
Zeitschrift: Ferrum : Nachrichten aus der Eisenbibliothek, Stiftung der Georg
Fischer AG

Herausgeber: Eisenbibliothek

Band: 93 (2024)

Artikel: The silver bullet, or how to kill the quality "beast"

Autor: Leimbach, Timo

DOI: https://doi.org/10.5169/seals-1061986

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte
an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei
den Herausgebern beziehungsweise den externen Rechteinhabern. Siehe Rechtliche Hinweise.

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les

éditeurs ou les détenteurs de droits externes. Voir Informations légales.

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. See Legal notice.

Download PDF: 02.02.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-1061986
https://www.e-periodica.ch/digbib/about3?lang=de
https://www.e-periodica.ch/digbib/about3?lang=fr
https://www.e-periodica.ch/digbib/about3?lang=en


The silver bullet,
or how to kill the
quality "beast"

Timo Leimbach

Software projects are often examples of projects that
fail to meet quality, time, and cost constraints. Despite
substantial efforts to enhance the development
process, there is no simple solution. Improving the process
has remained a pivotal question and sparked heated
debates. It covers a broad set of problems and solutions
ranging from the unique attributes of software and the
formal correctness of code to different approaches in

project management. Originally, emphasis was placed
on detailed specification and rigorous upfront planning,
known as the waterfall model, while in recent years
alternatives focused on incremental/iterative concepts,
now called agile methodologies. For both, quality and
its different conceptualizations have played an important

role.

Information
technology (IT) projects, particularly those

within software development, have gained a notorious

reputation for consistently failing to meet quality, time,
and cost constraints. Even during the early days of
computing, numerous examples existed where software
failures had serious consequences, impacting not only quality
but also safety.

Drawing on a variety of metaphors, F. Brooks from IBM,

who headed the development of the operating system for
the famous S/360, brought this issue to a wider audience.
In explaining the delays and cost overruns of software
projects he compared them to "tar pits". Caught in these
mires with no progress in sight, people search in vain for
a simple, straightforward solution that solves all the problems,

the mythical "silver bullet" capable of slaying the

monster with one shot.1

From hard to soft - the evolution of a problem
Despite substantial efforts to enhance the development

process, the underlying issues have persisted and, in

some cases, even exacerbated over time. In the 1990s the

infamous CHAOS Report by Standish Group highlighted
the fact that more than two-thirds of all IT projects failed
to meet at least one of the three critical dimensions - cost,

quality, and time.2 Although there has been some improvement

in recent years, these challenges have not
disappeared entirely. The question of how to enhance the
software development process remains pivotal. Various

approaches have been proposed, leading to heated
debates within the field. But as organizations are still in need

112 Leimbach: The silver bullet, or how to kill the quality "beast"



of better outcomes, finding effective solutions continues to
be a priority.

One of the central challenges when discussing how
to enhance IT projects lies in the dynamic nature of the

problem itself. During the nascent years of computing,
attention primarily focused on the hardware limitations of

computer systems, for example machines like the IBM 650

and their counterparts. These constraints - such as limited

memory and computing capacity- necessitated a

pragmatic and concise approach by programmers in order to
devise workable solutions. However, an important shift
occurred during the 1960s with the emergence of a more
capable generation of computers, which started to remove
the hardware limitations. Conversely, the increasing
capabilities created a rising demand for novel functionalities,
including multi-user environments and diverse types of

applications. This transition marked a departure from the

classical, mathematically rooted problem-solving
paradigms - such as sorting and optimization - to more complex,

continuous operations. Examples include online
transactions and management information systems.3

As software systems
grew in complexity, their

manual verification became
increasingly challenging.

This shift from batch-oriented processing to real-time,
online systems brought about significant changes in

software development practices. Firstly with regard to testing
and improving: unlike earlier times, programs could no

longer be tested and adjusted in the same way. Batch

programs, commonly executed one after another on computers,

would halt in case of failure. Programmers then faced

the task of identifying and resolving issues before
rerunning the program until successful. As multi-user
systems with concurrent applications gained importance, this
approach faced limitations. The second change related to

the size of the programs: previously, codebases were
small enough to allow manual verification of logic and
correctness of the code itself. However, as software systems

grew in complexity, this manual task became increasingly
challenging.

Given that, the advent of online/real-time systems
shifted the very essence of software development. As

pointed out already, software development had been

associated with two distinct paradigms. The test-based
approach opened up in the direction of a more
engineering-oriented approach, which involved rigorous testing
and refinement. The other one was the artisanal approach,
often referred to as the "art of programming", which
emphasized craftsmanship. Developers meticulously crafted
code, akin to artisans and craftspeople shaping individual
pieces. Both models faced different challenges. While the

latter was ill-suited to the growing need for programs, the
first required more rigorous methods to ensure the
results would live up to the desired outcome. Therefore, the

emergence of transactional systems necessitated a

departure from these existing paradigms.4

As computer technology
advanced, the limitations

imposed by hardware
gradually diminished.

This was underlined by the growing number of projects
that faced significant challenges. These projects included
IBM's well-known and already mentioned OS/360, which

experienced delays spanning several years and incurred
costs much higher than budgeted for. While this example
is widely recognized, numerous other private companies
also struggled in their attempts to establish management
information systems or similar solutions. Altogether,
these experiences raised awareness of a critical issue
around software. Nowadays the term "software crisis",
which is likely a retrospective label applied to it, is used to
describe this period. While from an academic perspective
the debate over whether this wording was already used in

contemporary discussion remains open, it is obvious that
the period was marked by changes.5 As computer technology

advanced, the limitations imposed by hardware gradually

diminished. Simultaneously, the challenges associated

with software development gained prominence. The

roots of these challenges are multifaceted. They range
from the inherent intangibility of software, which defied

production standards established in other areas, to a shift
in focus towards human interaction with the new forms of

applications. This rise of the "soft" problems was exemplified

by the widely circulated tree swing cartoon during the
1970s.

In summary, the landscape of computer systems
continually shifted, requiring new strategies to address
the systems' emerging complexities. The resulting problems

in particular within software development were
significant, prompting among other things the need for new

approaches in software development. Acknowledging
these historical shifts is crucial to the understanding of

further dynamics.

In search of an answer
Not surprisingly, the quest for a solution to the problem
emerged in parallel with this shift in computing. Notably,
the SAGE (Semi-Automated Ground Environment) radar
system marked an important point. Its evolution in the

1950s was a catalyst for the development of new
approaches to larger and complex software, primarily
referred to as system development since hard- and software

Leimbach: The silver bullet, or how to kill the quality "beast" 113



development were closely intertwined. Simultaneously,
other ideas gained traction, and the first scientific
workshops took up programming-related issues. Altogether,
this gave rise to a diverse set of approaches aimed at
addressing the same fundamental problem. However, not all
of these approaches harmonized with each other. Discrepancies

in understandings of the problem and subsequent
solutions became evident,6 for example in the course of

the famous NATO conferences on software engineering,
held in Garmisch-Partenkirchen in 1968 and Rome in

1969. The idea behind the conferences was to bring
together scientists and practitioners from a variety of fields
"to shed further light on the many current problems in

software engineering, and also to discuss possible
techniques, methods and developments which might lead to

their solution".7

The primary outcome of the conferences
was not a solution to the problem as such,

but rather an amplified awareness
of the challenges at hand.

The divergence in approaches and ideas may have been

exacerbated by the term "software engineering", which

was introduced to mark a difference to terms like

programming. Some interpreted this term through the lens of

craftsmanship, drawing parallels to the art of programming

as promoted by Donald Knuth.8 From this perspective,

practice and talent played pivotal roles. Conversely, a

different group, predominantly composed of applied
mathematicians, favoured a mathematically grounded approach
to formal software verification. This approach demanded

rigorous techniques for formal specification, analysis, and

development - techniques deeply rooted in theoretical

computer science. Another group of practitioners and

scientists, including Grace Hopper, engaged in more
pragmatic discussions about possible process models,

addressing (among other problems) safety and quality.9 Given

the substantial disparities in understanding and potential
solutions, the primary outcome of the conferences was not

a solution to the problem as such, but rather an amplified
awareness of the challenges at hand. This heightened
awareness clearly influenced the establishment and
evolution of academic disciplines, particularly in Europe. While
the field of computer science was already well established
within American universities and scientific circles, European

researchers still struggled to establish the disciplines in

their respective countries. As a consequence, the increased

recognition of software development challenges started to

play a pivotal role in shaping disciplines such as "Informatik"

at German universities. Intriguingly, the aforementioned

applied mathematicians played a crucial role in

steering the academic field toward a more formal and

theoretical trajectory, in contrast for example to the field of

computer sciences in the US sparking debates on its direction

in the following years.10

In the discourse surrounding software development,

the concepts of quality and safety have been central

points of discussion. However, their precise meanings and

implications have often remained ambiguous. The
conceptualization of safety was often closely tied to reliability and

malfunction prevention. Initially, the focus was primarily
on ensuring reliable operations of software systems. However,

as software found its way into safety-critical domains
(such as aircraft control systems), safety considerations

expanded - in particular regarding prevention. While this

was only in a limited number of cases at that point,
software today pervades many other critical areas, including
automotive safety features and healthcare instruments.
Consequently, the definition of safety has evolved beyond

mere reliability.
Quality, on the other hand, received significant

attention in these discussions. Yet, like safety, it remained

conceptually hazy. Often, quality was discussed in terms of

quality assurance and quality control, which mirrored and

reflected the discussion patterns from other disciplines. In

this context quality assurance primarily referred to the

development process itself. This involves practices that
ensure adherence to standards, efficient workflows, and
defect prevention. However, the boundaries between quality
assurance and quality control can be indistinct, especially
in early literature. Quality control on the other hand focuses

on assessing the final product. Rigorous testing and

validation, like in other engineering disciplines, should ensure
product quality for the individual software. Interestingly,
software engineering diverges from other engineering
fields in its treatment of maintenance. While maintenance
is a critical aspect of system longevity, it has received less

attention and has become problematic. As software
systems evolve, neglecting maintenance can lead to unforeseen

issues, compromising both safety and quality.

The emergence of structured IT project management
The evolution of software development practices has been

influenced by the analogy to other engineering disciplines,
particularly manufacturing. Drawing inspiration from
established engineering fields, the practice of software
development moved its focus toward more structured approaches,

with engineering management playing a pivotal role. In

this context, project management has emerged as a critical
discipline, addressing the challenges posed by large-scale
technology development endeavours. It emerged as a

distinct field during the 1950s as a result of the challenges
experienced during ambitious, large-scale technology projects

in the course of the Cold War arms and technology
race. Initially, project management aimed to equip
practitioners with the necessary skills and tools to navigate such

projects. Consequently, the knowledge base of it had a

strong focus on planning and control, especially schedul-

114 Leimbach: The silver bullet, or how to kill the quality "beast"



University of London

Computer Centre
G3mi îic

perp
H S3

Ko. sa March 1973

1 Oldest dated version of the tree swing cartoon from the University of London

Computing Centre, 1973.

ing, optimization of resource utilization, budgeting and

timing, as well as controlling the implementation. Typical
tools developed and refined included Gantt charts as help
with visual planning, borrowed from engineering or critical
path analysis, which facilitates critical task identification
and optimized resource planning. The theoretical concepts
were often narrow and its underlying assumptions can be

traced back to the ideas of Taylorism and scientific
management, which evolved in the 1920s and 1930s.11

Within software development the idea was not

totally new, and structured approaches have a long history.
As early as the 1950s, the first examples of so-called
"structured programming methods" appeared. Among
these, one stands out: the approach that originated within
the context of the SAGE (Semi-Automatic Ground Environment)

project and was first presented in 1956. This
approach places significant emphasis on rigorous upfront
planning and detailed specification of requirements before

any coding begins - aimed at creating a solid foundation
for subsequent implementation. Quality assurance, in this

context, revolves around rigorous specifications. These

specifications are subject to validation through testing - a

practice borrowed from other engineering disciplines.
Essentially, quality is perceived as a control feature, ensuring
adherence to predefined standards. Notably, the approach
described dealt with a program comprising approximately

40 500 instructions. Given this manageable size, rigorous
processes could be applied to ensure the software's proper

functioning. In a similar vein was the idea of formal
methods of verification, which were favoured by parts of

the scientific community. The idea here was also to specify
requirements rigorously, but instead of checks made by

hand it aimed at mathematical checks to ensure correctness.

However, these approaches have limitations.12 While

they work well for smaller programs with a few thousand
instructions, they become impractical for larger software

systems. The proof process becomes prohibitively time-
consuming compared to the actual programming effort.
Consequently, these methods remained limited to specific
domains and were not widely adopted for general-purpose
software like modern operating systems, with their
millions of lines of code.

The expansion of program sizes presented a

persistent challenge for structured approaches as well. Over

time, a methodological framework emerged, now widely
recognized as the waterfall model. This model prioritized
comprehensive specification, thorough requirement gathering

and meticulous initial planning. Its formalization can
be traced back to a seminal 1970 article by William Royce,

often credited as its inventor. Ironically, Royce's intention

was to critique and enhance the model rather than advocate

its adoption as-is. He highlighted a notable challenge:

Leimbach: The silver bullet, or how to kill the quality "beast" 115



System
Requirements 9

Software
'

Requirements

Analysis

Operations

2 Waterfall model as described by Royce, red arrows marking the improvements suggested.

the lack of feedback mechanisms to accommodate
alterations and refinements based on insights gained from
subsequent stages. Particularly, he advocated for a

simplified iterative approach, wherein core functionalities,
after an initial development, will be refined based on initial
testing. This underscored a pressing challenge in computer

system development that could not be adequately
addressed through increasingly stringent specifications and

upfront planning alone.13

The challenge stemmed primarily from the continuous

proliferation of computer systems into new domains
of application. It became increasingly apparent that the

significance of software extended beyond mere functionality

- the paramount concern became whether the
software fulfilled its intended purpose. Consequently,
quality control began to pivot towards a dual emphasis on

verification and validation. This conceptualization found

prominent expression in the V-model, where the left side

signifies verification and the right side validation. This
evolution coincided with a burgeoning discourse on the

nature of software quality throughout the 1970s.

Many conceptual models, such as Boehm's utility
model, predominantly emphasized technical aspects of

quality, such as reliability and testability. Aspects like
aesthetics and usability were often subsumed under the
rubric of human experience. This trajectory mirrors the
ongoing deliberations on quality within contemporary
engineering, where the imperative of quality steadily es¬

calated, particularly as a means of differentiation in

increasingly competitive markets. Nonetheless, the
predominant focus remained entrenched in technical
dimensions. A gradual shift in this paradigm commenced
with the emergence of quality management as a distinct
discipline. This transformation coincided with the rise of

influential consultants such as Deming, Crosby, and Ju-

ran, alongside scholarly investigations led by Garvin and

others. These developments led to an increasing emphasis

on quality, also in the realm of software production.

For many within the software industry,
the intensified focus on procedures
and its attendant requirements for

documentation appeared misguided.

Primarily, the rise of quality management systems
catalysed efforts to enhance existing methodologies. This
led to divergent avenues for integrating process quality
into software development. One such avenue was the
aforementioned V-model of development, designed to

ensure not only verification and validation but also a

coherent process model. Another approach involved the
introduction of maturity models aimed at assessing the

quality of development processes. Additionally, entirely
new process-oriented project management frameworks,

116 Leimbach: The silver bullet, or how to kill the quality "beast"



Manifesto for Agile Software Development

We are uncovering better ways of developing
software by doing it and helping others do it.
Through this work we have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on
the right, we value the items on the left more.

Kent Beck
Mike Beedle

Arie van Bennekum
Alistair Cockburn
Ward Cunningham

Martin Fowler

James Grenning
Jim Highsmith
Andrew Hunt
Ron Jeffries

Jon Kern
Brian Marick

Robert C. Martin
Steve Mellor

Ken Schwaber
Jeff Sutherland
Dave Thomas

3 The title page of the Agile Manifesto set over an intentionally blurred image of the

2001 meeting, where the blurring is intended to underscore that all worked together.

such as Projects in Controlled Environments (PRINCE),

were formulated and adopted as industry standards.
Despite these concerted efforts towards improvement,
the persisting challenges remained evident. As
underscored by the aforementioned CHAOS report, the number

of failed IT projects remained high throughout the
1990s.14

The rise of agile - the role of quality
The increased emphasis on quality did not inherently
pave a clear path forward. For many within the software
industry, the intensified focus on procedures and its
attendant requirements for documentation appeared
misguided. Rather than tackling issues such as the

challenges stemming from the intangible nature of
software and its ever-changing requirements, the

emerging frameworks often seemed burdensome and

inflexible. Consequently, there arose a desire for alternative

solutions to the complexities of software development.

During the 1990s, a variety of approaches began
to surface, including methodologies now recognized
as Scrum, Extreme Programming, and Crystal Clear,

among others, collectively characterized as lightweight
methods. A gathering of proponents of these methodologies

convened at a ski resort in Utah in 2001, originally
dubbed the "Lightweight Methods Conference". This

gathering resulted in what is now commonly referred

to as the Agile Manifesto, encapsulating a shared set of

principles.15

Although the various methodologies differ from
each other, they share a common enemy: the inflexible
"waterfall" model. While it has been demonstrated earlier

that the waterfall model never truly existed in a

singular form and numerous variations were extant,
it served as a representation of a process and a unifying
foil, or even a straw man. Building upon this commonality,

it became possible to delineate four values and

twelve principles that, to some extent, encapsulated the

diverse methodologies, based on the observation that
they all drew upon similar conceptual frameworks
and theoretical underpinnings. One such foundational
concept was the notion of incremental and iterative

processes, which had been recognized since the 1950s

and, as evidenced by the aforementioned ideas of Royce,

were fairly well known. Numerous scientific publications
in the 1970s and 1980s explored this concept, resulting
in various methodologies such as rapid prototyping
or evolutionary development (EVO), which served as

precursors for some of the methodologies discussed.
Meanwhile, proponents of other methodologies focused

on other roots for iterative processes. Scrum, for example,

is based on the principles expressed in the "New
New Product Development Game", inspired by product
development processes in Japanese consumer electronics

companies.16

Leimbach: The silver bullet, or how to kill the quality "beast" 117



Cumulative cost

1. Determine Progress 2. Identify and

objectives '"" I resolve risks

Review

Concept of Concept of
operation requirements

Development Verification &

plan Validation

Test plan Verification &
Validation

Requirements
Detailed
design

Code

Integration

Test

Implementation
U. Plan the

next iteration
Release 3. Development

and test

4 Spiral model of iterative development after Barry Boehm.

The central idea was to
achieve heightened flexibility,
facilitating adaptive responses

to evolving demands.

The central idea was to achieve heightened flexibility,
facilitating adaptive responses to evolving demands. This

emphasis on flexibility as a fundamental value required
alignment with other key aspects. Among these, one of

the most prominent is the empowerment of teams,
affording them the autonomy to devise and modify plans
according to changing needs. This principle resonates
with similar ideologies advocated by figures like Kelly
Johnson, the head behind the Skunk Works at Lockheed,
whose presentations and writings favoured comparable
ideals. Concurrently, there was a concerted effort to

actively engage users and customers, with a particular
emphasis on delivering value to them. This emphasis echoes

the significance of user involvement in participatory
design practices, which, for instance, contributed to the

development of methodologies such as EVO and Rapid

Prototyping. These methodologies had their roots in various

communities.17

The emphasis on customer centricity, particularly
on delivering customer value, also played a pivotal role in

the second area of influence for shaping agile methodologies:

leanness. Lean methodology is closely intertwined
with the concept of lightweight processes, as one of its fun¬

damental principles concerns waste reduction. However, it

is important to note that lean is a rather broad and adaptable

framework. It draws inspiration from traditional Japanese

production methods as well as American management

principles, representing a synthesis of ideas that

emerged post-World War II.

The American influence is strongly connected to

the work of Deming, who moved to Japan in the 1950s.

Deming introduced the PDCA (Plan-Do-Check-Act) cycle,

initially developed by Shewhart, to Japan. This cross-
fertilized with notions of waste reduction, stemming from
the imperative to optimize scarce resources before,

during, and after the war. Additionally, it incorporated an

emphasis on regularity to facilitate a continuous flow of

work and improvements. This approach aims to achieve

optimal workflow balance and prevent distortions through
proactive problem recognition and resolution. Central to

lean methodology is the notion of the team as the
fundamental unit of collaboration, aligning well with Japanese
cultural values.

These ideas found expression in various tools,
such as Kaizen (continuous improvement), and methodologies

like fishbone diagrams for problem identification.
Often, they are amalgamated into comprehensive frameworks

such as the Toyota Production System (TPS), which
later inspired the concept of Total Quality Management
(TQM). Across these approaches, quality is conceptualized

differently compared to Western business. It

transcends being merely a technical attribute of the product;

118 Leimbach: The silver bullet, or how to kill the quality "beast"



instead, it is viewed as a process aimed at detivering a

product that aligns with customer preferences and is

perceived as valuable. This entails avoiding unnecessary
features and concentrating on essential needs, a strategy
that propelled Japanese car manufacturers ahead of

their American and European counterparts.18
In software development, these principles

manifested as customer-centric development practices
involving regular engagement with customer representatives.

This approach entails a focus on the core
functionalities of software through the prioritization of

backlogs, a consistent workflow (measured by velocity),
and a commitment to continuous learning and improvement,

with retrospectives serving as an integral component.

These elements are most prominently evident in

methodologies such as Scrum and Extreme Programming

(XP), which are among the most widely recognized.19

Principles manifested as
customer-centric development

practices involving regular engagement
with customer representatives.

Moreover, the naming of these methodologies as "agile"
reflects the influence of the Japanese understanding of

quality. The term "agile" originally emerged in the American

manufacturing industry in the early 1990s in

response to the competitive success of Japanese companies.

Faced with this challenge, the American industry
sought new ideas to shape its future trajectory. In a report
sponsored by the American military among others, and

conducted by the lacocca Institute at Lehigh University
(named after Chrysler's longstanding CEO Lee lacocca),

agility was identified as the key response to these
challenges. Published in 1991, the report defined agility as
the integration of "flexible technologies of production
with the skill base of knowledgeable workforce, and with
flexible management structures that stimulate cooperative

work".20

This initiative led to the establishment of the Agile
Manufacturing Enterprise Forum, later known as the

Agility Forum, which included companies such as Boeing,
TRW, Chrysler, and GM, promoting agility as a concept.
These companies collaborated on initiatives aimed at

developing new processes. During this period, Kent Beck

and his colleagues, for instance, experimented with XP

during the development of a new payroll system called C3

at Chrysler. Given this context, it is not surprising that, in

discussions regarding a suitable name for the common
value set, "agile" emerged as a fitting term, while alternatives

such as "lightweight" were considered inappropriate

for various reasons.21 In the years following "agile"
ultimately became the overarching umbrella term for
alternative methodologies in software development.

Conclusions: Towards new paradigms
The evolution of software development methodologies has

always struggled with the question of quality. It is noteworthy

that the shifting perspectives on quality and its definition

often mirror contemporary management trends and

techniques. This underscores that the values and mindsets
associated with agile, frequently discussed in the context
of software development, are not unique to this field; rather,

they have their origins in practices and concepts from
various industries. Instead of solely exploring how these

principles can be moved from IT to other sectors, it may be

beneficial to delve into their origins and analyse how they
emerged, subsequently developing strategies to adapt
them to different industries.

Concerning the software development process
itself, it becomes evident that the complexity of the

challenges often originates from human-made factors.
Paradoxically, the solution often lies in embracing simplicity
and adopting incremental approaches to problem-solving,
despite the fact that software is frequently used to build

complex solutions. Furthermore, this challenges conventional

metrics for success, such as time and cost, as well
as the elusive concept of quality.

Notably, respected practitioners like Tom DeMarco,
in his reflection on the 50-year development since the first
conference on software engineering in 1968, advocate for
a shift in focus. Instead of solely evaluating the development

process, there is a need to assess the transformations

that software brings to society and businesses - the

actual value it delivers. This reorientation emphasizes the

importance of looking beyond process-oriented metrics to

realize the true impact of software.

Leimbach: The silver bullet, or how to kill the quality "beast' 119



About the author

Timo Leimbach, Prof. Dr.

Timo Leimbach is associate professor at the department
for Digital Design and Information Studies, Aarhus
University, where he researches project management
and digital innovation and their interrelations with
business and society. Before that he worked and
researched at, among others, Fraunhofer ISI, the Research
Institute for the History of Technology and Science of the
Deutsches Museum, the Institute for Information
Sciences and New Media at LMU Munich and the Department
for Management, Politics and Philosophy at the Copenhagen

Business School. He received a master's degree in

Economic and Modern History as well as Business
Administration from the University of Mannheim, Germany

(2003) and obtained his PhD from the LMU Munich for
his thesis on the development of the German software
industry (2009).

Aarhus University, Denmark

timo.leimbach@cc.au.dk

Annotations

1 Frederick P. Brooks, The Mythical Man-month:

Essays on Software Engineering, 25th

Anniversary Edition, Boston 1995. Also contains

the later article on the silver bullet.

2 Johan Eveleens and Chris Verhoef, The Rise and

Fall of the Chaos Report Figures, in: IEEE

software 27(1) (2009), p. 30-36.

3 Thomas Haigh and Paul Ceruzzi, A New History

of Modern Computing, Boston 2021, p. 59-138.

A Mike Mahoney, Finding a History for Software

Engineering, in: IEEE Annals of the History of

Computing 26(1) (2004), p. 8-19.

5 Tom Haigh, Crisis, What Crisis? Reconsidering

the Software Crisis of the 1960s and the Origins

of Software Engineering. Paper presented at

Tensions of Europe Conference, Sofia, Bulgaria,

2009, available at: https://www.tomandmaria.

com/Tom/Writing/SoftwareCrisis_SofiaDRAFT.

pdf.

6 Mahoney (see n. 4); Sandy Payette, Hopper and

Dijkstra: Crisis, Revolution, and the Future of

Programming, in: IEEE Annals of the History of

Computing 36(4) (2014), p. 64-73.

7 Peter Naur and Brian Randell, B. (Ed.), Software

Engineering: Report of a Conference Sponsored

by the NATO Science Committee, Garmisch,

Germany, 7-11 October 1968, Brussels 1969, p. I.

8 Donald Knuth, Art of Programming, Volume 1 :

Fundamental algorithms, Boston 1997.

9 Mahoney (see n. 4); Naur/Randell (see n. 7);

Payette/Hopper/Dijkstra (see n. 6).

10 Christine Pieper, Hochschulinformatik in der

Bundesrepublik und der DDR bis 1989/1990,

Stuttgart 2009, p. 159-164.

11 Lauri Koskela and Gregory Howell, The

Underlying Theory of Project Management Is

Obsolete, in: IEEE Engineering Management

Review 2(36) (2008), p. 22-34.

Related article in the Ferrum archive:

"Die Entwicklung der logischen Basis

der Computerwissenschaften"

by Heinz Zemanek in Ferrum 58/1987



12 Herbert Benington, Production of Large

Computer Programs, in: Annals of the History of

Computing 5(4) (1983), p. 350-361.

13 William W. Royce, Managing the Development of

Large Software Systems, in: Proceedings of

IEEE WESCON, 1970, p. 328-388.

14 Peter Morris, Reconstructing Project Manage¬

ment, London 2013, p. 52-98.

15 Robert Martin, Clean Agile: Back to Basics,

Boston 2019, p. 3-13.

16 Darrel Rigby, Jeff Sutherland and Hirohito

Takeuchi, The Secret History of Agile Innovation,

in: Harvard Business Review, 2016, accessible

at: https://hbr.org/2016/04/the-secret-

history-of-agile-innovation; Craig Larman

and Viktor Basili, Iterative and Incremental

Developments: a Brief History, in:

Computer 36(6) (2003), p. 47-56.

17 Larman/Basili (see n. 16).

18 Kieran Conboy, Agility from First Principles:

Reconstructing the Concept of Agility in

Information Systems Development, in:

Information Systems Research 20(3) (2009),

p. 329-354.

19 Martin (see n. 15), p. 14-26.

20 Roger Nagel and Rick Dove, 21 st Century

Manufacturing Enterprise Strategy: an

Industry-led View, Part 1, Bethlehem 1991, p. 1.

21 Martin (see n. 15), p. 10-13.

22 Roger Atkinson, Project Management: Cost,

Time and Quality, Two Best Guesses and a

Phenomenon, its Time to Accept Other Success

Criteria, in: International Journal of Project

Management 17(6) (1999), p. 337-342.

23 Tom DeMarco, Software Engineering: An Idea

whose Time Has Come and Gone?, in: IEEE

Software 26 (2008), p. 96.

Image Credits

1 © University of London.

2 © Timo Leimbach.

3 © Alistair Cockburn.

4 After: Barry Boehm, Spiral Development:

Experience, Principles, and Refinements, Special

Report of the Software Engineering Institute,

Carnegie Mellon University, July 2000.

Leimbach: The silver bullet, or how to kill the quality "beast" 121


	The silver bullet, or how to kill the quality "beast"

