6.1) this depends on are A^i.A*^,
Also we find that if 0 A*,2 A*,3 • • •, then

(A;a, A',>2, A'0,...) (A,,!(I - *), 0,0,...),

which leads to the final claim. To see that

(A*,!, A*,2, • • •) !->• (A'+1, A',i2,

is invertible when if*, consider any m such that 0 for all q > m.
Then 0 A*,m+i A*j7n+2 ••• as otherwise the sequence A+j], A*:2, • • • would

not be finitely supported. And
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L*,m — 0 — *) l^*,m

L*,m—l Ü ~ *) — ^*,m)

A.,i (/-*r1(A;;1-A,,2).

Lemma 6.3. Suppose qo,..., qn-\ e Z ant/ 51,-= 0. Given Mo, p\,... in R,
all but finitely many of which are zero, take p to be any element of An(R)
such that the coefficients of x°,x1,... are po,Pi, Let p'0,p\,... be the

coefficients of x°, x1,... in

p' := xqo{\ + x)qi (n-l + x)q»-i p.

Then p'Q,p\,... depend only on po, p\,... and

Ott0,Mi, (M'0, Ml,---)

is a bijection from the set of finitely supported sequences of elements of R to

itself Moreover, if 0 Mi p2 — • • •, then (p'0, p\,p'2,...) (po, 0,0,...).

Proof We follow a similar approach to our proof of Lemma 6.2. This time, as

qt — 0, it is enough to prove the result in the special case p' x~x (i + x)p
where q0 — 1, qt 1 and all q} 0 for all j f 0,i.

Again, consider p and p' expressed as in (6.1) and (6.2). The crucial
calculations this time are that

OO

x~l{i + x) '^2pjxj — ip,0x~1 + (/to + ip\)x° + (mi + ipf)xl H

j=o

and for / e (0,1,..., n — 1}, using (6.3),

OO OO

x~\i +x)^Aij(l + x)~J —Xit\x~l +^(A/j+i + (i - l)XitJ)x~l(l + x)~j
7=1 7=1

which has no x°,xl,... terms when written as a linear combination of the basis

elements since, by induction on j and when I f 0,

x~l(l + x)~] l~jx~l — l~J (/ + x)~l — l~J+l(l + x)'2 /_1(/ + x)~].

So

(p'0,p[,...) (p0 + ipi,pi + ip2,---),

and the final claim of the lemma is evident. To see that
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(p0,pi,...) (po, Mi,...)

is invertible, recall that i e {1,2,— 1} (so i is invertible), and consider

any m such that p'q 0 for all q > m. Then 0 Mm+i Mm+2 as

otherwise we would have m?+i —i~lpg for all q > m and so the sequence

Mo,Mi>M2,--- would not be finitely supported. So

Mm Mm

Mm—1 Mm—1 —'Mm

Mo Mo — 'Mi-

Corollary 6.4. If k* 0, then the coefficients of (* +x) \(* + x) 2,... in
xfc°(l + x)kl • • (w — 1 + x)kn~l are all zero.

Proof This is the final statement of Lemma 6.2 in the special case p 1 (and
hence A= 0 for all j and qi ki for all /.

Corollary 6.5. If k* —1, then the coefficient of (*+x)_1 in xk°(\+x)kl (n —

1 + x)kn~l is

]1 0'-*)*'•

Proof This is the final statement of Lemma 6.2 in the special case p (* +x)-1
(so A*,i 1 and A*,7 0 for all j ± 1), q* A* + 1 0 and qi ki for all//*.''
Corollary 6.6. If koo := — Yl"=o ki > 0, then the coefficients of x°,x1,... in

xk°{\ + x)kl •••(« — 1 + x)^-1 are all zero.

Proof. This is the final statement of Lemma 6.3 with q0 k0 + A<x> and q, ki
for all other i (so Jf"=o Ii 0 as required) in the special case p x~k°° (and

since k0o > 0, we have p-j 0 for all j).

Corollary 6.7. If J2l=o ~ 0> {^en '" x_fc°(l + x)~kl • • (« — 1 + x)~kn~l the

coefficient of x° is 1 and the coefficients of x1, x2,... are all zero.

Proof. This is the final statement of Lemma 6.3 in the special case p 1 (so

p0 1 and pj 0 for all j f 0) and qt —ki for all i.
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Lemma 6.8. For p e A„(R),

(i) the coefficients of x°, xl. in p equal those of xl,x2,... in xp,
(ii) the coefficients of (* + x)_1, (* + x)~2,... in (* + x)p equal those of

(* + x)~2, (* + x)-3,... in p.

Proof Calculate in the manner of our proof of Lemma 6.2. The crucial point for (0
is that x(l+x)~i — (I+x)~i+l—1(1+x)~j has no xl,x2,... terms when j > 1.

The crucial points for (ii) are that (* +x)(l + x)~' (/ +x)~'+1 + (* — /)(/ +x)~l
and (* + x)x] *x] + x]+l have no (* + x)_1, (* + x)~2,... terms when
I e {0,I,. ,.,n — 1} ^ {*} and i > 1 and when j > 0.

6.2. The bijection $ between rn(R) and the vertices of FL„(R). Define a

map 4> from Yn (R) An (R) xi Z" to the vertices of %n (R) by

(/, (h0,hn-0) ((a00, /too), (a0, h0),(a"-1, A„_i))

where /too := —h0 hn-\ and the sequences a°°, a0,..., a"-1 will be defined

as follows (guided by Remark 5.6). They list the coefficients of elements of 4„(R),
expressed as linear combinations of the basis from Lemma 6.1, specifically, for

* 0,..., n — 1,

• a°° lists the coefficients of x°,xl,... in xh°° f, and

• a* lists the coefficients of (* + x)_1, (* + x)~2,... in (* + x)~h* f.
Our proof that $ is a bijection will involve

f - x~h°(l + x)~hl (n-l+x)~h"-1f
and further sequences b°°, b°,..., b"-1 defined by:

• b°° lists the coefficients of jc°, jc1 in /, and

• b* lists the coefficients of (* + x)-1, (* + x)~2,... in /.
Proposition 6.9. <J> is a bijection.

Proof Suppose v= ((a°°, /too), (a0, h0), (a"-1, hn-\)) is a vertex of T-Ln(R)

and so /too —ho — • • • — hn-\. We will explain that there is a unique

g (f'• (ho, -ffin-ij) with <E>(g) v.
The idea is to find the sequences b°°, b°, b"-1, for then we can recover

/ (and therefore /) from them since they list all its coefficients when expressed

as a linear combination of the basis from Lemma 6.1.

For * oo, this is possible (and unique) by Lemma 6.3 applied with

p xh°°f and p' f (and so qo —(/too + ho), and q, —h, for
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i 1— 1). It establishes a bijection taking (/i0, ßi,...) a°°, which lists
the coefficients of x°,x1,... in xh°° f, to b00 (p'0, p\,...), which lists the

coefficients of x°, x1,... in /. Likewise, for * 0,1,..., n — 1, apply Lemma 6.2

with p (*+x)~h* f and p' — f (and so qt —ht for i 0,1, • • • ,« — 1 except
that q* =0). It establishes a bijection taking (A*:i, A*,2, • • •) a*, which lists the

coefficients of (* + jc)-1, (* + x)~2,... in (* + x)~h* f, to b* (A'^j, A'^,...),
which lists the coefficients of (* + x)_1, (* + x)~2,... in f.
6.3. Extending 4>. Next we show that $ extends to a graph-isomorphism from
the Cayley graph C of Tn(R) with respect to the generating set

{(r, e,), (r, ey)(r, et)-1 | r e R, 0 < j, k < n — 1 and j < k }

to the 1-skeleton of H„(R).
Recall that we denote the standard basis for Z" by eo,...,e„_i. So, if

h (h0,...,hn-1) e Z", then h + e, {h0,...,ht-i,h, +
Recall that for such h and for / e An(R),

/ • h fxh°(l + x)hl (n — \ + x)h"~x.

(Warning: / • 0 / and / • (h + h') equals (/ • h) • h', and not in
general / • h + / • h'.) Also recall that the group operation on Tn{R) is

(/,h)(/,h) (/ + /.h,h + h).
Suppose g (/,h) e r„(R) where / e An(R) and heZ". We show below

that post-multiplying g by the elements of the generating set and their inverses

gives

(6.4) g(r,ej) (/+ r h,h + e,),

(6.5) gfcej)'1 (/ -r (h-e7), h-e7),
(6.6) g(r,ey)(r,efc)_1 (/ + (k - j)r • (h - efc),h + ey - efc),

(6.7) g(r,efe)(r,e7)_1 (f + (j - k)r (h - e7), h + ek - e7)

for all r e R and all j.k e {0,— 1}. The explanation is that (6.4) is

immediate from how group multiplication is defined, (6.5) uses that

(r.e,)-1 (-r • (-ey-),-e,),

the key calculation for (6.6) is that

r -h —r • (h + e, -efc) r(l — h (k - j)r (h-efc),

and (6.7) is immediate from (6.6).
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Suppose

<f>(g) ((a00, /too), (a0, h0),(an~\hn-1)).

We claim next that maps

g(r,ej)

(((a£°, af,...), /too-1), ...,((<*/ +rßj,a\,a]2,..),hj + Ibig),...),
g(r,e7)_1 i->

(((«/ -rß'j,af,afhoo+ 1((aJ2,aJ3,.. .),hj -l),...),
g(r,e7)(r,e^)_1 h*

(.((cifjFfc + rßjk,a{,aJ2,...),hj + l),..., ((a£,af,.. .),/tfc - l),...),
g(r,efc)(r,e7)_1 i->

[...,((aJ2,aJ3,...),hj - 1{{a'jk+rß']k,a\,a\,..),hk + l),..

where the pairs indicated by ellipses are unchanged from the corresponding
(a1 ,ht) in 4>(g), and in terms of linear combinations of the basis established in
Lemma 6.1,

(ij is the coefficient of (j + x)_1 in (j +x)~hj~1f,

a'j is the coefficient of x° in xhoD+1 f,

ajk is the coefficient of (j + x)_1 in (j +x)~hj~1f,

a'jk is the coefficient of (k + x)_1 in (k + x)~hk~l f,

ßj J~[ (t — j)h', the coefficient of (j + x)-1 in (j +x)~hj~1 h,

ie{0,...,w-l}^{y'}

ß'j l,the coefficient of x° in xhoo+l (h — e7),

ßjk |~[ (t — j)h', the coefficient of (j + x)_1

i6{o,...,n lKOl in ^ _ j^j + xyhj-1 (h- efc),

ß'jk J"| (t — k)h<, the coefficient of (k + x)_1

'e{0" ""-lK<fc> in (j - k)(k + x)-hk~x (h - e7).

(The values of the coefficients ßj,ßjk and ß'.k are as stated as a consequence
of Corollary 6.5 and ß' as a consequence of Corollary 6.7.)

Here is why. First note that the second entries (those involving A«,, Ai,..., A„_ i)
of all the coordinates are correct: they can be read off the vectors in the second

coordinates of the righthand sides of (6.4)—(6.7). Secondly, note that the case of
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3>(g(r,e7)(r, et)-1) is identical to that of 0(g(r, e*;)(r, e,)-1), save that j and k

are interchanged. So we will only address the former.

Here is why the (a',h,) indicated by ellipses in the above four equations
are indeed the same as the corresponding (a1, hi) in 0(g). We compare the

(* + x)_1, (* + x)~2,... coefficients of the appropriate polynomials.

Case 0(g(r, e,)). The polynomials in question are (* + x) h*(f + r • h) and

(* + x)~h* f. The relevant coefficients agree when * ^ {oo, j} since those of

(*+x)~h*r-h r ]~^[ (l+x)h>
/e{0,l,...,n—

are all zero by Corollary 6.4.

Case 0(g(r, ey)_1). Similarly, the relevant coefficients of

(* + x)~h* (— r • (h - e7)) —r(j + x)_1 [~[ (/ + x)h>

are all zero when * ^ {oo, j} by the same corollary.

Case <f>(g(r, e7)(r, eyt)-1). Similarly, when * ^ {oo,j,k} the relevant coefficients

of (* + x)~h*(k — j)r (h — efc) are all zero. And, for the * oo case, the

coefficients of x^x1,... in xhoo(k — j)r-(h —e^) are all zero by Corollary 6.6

(with ko hoo + ho, kk hk — 1 and ki hi for all other /) since

hoo "T ho + • • • + hn—i — 1 —1 < 0.

Now we turn to the coordinates which differ after multiplication by a generator.

Why the oo-coordinate of <f>(g(r, e;)) is ((af,af,...), h^ — 1). We need to
determine the coefficients of x^x1,... in xhoo~1(f + r h). Those of xhoo~lr-h

are all zero by Corollary 6.6. Lemma 6.8(0 tells us that the coefficients of
x^x1,... in xhoo~l f equal those of x!,x2,... in xh°° f, and so are af,af,...
by definition.

Why the j -coordinate of <b(g(r, e,)-1) is ((a]2, aJ3,...), hj —I). The (j +x)_1, (j +
x)~2,... coefficients of (j +x)_/i'+ l (/-r-(h-e7)) are a2,aJ3,... since those of

(j +x)~hJ+1r • (h-e7) (j +x)~hJ r h are all zero by Corollary 6.4 and those

of {j+x)~hJ+1f equal the (j +x)~2, (j +x)~3,... coefficients of (j +x)~hj f
by Lemma 6.8(/7).

Why the k-coordinate of 4>(g(r,e,)(r,eyt)-1) is ({a2,a3,.. .),hk — l). The

(k + x)_1, (k + x)~2,... coefficients of {k + x)~hk+x{f + {k — j)r (h — e^)) are

a2,a3,... similarly to the previous case.

Why the j -coordinate of <f)(g(r, e;)) is ((a, + rß}, a{, a2,...), hj + l). We need

to check that the (j + x)-1, (/' + x)-2,... coefficients of (/' + x)~h>_1 (/ + r • h)
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are a3 + rß} ,a{,a2, The (j + x)-2, (j + x)~3,... coefficients are a[,aJ2,...
since those of (j + x)~hJ~lr h (j + x)_1((y + x)~hJ r h) are all zero by

Corollary 6.4 and those of (J + x)~hJ~lf equal the (j +x)~1,(j + x)~2,...
coefficients of (j + x)~hj f by Lemma 6.8(n) for the same reasons as in earlier

cases. Its (j + x)~l -coefficient is a} + rßj by definition.

Why the oo -coordinate of 4>(g(r, e7 )_1) is ((aj — rß'}, af, af,...), hoo + l). The

x^x1,... coordinates of xhoo+1(f — r-(h — e7)) are a'} — rßj ,af, a,... for
similar reasons.

Why the j -coordinate of 4>(g(r, e7)(r, e^)-1) is ((a}k + rßjk.a^, a2,...), h} + l).
The (j +x)-1,(y +x)-2,... coefficients of (j +x)~hJ~1(f + (k — j )r (h — e^))
are ctjk + rßjk, a\, a2,... likewise.

The set of vertices V in Hn(R) that are reached by traveling from 4>(g)

along a single edge partitions into (n + 1 )n subsets: travel along the unique
downwards edge in one of the n + 1 coordinate-trees, travel upwards along one

of an R -indexed family of edges in another, and remain stationary in the rest.

As we have seen, for each element x of the generating set

{(r, e,), (r, e7)(r, e&)-11 r e R, 0<i,j,k <n- \ and j <k]
the location of 4>(gx) and 4>(gx_1) falls in one of these subsets. Thereby the

union of this generating set together with the set of the inverses of its elements

has (n + 1 )n subsets which correspond to the (n + \)n subsets of V. Indeed,
each subset contains one I?-indexed family of generators or inverse-generators.

Since a} and ß, do not depend on r and ß3 is invertible (since 2,3,..., n — 1

are invertible), for fixed j, the map r h>a; + rßj is a bijection R -> R. So

g(r, e}) i-> 4>(g(r, e7)) is a bijection between a subset of the neighbours of g in
the Cayley graph C and one of these subsets of V.

Likewise, because ß'rßjk, ß'jk are invertible (since 2, 3,— 1 are invertible),

r v^a'j -rß'j,
r i->- ctjk + rßjk,

r^a'jk + rß'jk

are all bijections R -> R. So as a'} a3k, a'jk, ß'j, ß3k, and ß'jk do not depend

on r, there are similar bijections between subsets of neighbours of g and subsets

of V. Combined, these bijections give a bijection from the neighbours of g in
C to the neighbours of <T>(g) in V.

There are no double-edges and no edge-loops in either graph: for the 1-skeleton

of Hn(R) this is straightforward from the definition, and it therefore follows from
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the above for C. So $ extends to an isomorphism from C to the 1-skeleton of

Hn(R), completing our proof.

7. Presentations of Ti, ri(»i), r2 and r2(/w)

In this section we give presentations of Ti, ri(m), r2 and r2(m) which
reflect their descriptions as horocyclic products of trees. Our presentations for T2

include one which we will prove in Section 8 to have Cayley 2-complex %2(Z).

Proposition 7.1. Presentations for the group

r i ZiZ^Z[x,x_1]xiZ |( **
-J" )|jfceZ, /eZ[x,x_1]J

include

(i) [a,t [a,a'*] 1 (k e Z)

(ii) (x,p Xk (A-yA"1)* pkX~k(k e Z)),

(iii) (a,0' 6 Z) XkXj~k X-jkX-i~k(i, j,k e Z)).
These are related via X t, p at, and A,- a'i.

Proof. As an abelian group,

Z[x, x_1] 0Z (ai (i Z) | [af, a,] 1 Vi,;').
ieZ

So Z[x,x_1] >i Z (i,a,- (i e Z) \ tap~l a,+1, [ai,a7] 1 Vi,;'), which

simplifies with a ao to give (i).
For (ii), it suffices to show that (a, tbig\[a, a' ] 1(A e Z)) can be re-

expressed as

(a,t tk(t~1a)k (at)kt~k(k e Z)j,
since the latter becomes (ii) via A t and p at. Well, tk(t~]a)k and (at)kt~k
freely equal {tk~xat~^k~^).. ,{tat~l) a and a (tat~l)... (ifc_1ai~^_1^), respec-

i k k
tively, and a straight-forward induction shows that the family {a' a aa' }kZ
is equivalent to

' k>0\a ---a a aa--a a •••a a aa •••a [
v / h

Finally we establish (iii). If A,• a't then A,• must correspond to
q j

and so

t / xk i(1 H hxfc_1) \ k x~k -i(x~k H hx-1) \
o i )andAi t0( o i )•
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From there it is easy to check that the relations XkXj k X-kX-x k correspond
to valid matrix identities, and so must be consequences of the relations \a, a(k] — 1

(k e Z).
Conversely, given that Ao A / and Ai p at, we find that

A_i a~lt Xp"1X, and so the relations Xk (A_1/rA_1)fc pkX~~k of (ii)
are XkX}~k — X-kX-t~k in the case i 0 and j — 1.

On introducing torsion, adding the relation am 1 to Presentation (i) of
Proposition 7.1, we get presentations for T\ (m). These can be reorganized in the

manner of Presentations (ii) and (iii), and in the case m 2 can be simplified
significantly:

Proposition 7.2.

where m >2, X t, p at, and A, a11.

Proof. The presentation for V y (2) comes from simplifying Presentation (ii) of
Proposition 7.1 using the relation a2 1, which is equivalent to A_1/xA_l p~l.
The family Xk{X~lpX~l)k pkX~k becomes the family (Xk p~k)2 1. The case

k 1 provides the relation a2 1.

For Ti(m), consider adding the family of relations (X,kXj~k)m 1 for all

i,j,k e Z to Presentation (iii) of Proposition 7.1. In particular this adds the

relation am — 1, which is the case: (AiA0_1)m (att~l)m 1. In the resulting

group A,- Aj when i j modulo m since then a't aJt because am 1.

This group must be Fi (m) because all the remaining added relations hold in
Ti (m), after all when k > 0 (and similarly when k < 0),

(XkXj~k)m ((a'oVo-T
[a1 (talt~l) • • • (tk~2al t~(k~2^)(tk~la'~J t~(k~^)(tk~2a~J t~(k~2^)

(ta~J t~l)a~2)m

rj(2) (Z/2Z) l Z (a,M I (Xkß-k)2 1 (k Z)J,

Ti(m) (Z/mZ) I Z

which is 1 because (a'P)m — 1 and a'P and a'9 commute in Tt(m) for all

p,q e Z.
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Proposition 7.3. Presentations of

Tl= {( Xk{lQX)l { )|fc,/gZ,/eZfx.x^.Cl+x)-1]!

include

(i) [a,s,t\[a,at] l,[s,t] as=aat),

(ii) (/x, v, c, d |[/x, y] 1, /x_1c2v c, v~ldzß d),

(üi) h,Pi,Vi (i G Z) | A; v;/x<, Xi+j ptVj (i,j gZ)
These are related by

/ 1 1 \ / x 0 \ / 1 + x 0 \""(o l)• """U i)• sMx o i)•

p — s, v — t~xs, c at, and d t~la, and A* a't and /x; - als (and
hence v,- Ai/tx,_1 =a'ts~la~l).

The generators A/x,, and v, := A;/x,_1 agree with those employed in
Section 5. After all,

A,-=a!th+(^ ^ and ßi=als h» ^

which are alternative ways of expressing (/, e0) and

Presentation (i) and the given matrix representation are due to Baumslag in
[Baul] and our proof below that they agree is an embellishment of the argument
in his paper. Presentation (ii) is striking as it shows that T2 maps onto a free-

product with amalgamation of two BS(1,2) groups (via identifying p and v).
The generators of Presentation (iii) are those we used in Sections 5 and 6 to
relate r2 to a horocyclic product of trees. In Section 4 of [GKKL], presentations
of similar matrix groups are given (e.g., in Section 4.3.1) using techniques that

are similar to those that follow and are based on ideas in [Baul].
In the course of proving Proposition 7.3 we will also establish:

Lemma 7.4 (Normal form). Elements g in T2, presented as (i), are represented

by a unique word

(7.1) wg am'kl amfC'kK a"iS'1 a"LS'L sltk

with k\,... ,kg:,li,... ,lL,l,k, L, K e Z and m\,...,,n\,g Z \ {0}
satisfying k\ < < kx and f < < II < 0.
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Proof of Proposition 7.3 and Lemma 7.4. Let us establish the existence part of
Lemma 7.4. Suppose w is any word on a,s,t representing g. First convert w to

a word of the form ]~[; as""q' sltk by inserting suitable words on {.?±1, t±x after
each a and then using the relation [s, t] 1. Then eliminate all the positive p,
by expressing as"' as a product of terms like a'J using the relation as aa'.
In r2, [a, a'"] for all n > 0 as can be seen by an induction via

1 [a,atnJ [^,(ay] [aa',a'"a'"+1] [a,a'"+l].

(We see here that the relation as — aa', which Baumslag calls mitosis, is the key

to coding the infinite family of dehning relators [a,a'"] 1 (n e Z) in a finite

presentation.) So, as as' can be expressed as a product of terms of the form a'J

(j e Z), elements of the set ja*', a'', | i,j e zj pairwise commute in r2. So

we can rearrange terms to get the form of wg.
Next we observe that the map <p from the group presented by (i) to the given

matrix group, defined for a, s and t as indicated in the proposition, is well-
defined and is a homomorphism: the defining relations correspond to identities
which hold in the matrix group. It maps a group element g represented by the

word wg of Lemma 7.4 to

(7.2) (l OC'V»' ») (*'<'->'
where

/ mixkl -\ 1- mKxkK + n\{\ + x)h 1- nL( 1 4- x)'L.

So <p is surjective. Now {x', (1 + x)] \ i, j e Z, j < 0} is a basis for Z[jc, x"1, (1 +
x)-1] as we saw in Section 5.1. So (p is also injective and the normal form words

of Lemma 7.4 each represent different group elements. So (i) is a presentation
of r2.

The translation between Presentations (i) and (ii) comes from that the relations

[s, t] — 1 and [/i,, v] 1 are equivalent, and, in the presence of that commutator,
p,~lc2v c and v~ld2gi d are equivalent to as — aa' and as — a'a,
respectively.

Presentations (i) and (iii) agree as follows. When i j =0, the relation

Ai+j piVj becomes [s,r] 1, and, in the presence of [s, t] 1, when

i — —j 1, it gives as a'a, and when —i= j 1, it gives as aa'.
Moreover, in terms of a,s, t the relation Xl+J — jil v} is a'+Jt — a1 saJ ts~la~J,
which holds in r2 because a1 saJts~la~Jt~1a~'~-i a1 (sas~l)Jta~Jt~la~'~J
a1 (aa')J a~j'a~l~i al+j aj'a~i'a~'~j =1.
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The normal-form words of Lemma 7.4 read off lamplighter descriptions of
group elements in which the configurations are supported on L0,o (that is, the

r-axis and the negative half of the .s -axis). If a group element g positions the

lamplighter far from L0,o, then the configuration supported on L0,o representing g
will differ dramatically from that representing ga±l, since the effect of propagating
±1 towards L0,o compounds in the manner of Pascal's triangle.

A word on a,s, t as per Presentation (i) for r2 represents a group element

whose lamplighter description can be found as follows. Start with the lamplighter
located at (0,0) and the configuration entirely zeroes. Working through w from
left to right, increment the integer at the lamplighter's location by ±1 on reading

an a±1, move the lamplighter one step to the right or left (the t - or t~l -direction)
on reading a t or f_1, respectively, and move the lamplighter one step to the

adjacent vertex in the s- or s_1 -direction on reading an s or ,s,_1, respectively.
For presentations of the groups Tn(m) in general see Theorem 4.7 in [BNW].

8. ^2(2) as a Cayley 2-complex

In this section we show that ?f2(Z) is the Cayley 2-complex of

r2 (Ai,fMi,v, (i e Z) I X, Vtfit, Al+J ßtVj (i,j e Z)},

proving Theorem 1.3.

Identify the Cayley graph (the 1-skeleton of the Cayley 2-complex) with the

1-skeleton of H2(Z) as per the n 2 case of Theorem 1.2 (proved in Section 5).

First we show that every 2-cell in T-L2(Z) is bounded by an edge-loop which

corresponds to a defining relation of r2. Suppose a point p (po, pi, p2) e

772(Z) is in the interior of a 2-cell X. Then each p, is in the interior of an edge

lj of the tree 7z- Let 1, minu6/; h(u) and x} h(pj) —1} for j =0,1,2.
It follows from h(p0) + h{p\) + h(p2) 0 and 0 < x} < 1 that Iq + I\ +12
is either —1 or —2. So x0 + xi + x2 is 1 or 2. Say X is of "type 1" or "2"
accordingly. Examples are shown in Figure 10 (with the vertices of the triangles
labeled by (xQ,xi,x2)-coordinates).

Consider moving p within X as parametrized by {x0,x\,x2). It is on an

edge in dX when one of the pi is at an end of /, and is on a vertex when two
(and hence all three) are at an end of It. So if X is of type 1, it has vertices,

{xo,x\,x2) (1,0,0), (0,1,0), and (0,0,1), and dX is traversed by following
the edges (1 - r, r, 0)0<r<i, then (0,1 - r, r)0<r<i, and then (r, 0,1 - r)0<r<i •

If X is of type 2, it has vertices, (x0,xi,x2) (0,1,1), (1,0,1), and (1,1,0),
and dX is traversed by following (r, 1 — r, l)o<r<i, then (1, r, 1 — r)0<r<i, and

then (1 - r, 1, r)0<r<i •
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(0,1,0)

(1,0,0) (0,0,1)

(0,1,1)

(1,0,1)

(1,1,0)

Figure 10

Examples of 2-cells of type 1 and 2

Now, dX corresponds to a length- 3 relator in T2, and matching the changes

in heights as dX is traversed with the height-changes indicated in the family
of six displayed equations in our proof of the n 2 case of Theorem 1.2 in
Section 5, that relator must be AfcV7_V;_1 for type 1, and AJ1Vjp,ic for type 2,

for some i,j,k e Z.
The workings of lamplighter model illustrated in Figure 9 allow us to see that

Afcv-V"1 1 in P2 if and only if k — j —i 0 since X^vJ1 p,^1 does not move
the lamplighter and increments the lamp at the lamplighter's location by k — j—i.
That is, the relation is Ai+j /x,-vj for some i,j e Z. Similarly, A~' vy/x^ 1

in r2 if and only if i j — k since A"1 Vjßk does not move the lamplighter
and transforms a triangle of numbers 0°o ^ j~'k (with the lamplighter being
located to the right of the —i). That is, the relation is A= u; /x; for some i e Z.
So around dX we read one of the defining relations in the presentation given in
the theorem.

Finally, we show that every edge-loop in Xi2(Z) which corresponds to a

defining relation bounds a 2-cell. So suppose p : S1 At2(Z), given by

r m>- p(r) (p0(r), pi(r), p2(r)), is a loop in the 1-skeleton of %2(Z) and

around p we read one of the defining relations. Then for each j, such are the

defining relations, the image of the loop r Pj(r) is in a single edge Ij of 7z
and, by a similar analysis to that above,

{(m0,mi,m2) e 7^ | Uj e Ij and h(u0) + h(u\) + h(u2) 0}

is a 2-cell of H2(Z) with boundary circuit p.
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So, as no edge-loop in either or in the Cayley 2-complex is the

boundary of two 2-cells, the result it proved.
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