Dynamische Messungen an KH2PO4- und NH4H2PO4-Kristallen

Autor(en): Bantle, W. / Matthias, B. / Scherrer, P.

Objekttyp: Article

Zeitschrift: Helvetica Physica Acta

Band (Jahr): 18 (1945)

Heft V

PDF erstellt am: 22.07.2024

Persistenter Link: https://doi.org/10.5169/seals-111613

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.

Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Ein Dienst der *ETH-Bibliothek* ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch

Dynamische Messungen an KH_2PO_4 - und $NH_4H_2PO_4$ -Kristallen

von W. Bantle, B. Matthias, P. Scherrer.

(30. IV. 1945)

Zusammenfassung. Mittels einer sehr einfachen, rein elektrischen Messmethode werden die Piezomoduln und andere, für die piezoelektrische Resonanz charakteristische Grössen an $\rm KH_2PO_4$ - und $\rm NH_4H_2PO_4$ -Kristallen gemessen. Bei einem maximalen Fehler von 2% werden diese Konstanten im Temperaturgebiet zwischen -70° und $+30^{\circ}$ C bestimmt. Das zur Messung der Piezomoduln angewandte Verfahren hat den grossen Vorteil schon an relativ kleinen Kristallplättchen mit guter Messgenauigkeit verwendet werden zu können, da die Piezomodulmessung zurückgeführt wird auf eine DK-Messung und zwei Frequenzmessungen.

1. Problemstellung.

Kristalle des primären Kaliumphosphats (KH2PO4) sind dielektrisch und piezoelektrisch interessant, weil sie bei Abkühlung unter 123° K in Richtung der kristallographischen c-Achse seignetteelektrisch werden, d. h. analog zu Seignettesalz-Kristallen bei Zimmertemperatur eine spontane elektrische Polarisation aufweisen. Während unterhalb ca. 55° K diese spontane Polarisation im Kristall "eingefroren" ist und durch ein äusseres, elektrisches Feld nicht umgeklappt werden kann (Pyroelektrizität), lässt sie sich im Temperaturintervall von 55° K bis 123° K leicht sowohl durch ein elektrisches Feld als auch durch eine geeignet orientierte Schubkraft von der + c-Richtung in die - c-Richtung einstellen. Diese Beweglichkeit einer grossen spontanen Polarisation hat natürlich eine anomal hohe Dielektrizitätskonstante $(DK = \varepsilon_c)$ und einen anomal hohen Piezomodul (d_{36}) zur Folge. In diesem Temperaturgebiet ist der Kristall seignette-elektrisch. Oberhalb der Curietemperatur $\Theta = 123^{\circ}$ K fallen sowohl die DK ε_{c} als auch der Piezomodul d_{36} hyperbolisch mit der Temperatur auf kleinere Werte.

Der Hauptzweck dieser Arbeit bestand in der Entwicklung einer einfachen Messmethode für Piezomoduln sowie der Messung der Piezomoduln d_{36} der Kristalle KH₂PO₄ und NH₄H₂PO₄ von -70° C bis + 30°C.

Der Temperaturverlauf des Piezomoduls d_{36} von KH_2PO_4 ist zwar früher schon bestimmt worden¹)²)³). Diese Substanz diente uns im wesentlichen auch nur als Eich- und Kontrollsubstanz. Immerhin liefert unsere Methode wesentlich genauere Resultate in der Gegend der Zimmertemperatur als die früheren Messungen mit Ausnahme der Methode von SPITZER⁴), welcher aber nur bei + 20° C gemessen hat.

An $NH_4H_2PO_4$ wurde der Piezomodul bisher erst bei $+20^{\circ}$ C gemessen⁴). Diese Substanz besitzt bei Zimmertemperatur den höchsten bisher gemessenen Piezomodul (ausser Seignettesalz und seine Isomorphe).

Ein Nebenzweck dieser Arbeit war die Bestimmung der Temperaturabhängigkeit der Grössen des piezoelektrischen Ersatzschemas, wie Parallelkapazität, Seriekapazität, Induktivität, Verlustwiderstand resp. Güte und Temperaturkoeffizient der Resonanzfrequenz. Diese Daten sind interessant, weil die beiden untersuchten Kristallsorten bereits in der Technik zur Herstellung elektrischer Bandfilter verwendet werden⁵).

Legt man an ein piezoelektrisches Kristallpräparat (z. B. eine Platte) ein elektrisches Wechselfeld der Frequenz ω , so wird die Platte dadurch zu mechanischen Schwingungen angeregt. In bezug auf solche piezoelektrische Schwingungen kann man ein Kristallpräparat auf zwei verschiedene Arten charakterisieren: Vom *physikalischen* Standpunkt aus beschreibt man den Kristall durch die Angabe folgender Grössen:

> Dielektrizitätskonstante ε Piezomodul dElastizitätsmodul EDichte ϱ Dämpfungskonstante ϑ

Vom Standpunkt des *Elektrotechnikers* beschreibt man das Verhalten des schwingenden Kristallpräparats besser durch ein elektrisches Ersatzschema nach Fig. 1.

Dieses Ersatzschema⁶)⁷) ist ein sehr bequemes und anschauliches Mittel, um sofort einzusehen, dass ein Kristall bei der Resonanzfrequenz

$$\omega_R = \frac{1}{\sqrt{L \cdot C_s}}$$

einen minimalen Widerstand (nur noch den ohmschen) aufweist und bei der sog. Antiresonanzfrequenz

$$\omega_{A} = \frac{1}{\sqrt{L\frac{C_{s} \cdot C_{p}}{C_{s} + C_{p}}}}$$

einen maximalen Widerstand besitzt. Überdies lässt sich an Hand des Ersatzschemas z. B. sofort überblicken, welchen Einfluss auf Resonanz und Antiresonanz eine dem Kristall parallel geschaltete Zusatzkapazität hat usf.

Die drei wesentlichen Grössen L, C_s und C_p des Ersatzschemas müssen natürlich so aus den physikalischen Daten abgeleitet werden, dass das Ersatzschema die Eigenschaften des Kristalls möglichst weitgehend wiederzugeben vermag. Man wählt dazu die folgenden drei Bedingungen:

a) Die Kapazität C_{p} des Ersatzschemas ist gegeben durch die statische Kapazität des Kristalls.

b) Die Resonanzfrequenz des Kristalls und des Ersatzschemas müssen übereinstimmen.

c) Der Frequenzabstand Resonanz-Antiresonanz soll identisch sein bei Kristall und Ersatzschema.

Trotz den grossen Vorteilen des Ersatzschemas dürfen wir nicht vergessen, dass das Ersatzschema nur in diesen drei Punkten exakt mit dem Kristall übereinstimmt. Zum Beispiel gibt das Ersatzschema immer nur eine einzige Resonanzfrequenz wieder, während der Kristall unendlich viele Oberwellen hat. Auch der Verlauf des Stromes durch das Ersatzschema in Funktion der Frequenz stimmt nicht genau mit dem Strom durch den Kristall überein.

Die uns interessierenden Kristalle $\rm KH_2PO_4$ und $\rm NH_4H_2PO_4$ kristallisieren tetragonal hemiedrisch (Gitterstruktur: West⁸)). Um sie dielektrisch und piezoelektrisch zu kennen, genügt deshalb die Angabe von ε_c und ε_a resp. d_{14} und d_{36} . Da aber KH₂PO₄ nur in Richtung der c-Achse seignette-elektrisch wird, beschränkten wir uns vorläufig auf die beiden Grössen, die mit dem Feld in der c-Richtung zusammenhängen, nämlich ε_c und d_{36} .

2. Messmethoden.

Der Piezomodul d_{36} von $\mathrm{KH_2PO_4}$ wurde bereits früher in Funktion der Temperatur aus dem direkten²) und dem inversen Piezoeffekt³) bestimmt. Beide Methoden arbeiten mit sehr guter Genauigkeit für hohe Werte des Piezomoduls, werden aber in der Gegend der Zimmertemperatur, wo die Piezomoduln nicht mehr sehr gross sind, ziemlich ungenau. Für dieses Temperaturgebiet wäre im Prinzip noch die gebräuchliche Elektrometermethode mit grosser Messgenauigkeit anwendbar, wenn der Kristall nicht eine bereits störende Leitfähigkeit (Grössenordnung 10⁻¹¹ Ohm⁻¹ cm⁻¹) aufweisen würde.

Alle statischen Methoden sind somit unbefriedigend. Aus diesem Grunde suchten wir eine dynamische Methode. Ihr Vorteil besteht darin, dass die Messung des Piezomoduls zurückgeführt wird auf eine *DK*-Messung und zwei Frequenzmessungen und weitgehend unabhängig ist von der Leitfähigkeit des Kristalls. Ein kleiner Nachteil unserer Methode, nämlich die Tatsache, dass sie nicht ohne weiteres absolute Werte liefert, ist für uns ohne Belang, da bei Zimmertemperatur an bereits bekannte d_{36} -Werte angeschlossen werden konnte. Überdies genügt die Kenntnis eines einzigen Wertes, um daran anschliessend neue Kristalle absolut bestimmen zu können.

Die Gleichungen für den Piezoeffekt schreiben sich bekanntlich (ohne Indizes):

$$P = d \cdot X + \varkappa \cdot E \tag{1}$$

$$x = s \cdot X + d \cdot E \tag{2}$$

 $P = ext{elektrische Polarisation}$ $X = ext{mechanischer Druck}$ $E = ext{elektrische Feldstärke}$ $x = ext{spezifische Verlängerung}$ $d = ext{Piezomodul}$ $\kappa = rac{\varepsilon - 1}{4\pi} = ext{dielektrische Suszeptibilität}$ $s = ext{elastische Konstante.}$

Daraus berechnet sich leicht der Strom durch einen transversal schwingenden Kristall in Funktion der Frequenz und man stellt dabei fest, dass der Strom bei der sog. Resonanzfrequenz ν_R unendlich gross wird (Verluste vernachlässigt) und gleich Null wird bei der etwas höher liegenden Antiresonanzfrequenz ν_A ⁹). Diese Frequenz ν_A ist gegeben durch

$$\frac{\operatorname{tg}\left(\frac{\pi}{2}\frac{v_{A}}{v_{R}}\right)}{\frac{\pi}{2}\cdot\frac{v_{A}}{v_{R}}} = 1 - \frac{s\cdot\varepsilon}{4\pi\,a^{2}}$$

Dynamische Messungen an KH₂PO₄- und NH₄H₂PO₄-Kristallen.

und wird nach der Entwicklung des tg in der Nähe von $\frac{\pi}{2}$ zu

$$\frac{\nu_A^2 - \nu_R^2}{\nu_R^2} = \frac{32 \cdot d^2}{\pi \cdot \varepsilon \cdot s}.$$

Da $v_A - v_R = \Delta v$ klein ist gegen v_R , kann man die obige Gleichung vereinfachen zu

$$\frac{2(v_A - v_R)}{v_R} = \frac{32 \cdot d^2}{\pi \cdot \varepsilon \cdot s}$$
$$\frac{\Delta v}{v_R} = \frac{16}{\pi} \frac{d^2}{\varepsilon \cdot s}.$$
(3)

oder

Eine Messung von v_A , v_R und ε bietet nun keinerlei Schwierigkeiten, aber die in Frage kommenden elastischen Konstanten s_{ik} für KH_2PO_4 und $NH_4H_2PO_4$ sind noch unbekannt. Die Elastizitätskonstanten hängen jedoch mit der Resonanzfrequenz zusammen durch die Gleichung

$$u_R = \frac{a}{2l} \frac{1}{\sqrt{s \cdot \varrho}}$$
 $\varrho = \text{Dichte} \quad l = \text{Länge} \quad s = \text{Elast. konst} = f(s_{ik}).$

Die Konstante a wird gleich 1 für einen stabförmig geschnittenen Kristall, für plattenförmige Kristalle hängt sie aber ziemlich kompliziert sowohl vom Verhältnis Länge/Breite als auch von der Schwingungsform ab. Aus diesem Grunde liefert diese Methode nur relative Messresultate, die sich berechnen aus

$$d^{2} = \frac{\pi}{16} \frac{\Delta v}{v_{R}} \cdot \varepsilon \cdot s = \frac{\pi \cdot a^{2}}{64 \cdot \varrho} \frac{\Delta v}{v_{R}} \cdot \frac{\varepsilon}{(l \cdot v_{R})^{2}} \text{ oder mit } G = \frac{\pi a^{2}}{64}$$

$$d^{2}_{36} = \frac{G}{\varrho} \cdot \frac{\Delta v}{v_{R}} \cdot \frac{\varepsilon_{c}}{(l \cdot v_{R})^{2}} = \frac{G}{\varrho \cdot l^{2}} \cdot \frac{\Delta v}{v_{R}^{3}} \cdot \varepsilon_{c}.$$
(4)

Da wir uns vorläufig nur für die grossen Piezomoduln d_{36} interessierten, mussten wir die Platten nach Fig. 2 aus den Kristallen herausschneiden. Das elektrische Feld wurde parallel zur *c*-Achse angelegt und ε_c bestimmt, sowie die Resonanz- und Antiresonanzfrequenz der Platte, welche transversale Schubschwingungen ausführte. Da bei Schubschwingungen nur der Mittelpunkt in Ruhe bleibt, wurde die Kristallplatte dort durch zwei silberne Stifte gehalten, welche so zugespitzt waren, dass sie nur ca. 1 mm² Berüh-

rungsfläche mit dem Kristall hatten. Die Stromzuführung geschah durch dieselben Stifte.

Um die Temperatur des Kristalls variieren zu können, war der Halter in einem Kupfergefäss montiert, der sich seinerseits in einem Temperaturbad befand.

Die Messung der DK geschah mit Hilfe einer Kapazitätsmessbrücke bei einer Frequenz von 10³ Hertz. Diese Frequenz wurde gewählt, weil bei tieferen Frequenzen ein störender Einfluss von Raumladungserscheinungen zu befürchten ist, während man mit höheren Frequenzen bereits in das Gebiet der piezoelektrischen Resonanzen gerät und dann eventuell nicht mehr die DK des freien, unverspannten Kristalls misst.

Fig. 2. Schnitt der Platte aus einem Kristall.

Zur Messung der Eigenfrequenz der Kristallplatten diente die Schaltung nach Fig. 3. Der Kristall K wurde durch einen Generator G_1 , welcher möglichst verzerrungsfreie Hochfrequenzspannung der Grössenordnung 10⁵ Hertz lieferte, zu Schwingungen angeregt. Die Widerstände $R_1 = 50$ Ohm und $R_2 = 50$ Ohm dienten der Entkopplung des Kristalls von Generator G_1 resp. vom Breitbandverstärker V_1 und den Schaltelementen. Der Nachweis der Resonanz resp. Antiresonanz geschah durch den Philips-Kathodenstrahloszillographen KO_1 .

Die genaue Messung des Frequenzabstandes $\nu_A - \nu_R$ kann nicht direkt mit dem Generator G_1 geschehen, da $\frac{\Delta \nu}{\nu_R}$ für KH₂PO₄ nur ca. 5% beträgt. Bei einer Resonanzfrequenz von 10⁵ Hertz würde dies nämlich bei einer Messgenauigkeit von 2% für $\Delta \nu$ eine Ablesegenauigkeit von 10 Hertz oder $0,1^{\circ}/_{00}$ verlangen.

Diese Messgenauigkeit lässt sich nur erreichen, indem man die Frequenzdifferenz nicht direkt auf dem Hochfrequenz-Generator abliest, sondern auf einem Tonfrequenzgenerator. Dies geschah folgendermassen: Die z. B. 10⁵ Hertz betragende Resonanzfrequenz wurde auf dem Generator G_1 mit Hilfe des Oszillographen KO_1 eingestellt. Auf dem Generator G_2 wurde dann die Frequenz 99950 Hertz eingestellt und diese Frequenz durch den Tongenerator und den Verstärker V_3 mit 50 Hertz moduliert. Das Seitenband 99950 + 50 = 10⁵ wird dann auf die Vertikalablenkplatten des Kathodenstrahloszillographen KO_2 gegeben. Da auf den Horizontalablenkplatten von KO_2 die 10⁵ Hertz von G_1 angeschlossen sind, würde auf dessen Schirm als Überlagerungsfigur eine

Messchaltung.

Ellipse entstehen, wenn nicht auch noch die Grundfrequenz von G_1 und das andere Seitenband vorhanden wären. So erhalten wir eine Ellipse mit einem Untergrund, wie die als Fig. 4 wiedergegebene Photo zeigt.

Nun wird mit G_1 und KO_1 die Antiresonanz des Kristalls eingestellt, die z. B. bei 100500 Hertz liege. Die Ellipse auf KO_2 ist nun verschwunden, kann aber wieder eingestellt werden, durch Änderung der Tonsummereinstellung von 50 auf 550 Hertz. Auf diese Weise lässt sich der Abstand Antiresonanz-Resonanz = 550 – 50 = 500 Hertz sehr genau messen und überdies lässt sich die Resonanzfrequenz selber (ausser eines einzigen Anschlusspunktes) auch

am Tonsummer (kHz-Einstellung) ablesen, da der Vergleichsgenerator für eine ganze Messreihe unverändert gelassen wurde.

Um bei allen Messungen denselben Faktor a resp. G in Gleichung (4) zu haben, wurden nur quadratische Platten (Länge/ Breite = 1) gemessen und überdies wurden die endgültigen Messungen an geometrisch genau identischen Kristallplatten vorgenommen. Die Dimensionen waren $a \times a \times c = 1,46 \times 1,46 \times 0,09$ cm³.

Da bei einer bestimmten Temperatur sowohl die Frequenzen als auch die DK gemessen werden mussten, konnte der Kristall einfach auf die DK-Messbrücke umgeschaltet werden (Fig. 3).

Die Grössen des Ersatzschemas lassen sich alle aus diesen beiden Messungen berechnen mit Ausnahme des Widerstands R. Um diesen zu bestimmen, mussten wir den Kristall ersetzen durch einen ohmschen Widerstand R_3 in Fig. 3 und diesen so lange einregulieren, bis er gleich viel Strom durchliess wie der Kristall bei der Resonanzfrequenz. Der so gefundene Widerstand R_3 stimmt dann überein mit dem Widerstand R des Ersatzschemas.

Als Rohmaterial für die Kristallplatten kamen nur vollständig klare und fehlerfreie, selbstgezüchtete Kristallexemplare in Frage.

3. Messresultate.

In Fig. 5 ist der von uns gemessene Verlauf der $DK \ \varepsilon_c$ von $\rm KH_2PO_4$ und $\rm NH_4H_2PO_4$ in Funktion der Temperatur aufgetragen. Ein Vergleich mit den früheren Messungen von BUSCH¹⁰) zeigt, bis auf Abweichungen, im Absolutbetrag denselben Temperaturverlauf. Oberhalb + 30° C zeigt $\rm KH_2PO_4$ schon eine so grosse Leitfähigkeit, dass dort keine genaue DK mehr angegeben werden kann.

Der Temperaturgang der Resonanz- und Antiresonanzfrequenz von $\mathrm{KH_2PO_4}$ ist aus Fig. 6 ersichtlich und verläuft im Prinzip analog zu demjenigen von Seignettesalz¹¹)¹²): Oberhalb des oberen Curiepunkts durchläuft die Resonanzfrequenz ein Maximum (bei Seignettesalz wegen Schmelzpunkt nicht erreichbar) und bei der Curietemperatur ein scharfes Minimum. Diese Analogie zwischen Seignettesalz und $\mathrm{KH_2PO_4}$ wurde bereits von Lüdur¹²) beobachtet und von MATTHIAS¹³) als analog zum sog. ΔE -Effekt (E = Elastizitätsmodul) bei den Ferromagnetika erkannt; ein gewisser Unterschied besteht nur darin, dass bei den Seignetteelektrika die Temperatur und der absolute Betrag des Maximalwertes stark abhängig sind von den äusseren Schaltanordnungen (Luftspalteffekt).

Für KH_2PO_4 interessierte uns dieses Frequenzmaximum nicht mehr da es bereits früher untersucht worden $(\text{ist}^{12})^{14})^{15}$). Qualitative Untersuchungen mit flüssiger Luft zeigten immerhin, dass der von uns bei – 73°C gemessene Wert der Resonanzfrequenz bereits den Maximalwert darstellt (Fig. 6).

Resonanz und Antiresonanz von KH₂PO₄.

Interessanterweise fanden wir auch bei $NH_4H_2PO_4$ ein ähnliches Verhalten (Fig. 7) und zwar liegt hier das Maximum sogar

noch bei einer höheren Temperatur als bei $\rm KH_2PO_4$ nämlich bei $-55^{\circ}C$. Der Zusammenhang dieses Maximums bei $\rm NH_4H_2PO_4$ mit der bei $-118^{\circ}C$ eintretenden Umwandlung (welche zur Zersplitterung aller $\rm NH_4H_2PO_4$ -Kristalle führt¹⁰)) resp. mit einer eventuellen Curietemperatur soll später diskutiert werden.

Die Bestimmung der Moduln d_{36} geschah mit Hilfe der Gleichung (4). Die geometrische Konstante G muss, wie bereits erwähnt, durch Anschluss an einen bereits bekannten Wert für d_{36} gefunden werden. Der genaueste Wert für d_{36} von KH₂PO₄ bei Zimmertemperatur dürfte derjenige von SPITZER⁴) sein ($d_{36} = 62,8 \ 10^{-8} \ cgs$). Daraus berechnet sich G für KH₂PO₄ aus $\varrho = 2,338$; $l = 1,46 \ cm$; $\Delta \nu = 325 \ Hz$; $\nu_R = 71325 \ Hz$; $\varepsilon_c = 22,15 \ zu \ G_K = 0,0990_5$. Mit Hilfe dieser Zahl und unserem gemessenen Temperaturverlauf der DK (Fig. 5) und dem Temperaturverlauf der Resonanz- und Antiresonanzfrequenz (Fig. 6) lässt sich nun d_{36} von KH₂PO₄ in Funk-

tion der Temperatur berechnen. In Fig. 8 ist das Resultat eingezeichnet. Unsere Messungen stimmen mit den früheren Messungen $^{1})^{2})^{3}$ innerhalb der Messgenauigkeiten überein, sind aber wesentlich genauer (ca. 2%), da bei den früheren Messungen das Hauptgewicht auf dem Temperaturverlauf bei tieferen Temperaturen lag.

Für den Piezomodul d_{36} von $NH_4H_2PO_4$ liegen bisher einzig zwei Messresultate von SPITZER⁴) bei Zimmertemperatur vor nämlich 135,9 10⁻⁸ cgs und 137,5 10⁻⁸ cgs: Mittelwert: 136,7 10⁻⁸ cgs.

Unsere Messungen an dieser Substanz (Fig. 5 und 7) würden uns im Prinzip erlauben mit Hilfe der an KH_2PO_4 bestimmten und natürlich auch für $\text{NH}_4\text{H}_2\text{PO}_4$ gültigen Geometriekonstanten G_K den Temperaturverlauf von d_{36} zu berechnen. Statt dessen legten wir

unserer Auswertung wieder den Wert von SPITZER bei Zimmertemperatur zugrunde und bestimmten nochmals G. Wir erhielten $G_N = 0,1016$, d. h. einen um 2,6% höheren Wert als für G_K . Für die

 $\begin{array}{c} \mbox{Relativer Frequenzabstand Resonanz-Antiresonanz.} \\ \bullet - \bullet - \bullet \ \mbox{KH}_2 \mbox{PO}_4 \quad \ \ \circ - \circ \ \mbox{NH}_4 \mbox{H}_2 \mbox{PO}_4. \end{array}$

Piezomoduln bedeutet dies eine Übereinstimmung unseres Wertes mit dem mittleren Spitzer'schen Wert auf 1,3%, wobei zu berücksichtigen ist, dass bereits die beiden Werte von Spitzer um 1,18% voneinander abweichen. (Aus dieser Übereinstimmung ergibt sich auch, dass unsere DK-Werte für $\rm KH_2PO_4$ und $\rm NH_4H_2PO_4$ relativ zueinander auf mindestens 2,6% genau gemessen sind.)

Untersucht man welcher Grösse in Gleichung (4) es zuzuschreiben ist, dass der Piezomodul d_{36} von $NH_4H_2PO_4$ rund doppelt so gross ist wie derjenige von KH_2PO_4 , so findet man, dass der wesentlich grössere Abstand Resonanz-Antiresonanz dafür verantwortlich ist. Zur Veranschaulichung dieser auffallenden Tatsache haben wir in Fig. 9 die entsprechenden Kurven zusammengestellt.

 $\bullet - \bullet - \bullet \operatorname{KH}_2\operatorname{PO}_4 \quad \circ - \circ - \circ \operatorname{NH}_4\operatorname{H}_2\operatorname{PO}_4.$

Solch grosse Resonanz-Antiresonanz-Abstände sind technisch interessant für die Herstellung von Breitband-Kristallfiltern⁵). Das Verhältnis $\frac{\Delta \nu}{\nu_R}$ (Fig. 10) ist massgebend für die maximale relative Durchlassbreite reiner Kristallfilter.

Wichtig für solche Kristallfilter sind auch die Grössen des Ersatzschemas:

$$C_s = \frac{8 \cdot d^2}{\pi^2 \cdot s} \frac{BL}{D} \frac{1}{9 \cdot 10^{11}} = k_C \cdot \frac{BL}{D} \text{ Farad}$$
$$L = \frac{\varrho \cdot s^2}{8 \cdot a^2} \frac{LD}{B} \cdot 9 \cdot 10^{11} = k_L \cdot \frac{LD}{B} \text{ Henry}$$

L = Länge des Kristalls B = Breite des Kristalls D = Dicke des Kristalls und hauptsächlich die sog. Güte $Q = \frac{1}{R} \sqrt{\frac{L}{C_s}}$. In Fig. 11, 12 und 13 sind diese Grössen in ihrer Temperaturabhängigkeit dargestellt. Für Q ist dabei zu bemerken, dass es ver-

Koeffizient der Selbstinduktion- $\bullet - \bullet - \bullet \operatorname{KH}_2\operatorname{PO}_4 \circ - \circ \operatorname{NH}_4\operatorname{H}_2\operatorname{PO}_4.$

schiedene Faktoren gibt, die die Güte reduzieren, wie z. B. Schallabstrahlung durch die Halterung und die umgebende Luft, zusätz-

liche Dämpfung durch die im Vakuum aufgedampfte Goldelektrode, nicht genau zentrale Halterung der Platte. Der Einfluss all dieser Faktoren konnte von uns nicht genauer untersucht werden und die angegebene Güte stellt somit sicher nicht die maximal erreichbare dar.

Zum Schluss sei noch der Temperaturkoeffizient $\frac{1}{\nu} \cdot \frac{\partial \nu}{\partial T}$ der Resonanzfrequenz der beiden untersuchten Kristallsorten angegeben (Fig. 14). Am interessantesten sind natürlich Null-Temperaturkoeffizienten, wie man sie bekanntlich bei Quarz durch geeignete

••••• $\mathrm{KH}_{2}\mathrm{PO}_{4}$ •••• $\mathrm{NH}_{4}\mathrm{H}_{2}\mathrm{PO}_{4}$.

Schnittrichtungen erreichen kann. Unsere Kristalle besitzen zwar auch Nulltemperaturkoeffizienten, aber leider nicht bei Zimmertemperatur. Die Nulltemperaturkoeffizienten lassen sich durch vorgeschaltete Kapazitäten zwar verschieben, aber nur gegen noch tiefere Temperaturen. Legt man grossen Wert auf einen Nulltemperaturkoeffizienten bei Zimmertemperatur, so muss man statt der hier untersuchten Substanzen KD_2PO_4 -Kristalle verwenden¹⁶).

Physikalisches Institut der E.T.H.

Literaturverzeichnis.

- ¹) LÜDI, Zschr. für Physik, 1939, 113, 302.
- ²) BANTLE und CAFLISCH, HPA., 1943, XVI, 235.
- ³) VON ARX und BANTLE, HPA., 1944, XVII, 298.
- ⁴) SPITZER, Diss. Göttingen, 1938.
- ⁵) BANTLE, MATTHIAS, SCHERRER, Schweiz. Archiv 1945, 11, 161. MATTHIAS und SCHERRER, HPA., 1943, XVI, 432.

⁶) CADY, Proc. Inst. Radio Engrs NY, 1922, 10, 83.

7) VAN DYKE, Proc. Inst. Radio Engrs NY, 1928, 16, 742.

⁸) WEST, Zschr. Krist. 1930, 74, 306.

⁹) MÜLLER, Phys. Rev. 1940, 57, 829.

¹⁰) BUSCH, HPA., 1938, XI, 269.

¹¹) MASON, Phys. Rev. 1939, 55, 775.

¹²) LÜDI, HPA., 1942, XV, 528.

¹³) MATTHIAS, HPA., 1943, XVI, 99.

¹⁴) BANTLE, HPA., 1943, XVI, 207.

¹⁵) Mähly, Diplomarbeit ETH., 1944.

¹⁶) BANTLE, HPA., 1945, XVIII, 245.