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Quantum Theory of Wave Fields in a Curved Space

by Martin Gutzwiller.*)
(3. IV. 1956.)

Abstract. Wave fields are studied in a space-time continuum whose curvature
is independent of the physical phenomena. It is shown that a space of constant
curvature is the most natural choice for this purpose, not only because of its
geometrical simplicity, but because it guarantees the maximum number of certain
constants of motion and leads to a propagation formula whose kernel is only a
function of the geodesic distance. Therefore a de Sitter space is investigated in
detail. A complete set of solutions is discussed for the scalar wave equation and
for the first order wave equation of Dirac. Hadamard's propagation formula is
written in a particularly symmetric form with the help of a propagation function
which is similar to the well known D-function in flat space. A generalization for
spinors and electromagnetic fields is given. In the latter case Huygens' principle
is shown to hold even in this space of constant curvature.

A second general propagation formula is established whose kernel is again related
to Hadamard's elementary solution. But it leads now to a propagation function
which is similar to the D^function in flat space. Using this new propagation
formula, every solution of the homogeneous wave equation (with a mass term) can
be split into a sum of two such solutions which are shown to belong to two distinct
classes. This separation is uniquely determined and invariant with respect to the

group of motions. Moreover in the case of a spinor field these two classes are
transformed into each other by the operation of charge conjugation. Therefore they are
interpreted as states of "positive energy" resp. "negative energy", although there
does not exist in this space an operator like the Hamiltonian in flat space. Finally
the various propagation functions are represented as sums over the complete sets
of solutions which were mentioned previously.

As an example a process of second quantization is applied to a spinor field which
is coupled to a pseudoscalar field. The method imitates the old non-relativistic
procedure for a particular space-like surface, but the result is invariant and
compatible with the field equations. If the coupling between pseudoscalar and spinor
field vanishes, all the field operators can be explicitly stated in terms of the
complete sets of solutions. This leads at once to general commutation rules using
Hadamard's propagation formula. Moreover the vacuum can be defined in accordance

with Dirac's hole theory. Therefore all the necessary elements are assembled
for studying the various radiation effects in this more general scheme.

*) Present address: Exploration and Production Research Division, Shell
Development Company, Houston, Texas, U.S.A.
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Introduction.

The theory of quantized fields is usually restricted to the assumptions

which are made by the theory of special relativity in its classical

form. These assumptions can be slightly generalized, without
however changing in any way the conceptual basis of special relativity.

It is indeed possible to replace the flat space-time continuum
of special relativity by a curved continuum, provided the curvature
does not depend on the physical phenomena which take place in it.
Thus it will be assumed in this investigation that the metric tensor
of the space-time continuum is known a priori in a particular system
of coordinates. Contrary to general relativity there shall be no
interaction between the geometry and the physical events. Therefore
no argument will be used which would properly belong into general
relativity.

Among the many possible space-time continua the spaces of
constant curvature have received special attention from several
investigators1). Their reason for doing so is not always quite clear
except for the fact that a space of constant curvature has many
simple geometric properties. However it is more satisfactory to
use an argument of the following type: Unless a space does not
possess a number of geometric properties (which will be enumerated

in section 1), it does not constitute a proper basis for the
description of physical phenomena in the sense of special relativity.
It will be shown that only a space of constant curvature has the
required properties. Moreover the theory of quantized fields will
be discussed in detail for the special case of a de Sitter space and
all the essential elements for such a theory will be assembled.

It is difficult to predict the advantages and the disadvantages of
this theory compared to the ordinary theory of quantized fields in
flat space. For instance it may be of some help to have a denumer-
able set of independent solutions for the wave equation, as opposed
to the non-denumerable set in flat space. The use of a space of
constant curvature can indeed be interpreted as a "quantization"
of the momentum space, and it does not have the drawbacks of the
"big but finite" box which is usually invoked in order to make the
process of second quantization in flat space easier to visualize. As
all the important D- and S-functions are explicitly constructed in
this investigation, and as their connection with the solutions of the
first and second order wave equation is shown to be the same as
in flat space, all the formulas for the various radiation effects in flat
space can at least be written down also in this space of constant
curvature. But the numerical evaluation is much more complicated
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than in flat space, although the labor can be reduced by using the
geometrical properties of the space, such as the group of motions.

The flat space does not seem to be simply the limiting case for
a space of constant curvature whose radius of curvature increases
indefinitely. This might be true locally, but it can hardly be so in
globo, because the space which is studied in this paper has the topology

of a cylinder, not that of a plane as the flat space. Moreover
there are ten independent constants of motion in this space of
constant curvature, but none of them or no combination can be
compared to the Hamiltonian which plays such an outstanding role
in flat space. Therefore the limit of vanishing curvature will not be
discussed, although it seems to the author that the Compton
wavelength of the elementary particles should be considered as very
small compared to the radius of curvature of the space.

1. Some characteristic properties of a space of constant curvature.

The distance between two neighboring points is given by the
known quadratic form

ds2 gijdxidxi (1.1)

(latin indices run from 0 to 3, the summation is made over the
indices which occur twice), which has the signature

- + + + (1.2)

All the notations are chosen in accordance with Eisenhart2). (E.g.
covariant differentiation is denoted by a comma, etc.)

The condition for constant curvature

Knie K0(ghj gik - gM gi}) (1.3)

can be obtained as a consequence of certain requirements. Thus it
results if the Riemannian curvature at each point is required to be
the same for every orientation (Theorem of Schur). Similarly equation

(1.3) follows from the existence of a group of motions such that
each point and a quadruple of directions in it can be transformed
into any other point and an arbitrary quadruple of directions in it
(Theorem of Bianchi). Two other arguments will now be considered
which also lead to a space of constant curvature.

Suppose that it has been possible to define a symmetric tensor Ti}
in terms of some field quantities in such a way that

9*Tiiik--0 (VA)

as a consequence of the field equations. If E and E' are two arbi-
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trary space-like surfaces which enclose the volume V, it follows from
Gauss' theorem that

> TitdZk- /> TudE'k \ /"%- T*äV. (1.5)
2 / d^

s r v

The signs of dEk and d-T/ are determined such that

ox* dEi > 0, ôx*' dE/ > 0 (1.6)

for time-like displacements òx* resp. ox1' which point toward the
future. E' is assumed to be in the past of E. Equation (1.4) implies
that the integral

rg*TudEk (1.7)

is a constant of motion for the field quantities under consideration,
provided the coordinate system is such that

ò/dx*(gm) 0 (1.8)

for the particular coordinate x* and for all indices j and k. Equation
(1.8) implies that x* is the parameter of a group of motions. Therefore

the existence of the maximum number of ten independent
constants of motions (1.7) follows from (1.4) provided the space is of
constant curvature.

The work of Hadamard on Cauchy's problem3), i.e. on the in-
homogeneous wave equation

g»ipHi-x2ip f(x), (1.9)

is of fundamental importance for any field theory of elementary
particles. Hadamard's main result can be written in some spaces
with the help of a Green's function D(x, f) in the form

f(x) - [d(x, I) /(1) dV+ f{--^ v(£)~D(x, |) X-) dE*. (1.10)
v È

E is an arbitrary space-like surface and V is the volume between
the point x and the surface E. The sign of dE is determined according

to the convention (1.6). D(x, Ç) vanishes outside the light cone
of x. Its behavior inside the light cone of x is intimately connected
with Hadamard's elementary solution of the homogeneous wave
equation [i.e. (1.9) with f(x) 0], and it is dictated only by the
geometry of the space and the value of the mass constant x2 in (1.9).
It seems to the author that D(x, f) is purely a function of the geo-
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desio distance between the point x and the point £, if and only if
the space is of constant curvature.

These characteristic properties of a space of constant curvature
are just what we would postulate for a curved space whose geometry
is independent of its physical content. It would indeed be hard to
understand the lack of symmetry which is inherent to all spaces of
non-constant curvature, without assuming some interaction
between geometry and physical phenomena. On the other hand there
seems to be no a priori reason which would exclude the spaces of
nonvanishing constant curvature from further consideration. Therefore

it was thought worthwhile to examine in more detail such a

space.

2. The dc Sitter space.

In assuming (1.3) a new "constant of nature", namely the radius
of curvature of the space, is introduced into the theory. It is therefore

convenient to chose such units as to make this radius equal
to one unity of length. Moreover the time scale and the mass scale
are determined by putting equal to one the velocity of light and
Planck's constant divided by 2 n. Then all physical quantities are
expressed in natural units.

A space of constant curvature can be imbedded in a five-dimensional

flat space4). There are only two cases in accordance with the
signature (1.2). In this investigation only the case is studied which
leads to space-like geodesies of finite length and time-like geodesies
of infinite length. This space can be most easily described by the
Weierstrassian coordinates za with aA= 0, 1,...., 4. Equation (1.1)
becomes

ds2 cxßdzadzß (2.1)
with

caßz*z? l (2.2)
and

c0o — L «xx c22 c33 c44 1, caß 0 for o.a. ß. (2.3)

(Greek indices run from 0 to 4.) Moreover the curvature K0 in (1.3)
is uniquely determined as

K0 1. (2.4)

The geodesic distance s between a point P (z°, ...,zi) and a point
Q (C°, ....,£4) is given by

« i-ß _ cos s ™or sPace-like connection, ,„
aß s cosh s for time-like connection.
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The group of motions is the group of linear transformations

z" of za,
' (2.6)

such that
caß-z«¥ caßz«zF (2.7)

However the invariance of the physical laws will be postulated only
with respect to the subgroup which does not reverse the time axis.

Applying the method of Courant and Hilbert or of Riesz5),
equation (1.10) can be derived with D(x, f) given by

2n-e(z°-C°)-D(xJ) <5(sinh2 s) +
+ 1/2(1-k2/2)F(3/2-H<x, 3/2-ia, 2; -sinh2s/2), (2.8)

Where
.a (9/4->.2)1/2 (2.9)

and
+ 1 for z° -* C°'^-^--xlFAi <™10>

The usual notation for the hypergeometric function is used. As x is
the reciprocal Compton wavelength of a particle, one has in most
cases

|*| >1. (2.11)

Therefore if x is real, a is real too and D(x, f) is a real function of
the geodesic distance s. But it will be seen in section 5 that a has
a small imaginary addition in the case of a spinor particle. D(x, f)
is then a complex valued function of the geodesic distance.

The transition from Weierstrassian coordinates to an ordinary
coordinate system can be made if the ~a are known functions of
x°, x1, x2, x3 in accordance with condition (2.2). It follows then
from (1.1) and (2.1) that

9u =cM2-,^,., (2.12)
where „ .,- _.za,i= d/dxl(za).

For instance insert into (2.12) the expressions

z° sinh x°, ~a cosh x°-f(x1, x2, xs) for a A 0. (2.13)

It follows that
~00 — 1, gi0 0, giS cosh2 x° gtj for i, j A 0 (2.14)

with 4

~gii Z(dldxif)(àlàxif). (2.15)
a-l

The coordinates a.1, a.2 x3 describe the four-dimensional unit sphere
and 'cjij is the metric tensor for the unit sphere.
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3. The solutions of the scalar wave equation.

The homogeneous wave equation can be separated in the coordinate

system (2.14). Writing

ip(x) ym(xA)-Y^(xA,x2,x3), (8.1)

Y^ is found to be an eigenfunction of the Laplacian

A 3™1'2 J/ d/ux* (g112 g" d/dx') (3.2)
i,l -x

on the unit sphere. Therefore Y" is a generalized harmonic and can
be treated as the ordinary spherical harmonics6). It follows in particular

that
AYlim -m(m + 2) Yfn. (3.3)

The (m + l)2 eigenfunctions are orthonormalized by

fYÌY//*g^d3x òlt,,,, (3.4)

where the star denotes the complex conjugate function. This leads
to the addition theorem7)

UXos a) E Ym(x\ x2, xs) Y«*(i-\ 12,13) (3.5)
ß

with
Vm(cos a) (m + x)sin(m + l)a-(2n2sina)~1,

where the geodesic distance a on the sphere is given by

cos a Zf"(xl> X x%) fvX> X *8) • (3-6)
a-l

The equation for ym(x°) becomes with (3.1) and (3.3)

d L„„-,3 ™o dVm \ m(m + 2)X - (cnsh3 -r* dy™\ x-
m{m + 2)

u A A2 n -0 (3 71
cosh*z^^r x ~cFcv) + A^ÄF2A^ym+x y™-v- v-o

(m + 1) can be compared with the absolute value of the momentum
in view of (3.3) and also because there are (m + l)2 solutions in the
range (m — %, m + %) of m. Moreover (3.7) shows that ym oscillates
with circular frequency (x2 + (m + l)2)1'2 for |™°|<^1, provided
(2.11) holds. An expansion in terms of increasing m corresponds
therefore to an expansion with respect to increasing momentum.

With x i sinh x° the function ym(x°) can be written in terms
of generalized Legendre functions, namely

ym(x«) (x2-l)-V2P^_\l2(x) or (x2-l)~ll2QZt\l2(x) (3.8)
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in the notation of Hobson8). Another pair of solutions can be written
in terms of hypergeometric functions

gm(x°) cosh™ x°-F(l/2(m +3/2+ ia), l/2(m + 3/2 — ix), 1/2;
— sinh2 x°),

hm(x°) coshm a;0-sinh x°- F (l/2(m + 5/2 + ia), l/2(m + 5/2 -iot),
3/2; -sinh2 ~°).

*

(3.9)

gm and hm have simple initial values for x° 0.

In order to study the asymptotic behavior of ym(x°) for large
values of x°, define moreover

F(l+ia.) g(±l)(x0) r(m + 3/2 + itx)-coshmx°-e±im + 3l2 + ia)x°

¦F(m + öl2,m + 3/2 + ioL,l+ia;—eT2x°), (3.10)

r(— m -1 /2 + i a) hF\x°) f(* a) cosh™ x° eT <m + 3/2"ia) x°
¦

¦F(m + B/2, m + 3/2-ioi, 1-ix;-eT2x°), (3.10)

which are again solutions of (3.7). At the same time they yield
asymptotic expansions for x°^> + l (upper sign) and for x° <^—1
(lower sign). The linear transformation which transforms the pair
(ffLX F+1) into the pair (g^r\ Ji(m™>) is given by

/ • • \ i / (™l)m sxxxia.7i \ /oii\(sinia-n)-1 ¦( ¦ ¦ -nm + 1 • (3.11)x ' \ — cos tan- cotg lotji —l)mT1 / v '

In view of the simple exponential behavior of the solutions (3.10)
for ™°^> + 1 resp. for x°^> — 1, we could have hoped to find a
simpler connection between the remote future and the remote past.
In particular this might have yielded a convenient way of defining
solutions of positive resp. negative "frequency". But the matrix
(3.11) shows that this is not feasible. A quite different method will
therefore be used in section 8 to bring about such a distinction which
is of prime importance in order to apply Dirac's hole theory.

4. The electromagnetic field.

Maxwell's equations for the skew symmetric tensor FH of the
field strengths are written as usual

^X + ^m + ^X- o> Xl)
rFkji=Jk, (4.2)

where Jk is the external electric current. (4.1) guarantees the
existence of a vector field A,, such that

F„ At,-A,t, (4.3)
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where At is determined by Eti up to the gradient of an arbitrary
scalar field. Equation (4.2) demands the continuity equation

g'*Jiik 0. (AA)

Inserting (4.3) into (4.2) it follows with (1.8) and (2.4) that

9" Ka -3Ax- 9" \jk J* - (4-5)

With the help of Ricci's identities and (4.4) it follows that

gA%» Aitl),ht 0. (4.6)

Therefore the Lorentz condition

XX,i 0 (4.7)

can be considered as an initial condition rather than an identity to
be satisfied by the vector field A{. With (4.7) the field equations
(4.5) for A{ are reduced to

g»AKij-%Ak Jk. (4.8)

But these equations are not suitable for computations because there
does not seem to exist a coordinate system in which each potential
Ak appears in exactly one equation.

Such a separation of the components of the vector field Ak can
be achieved as follows. Define

B" za,ig*>AJ (4.9)

with the help of (2.12). This gives the identity

DBa f-,k(g*iA*,tì -SA") - 2 f<f»Aiit, (4.10)

where the d'Alembertian is defined by

(-g)-^2d/dxi(-g)r'2g*^d/dx'-2. (4.11)

Moreover it follows from (4.9) and (2.2) that

caßz«Bf> 0. (4.12)

There exists a one to one correspondence between the four potentials
At which satisfy (4.7) and (4.8), and the five potentials Bx which
satisfy (4.12) and

nB«=z*,kg«AF. (4.13)

It is possible to find a complete set of solutions of (4.12) and (4.13)
if Jk 0. This set is similar to the solutions of the homogeneous
wave equation in section 3.



322 Martin Gutzwiller. H.P.A.

Each one among the equations (4.13) has the form of equation
(1.9) with x2 2. Equation (2.8) shows that D(x, £) has only the
(S-like singularity on the light cone in this case, and vanishes everywhere

inside the light cone. This is exactly the behavior of the D-
function for a wave field of vanishing mass in flat space, and it can
be interpreted as the validity of Huygens' principle for the
electromagnetic field in the space of constant curvature. The similarity of
the operator (4.11) with the d'Alembertian in flat space can be
recognized9), if the following coordinate system is used

/ -1 0 0 0 \

ga=v"2[ 0 0 x q J with v 1 + 1 /4 (— xl + x2 + x\ + xl),
\ 0 0 0 1/

so that it follows according to (4.11) that

v3(- d2/dxl + d2/dx\ + d2/x\ + d2/dxl) v~\

5. The spinor field.

According to Dirac's method for treating the spinor field in a de
Sitter space10), the Weierstrassian coordinates are interpreted as
cartesian coordinates in a five-dimensional flat space and the space
of constant curvature is given by (2.2). In order to make the five
coordinates ~a more symmetric, introduce

»o **0. &, *" for a + 0. (5.1)

Moreover the field quantities are written as homogeneous functions

of ya. The differentiations with respect to ya occur only in the
combination

m

which is compatible with the condition (2.2) or

2/a2/a=1- X3)
The wave operator (4.11) can be written as

n + 2 E(™*ß)2- (5-4)
a<fj

With a set of five Hermitian 4 by 4 matrices ya such that

7a7ß + 7ß7* 2(5aX (5-5)
and

Yo7x 72737. I (unit-matrix), (5.6)

aß-yjlayß-yßdldya, (5.2)
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a first order differential operator M is defined by

M=Er«7ß™aß, (5.7)
a</3

which has the property

(M-3/2)2 -D + 1/4. (5.8)

The 4 by 4 matrices act on a spinor ip (1-column matrix) and it is
useful to define an adjoint spinor ip+ (1-row matrix) by

ip+ iip* y0, (5.9)

where ip* is the 1-row matrix whose elements are complex conjugate
to the elements of ip. A current vector Jk can be derived from the
five components

ia=<P+7<tf — yayß<P+7ßV>, (5-!0)

where cp and ip are two arbitrary spinors. The relation between Jk
and 7a is the same as between Ak and iB°, B1, B* using (4.9).
This leads to the identity

9mn Jm,n <p+y(M-2)ip- cp+ (M + 2)yip, (5.11)

where the arrow indicates the spinor upon which the differential
operator M acts, and where y is given by

7 Yay«- (542)

With a linear transformation (2.6) of the coordinates, the spinors
undergo a linear transformation A, namely

ip Axp, 7p+ ip+A-1. (5.13)

The five components ja transform like the coordinates and the
operator M undergoes the transformation

M AMA-\ (5.14)

For the reflection of the spatial coordinate ~/a (a A 0) we have

A ya. (5.15)

The first order equation of Dirac for the free spinor is given by

(M-2 + ia)ip 0,
ip+(M + 2 + ia) 0, { ' '

where a is real and can be chosen positive because

y(M -2)=-(M-2)y. (5.17)
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It follows from (5.8) and (5.16) that

[Jy-(a2 + ia)ip 0. (5.18)

On the other hand if % is a spinor whose components satisfy the
second order wave equation (5.18), then the spinor

y> (M — 1— ia)x (5.19)

satisfies the first order wave equation (5.16) because of (5.8). Moreover

the divergence (5.11) vanishes for two arbitrary solutions cp and
ip of (5.16). Therefore the integral

<p+7nWyo.,idEi (5-20)
2.'

is independent of the particular space-like surface E. Thus (5.20)
is an invariant scalar product for two solutions cp and ip of (5.16)
with a positive definite value if cp ip.

6. The solutions of Dirac's equation.

A complete set of solutions for Dirac's equation can be constructed
with the help of an operator N which is given by (6.1) and is related
to the absolute value of the momentum (cf. the discussion after (3.7)
concerning the index m in the solutions of the scalar wave equation).
It will be convenient to use such a set of solutions in order to
represent various propagation functions. The operator

N 7o 2>*y„"W-S/2 (6.1)
\a<ß I

is Hermitian for spinors with the norm (5.20), where the space-like
surface E is given by y0 const, or also q const, with

Q (y\ Ay\ + y\ + ijj/F (6.2)

The same is true for the operators

*-.-= *(«,,+1/2y.y,) for ™XtO. (6.3)

The variables y0 and q can be written as

y0 sinh x°, ~ cosh x° (6.4)

according to (2.13). Finally define an operator n by
x

QV -VoZY*y*- (6-5)
a-l
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The following relations are easily proved

\N,yo] [N,n] 0,
[N,o] =[N,d/do] 0;

[MxX,y,] [Mx„ri] 0,
[MhX,q] [MxVd/dp] 0;

(6.6)

(6.7)

FMH,,MJ d^M,v + dkvM^-dKVM^-dAliMxv; (6.8)

[MKl,N]=.0; (6.9)

where always x, X, pt, v A 0 and [,] stands for the commutator. Moreover

[Yo> QÌ [Yo>'dldel °> (a-try)
[n,Q] =[-, d/do] 0; { ' '

VYoF 7oV 0. »?2 r. *• (6-n)

With (5.7) it follows that

M rj(d/dx° + 3/2 tanh x°) + y0(l - rj tanh x°) N + 3/2, (6.12)

and equation (5.16) becomes therefore

{d/dx° + 3/2 tanh x°+(r, + tanh x°) y0 N + i (a + y n j y> 0. (6.13)

If the spinor y) is a solution of (5.16) and belongs to the eigenvalue

n of N for a particular space-like surface x° const., i. e.
if for a particular value of x° we have

Nip nip, (6.14)

then (6.14) holds for all values of x° because of (6.13) and (6.6). The
same is true for Mxl because of (6.7) and (6.9). In view of (6.8) it
is therefore possible to find solutions of (5.16) which are
simultaneous eigenfunctions of the operators N, MX2, and M3i. The
eigenvalues of these operators can be derived by v. d. Waerden's
method11) and with the help of the formula

1+(M12 ± M34)2 + (M23 ± Mxi)2 + (Mzx±M2i)2 (N±l/2)2. (6.15)

The eigenvalues of JV are then found to be the positive and negative
halfintegers except + % and — IF.
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Equation (6.14) can easily be discussed in the special representation
of the y-matrices given by

where /, ax, a2, a3 are the usual 2 by 2 spin matrices. With

pa axyx + a2y2 + a3y3 + iyxI,
qo+= axyx + a2y2 + o3y3 — iyiI,

it follows that
'0 av

a 0

(6.17)

(6.18)

Equation (6.14) splits into two independent couples of first order
equations in the coordinates of the four-dimensional sphere q
const. Therefore (6.14) has two types of solutions: ip' has vanishing
third and fourth components, ip" has vanishing first and second

components. A correspondence

ip" rjip', ip' nip" (6.19)

can be established between ip' and ip", which preserves the normalization

and the eigenvalues of N and Mx!i because of (6.6) and (6.7).
Only ip' has to be discussed therefore. The 2 non-vanishing
components of ip' satisfy the equation

Aip' -((n—.l/2)2-l)ip', (6.20)

which is identical with (3.3) if (m + l)2 (n — %)2 with m 2ï 0.

Moreover it can be shown that there is exactly one eigenfunction ip'
for every possible set of simultaneous eigenvalues N, MX2, and M34,
and these eigenfunctions form a complete set for the spinors of the
type ip' for a particular value ~° const.

An arbitrary spinor ip which belongs to the eigenvalue n of N,
can now be written as

ip cp'(x0)-ip'(.F, x2, x3) + cp"(xA)-ip"(xx, x2, x3), (6.21)

where the functions cp'(x°) and cp"(x°) are determined by

(d/dx° -(n- 3/2) tanh x°) cp' + [n + i(a + i/2)) cp" 0,
(d/dx° + (n + 3/2) tanh x°) cp" + (-n + i(a + i/2))cp' 0.

(6.22)

After eliminating cp", it is found that cp' satisfies (3.7) with (m+l)2
(n~y2)2. cp" satisfies (3.7) with (m + l)2 (n + y,)2. In both
cases j<2 is replaced by (a + i/2)2 + 9/4. The initial values of cp' and
cp" can be chosen arbitrarily.
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7. The spinor field in arbitrary coordinates.

For some applications it is more convenient to use the spinor
formalism in arbitrary coordinates which has been developped by
several authors12). It is sufficient to list the results for the space
of constant curvature. Define in terms of the matrices yM and y in
(5.5) and (5.12)

°v (iYß — iyyß — yßiY*

X= l/2fo„-y„y), (7.1)

A =yoy;
<*. =- y„,j%'
« ^ % — y > X2)

X */„,,¦ >4_>

from which follows that

_4 a3- and _1 a are Hermitian, (7.3)

a.,cr.j +ctjOLi 2 ga I, a, a + a a,-= 0, a2 J. (7.4)

The covariant derivatives of a spinor ?F (1 -column matrix) and for
a spinor 0 (1-row matrix) are given by

P,i d/diW + AAP; 0,i d/dx*0-0Al. (7.5)

A spinor W+ of the type 0 can be defined from W by

U7+ cp* A, (7.6)

where *P* is the 1-row matrix whose elements are complex conjugate
to ï.7. The covariant derivatives of otf, a, and _4 are defined by

aM s ö/ö™'a< — T/taÄ + _13a4 — a<_1,¦ 0,

a,,. d/d™3' « + A, a — a A,, 0, (7.7)

A,j d/dx^A — AAi — A/ A 0,

where At is the Hermitian conjugate matrix of As. The interchange
of covariant differentiation on a spinor gives the following simple
result with (1.3) and (2.4)

W W=PW-0. — 0= — 0P (7 8)
with

Pu ]/4(oc,a; —«i°X
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The tXf, in (7.1) has been chosen such as to change equation (5.16)
into

oc' P,3; + a W 0 ; ¥/+„- a' - aW+ 0 (7.9)

with tx' gH o.t. This gives at once (4.4) with

Jk W+ *k W. (7.10)

Equation (7.9) follows from the Lagrangian

L=W+^W,k + aW+W. (7.11)

The energy-momentum tensor

Ttl i/A(V+ *, W,, + <F+ a,.y,, - «F+, a, F- !P+,, oc, ÎP) (7.12)

satisfies (1.4) by virtue of (7.8) and (7.9).
The propagation formula (1.10) can be applied to each component

of a spinor with the help of (5.18). The term with \P,jdEj can be
transformed because of (7.9). It follows that

W(x) - [k(x, t) <*,(£) ¥(S) dE', (7.13)

with
K(x, |) - a*(f) dfdf* D(x, I) - (a - Z)(x, |),' (7.14)

or
K(x, Ç) - i(My - 1 - i a) D(x, £), (7.15)

if the coordinates x* and £' are replaced by ya and na according to
(5.1). D(x, £) here is given by (2.8) with a complex mass term

oi a + i/2 (7.16)

according to (2.9), (5.18), (4.11), and (1.9).

8. The second propagation formula.

A solution cp(s) of the homogeneous wave equation which depends
only on the geodesic distance s to a fixed point, has to satisfy

cp + 3 coth s cp + x2 cp 0 (8.1 a)

for time-like connection,

cp + 3 cotg s cp — x2 cp 0 (8.1 b)
for space-like connection,
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where the dot indicates the differentiation with respect to s. In
terms of Legendre functions the solutions are

(sinh s)™1 P]a_v, (cosh s), (sinh s)™1 Q]a_% (cosh s), (8.2a)
resp.

(sin s)™1 Pl_y2(cos s), (sin s)™1 QJa_%(cos s). (8.2b)

A propagation function Dx(x, |) can be constructed from (8.2) which
is regular for fixed x and varying | except on the light cone of x,
and the leading term at the light cone is (2 t.2-2)™1 for space-like
connection and —(2 .i2.2)™1 for time-like connection. Dx(x, f) is
given by

(27.2sinh s)™1{Q!a_1,(cosh s)+n/2 tang .arc-P^(cosh s)}, (8.3a)

resp.
— (2 n2 sin s)™1 {<$a_y.(cos s) + T./2 tang •.arc-Pî1a_1/2(cos s)}. (8.3b)

For points f which cannot be connected with the point x by a
geodesic, P1(x, |) can be continued without singularities and still
be a solution of the homogeneous wave equation.

Consider now a volume V which is contained between two spacelike

surfaces E' and E" in the past of the point P (x°, x1, x2, x3).
Outside the light cone H of P a cone H' is chosen which is generated
by geodesies through P. A similar cone H" is chosen inside H. V is
defined by the space between E' and E" except for the space
between H' and H". Vet S be the surface of V; S consists of parts
which belong to E', E", H', and H". With an arbitrary function ip
and with / defined by (1.9) it follows from Green's formula that

Dx(xJ) f(i) dV= l{Dx(xJ) X_ _ z^Ji^dSK (8.4)
v s

The sign of dS' is determined such that

Ox' dS, > 0 (8.5)

for an arbitrary displacement ôx' pointing out of V.
The left hand side of (8.4) has a well defined limit as H' and H"

approach H, provided that for the intersections Q, Q', and Q" of
a space-like curve with H, H', and H" -we have

distance QQ' /o _.\
llm^listanc^Wr=1- (8-6)

The contributions to the right-hand side of (8.4) which come from
27', E", H', and H" do not tend to a finite limit separately. However
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the contributions from H' and H" can be integrated exactly between
E' and E", and the result of this integration just cancels the terms
in the contributions from E' and E" which do not tend to a finite
limit. Therefore equation (8.4) can now be written with the
convention (1.6) as

%[{Dx(x,^)^~^^^))dD'
2"

\J J"{dx(x, i) ;X _ AA^0Jlf(^dE''' +%ìfDx(x,i) f(i) dV. (8.7)
È" V

The symbols $ and ^3 indicate the limiting process which has to be
used in order to make each term well defined. ^. is a Cauchy principal

value connected to the condition (8.6). In each of the two
surface integrals gf means that the integrand has to be expanded
about the intersection of E with H in powers of the distance perpendicular

to this intersection and only those terms have to be retained
which give a finite contribution to the surface integral in the sense
of a Cauchy principal value with condition (8.6). With these
definitions for ^3 and $ equation (8.7) holds even if P has an arbitrary
position with respect to E' and E", provided P does not lie in E'
or E".

As a consequence of (8.7) an arbitrary solution ip of the homogeneous

wave equation has a unique adjoint function ip which is given
by

W(x) 5 / {-^ - w(i) -Dx(x, i) <X} dEA (8.8)
È

The transition from ip to ip is invariant with respect to the group
of motions which was defined in section 2. Moreover y (a;) satisfies
the homogeneous wave equation. If the correspondence (8.8) is

symbolically represented by T, it will be shown that

T2=-E, (8.9)

where E is the identity. Therefore each solution ip(x) of the
homogeneous wave equation can be uniquely written as the sum of two
solutions ip(+)(x) and ip(~\x), i- e-

ip(x) y/+)(a,) + ip(-\x), (8.10)
where

ip(+) 1/2(E + iT)ip, v<-> 1/2(E - FT) ip.

In the case of a spinor ip which satisfies equation (5.16), the integral
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(8.8) can be transformed in a way similar to (7.13) with the help of
(7.9). This gives

ip(x) - [kx(x, £) a,(f) ip(è) dE' (8.11)

with ™

Kx(x, |) - i(My — 1 — ia) Dx(x, f).

Because of (5.19), f(x) is again a solution of Dirac's equation (5.16).
To prove (8.9) it is sufficient to show its validity for the complete

set of solutions of the homogeneous wave equation which was
discussed in section 3. The transforms ip for this set follow from writing
(8.3b) as

Dx(x,tA ]AcmVm(coss) (8.12)
with m'°

c d - — 1

and m m

dm —n-2 cos iocjir{l/2(m +5/2+ ioc))r[l/2(m +5/2 —ict))x

xr(l/2(—m+ 1/2 +i«.)} r(l/2(—m+1/2 —iot.)).

Formula (8.12) is a consequence of the addition theorem for
generalized Legendre functions13). The transforms ip are

dmK(x°)^m for gm(x»)Y>/n,

cm,gm(x r m tor iim(x Xm,

and the relation (8.9) follows immediately.
D(x, C) and Dx(x, f) can be written as

3.18)

D(x, tA E (UX flUf°) -gm(x°) M*0) X(cos a), (8.14)
m

P>x(x, t)=E {cmgm(x°) gm(S°) ~-dmhm(x°) hm(^)) Fm(cos cr). (8.15)
m

These formulas can be proved by inserting them into (1.10) and
(8.8) with (3.5) for a space-like surface x° const. Another D-func-
tion is defined by

2 D2(x, £) e(x° - i°) D(x, I) + iDx(x, C). (8.16)

It has the representation

2 D2(x, |)

- Ei<'m{gm(x°)±idmhm(x°)) (gm({.°) T idmhm(ê0)) Fm(cos s), (8.17)
m

with the upper sign for x° > f ° and the lower sign for x° < £°.
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9. The positive and negative energy states of a spinor.

Let ~ indicate the operation of taking the complex conjugate
(not the Hermitian conjugate). A matrix C can be defined14) (with
CC unit matrix) such that the spinor Ç(.r) which is given by

yi(x) Cf(x), (9.1)

is a solution of (5.16), provided ip(x) is a solution of (5.16). In the
set (6.16) of y-matrices C is given by

C y2Yiy. (9.2)

The correspondence (9.1) between ip and ip is invariant under the
group of motions which was defined in section 2, and it does not
change the current vector (5.10) or (7.10). Let this correspondence
be represented symbolically by S.

The correspondence T, i.e. (8.8), and the correspondence S, i.e.
(9.1), are connected for an arbitrary solution ip of Dirac's equation
(5.16) by the relations

(E + iT)S(E + iT)ip 0,
(E-iT)S(E~iT)ip 0,

K '

or Syi<+) resp. Sty<_) are of the type y><-~) resp. ip(+).
The relations (9.3) are easily reduced to

TSip S Tip. (9.4)

This last equation can be proved separately for each solution of the
complete set in section 6. Moreover it is sufficient to show (9.4) for
a particular space-like surface, e.g. the surface x° 0, because both
spinors TSip and S Tip are solutions of the first order wave equation
(5.16). These two spinors are easily computed for each eigenvalue
n in the set (6.16) of y-matrices with the help of (6.13) and (8.13).
They are found to be equal, provided the following recursion
formula is true

cm+1 (ia — m — 2) cm(i a — m — 1 (9.5)

for the coefficient cm in (8.13). Equation (9.5) follows indeed from
(8.12), if cm is defined with the complex mass term a. a + i/2.

Equation (8.10) shows explicitly how to split an arbitrary spinor
into y>(+> and yi(~\ and it is now legitimate to interpret y(+) as a "positive

energy" state and y(_) as a "negative energy" state. ip{+) is orthogonal

to y(-)in the normalization (5.20). The spinors in the complete
set of section 6 can therefore be uniquely determined by four labels,
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namely the eigenvalues of the four operators t iT, N, Mx2, and
M3i. The functions cp'(x°) and cp"(x°) in (6.21) can indeed be worked
out for t + 1 and t — 1.

The matrices K(x, |) and Kx(x, £) in (7.13) and (8.11) can be
represented as sums over the complete set of spinors ipm, where co

stands for a set of simultaneous eigenvalues of t, N, MX2, and M34.
It is found that

K(x,ï)=EvÀx)ipt(Ç),

K1(x,$) -iEtfm(x)iP:(i),

Ev>m(x)ipi(H) for x°>i°,
xr i, t\ __ '>0

~EvJ\x)ipi(ï) for ™o<|». (9.6)
«<o

The proof follows from inserting these formulas into (7.13) and
(8.11) with E given by x° const. The similarity with the S-func-
tions in flat space is obvious.

10. Example of second quantization.

Consider a spinor field *F which is coupled to a real pseudoscalar
field cp by a pseudoscalar coupling. The Lagrangian of the system
is given by

L i(W+cAW,k + ctW+W) + l/2(g'kcp,jcp,k + x2cP2)+kcpW+oclP. (10.1)

The field equations are

oikiP,k + aW—ikfoiW 0,
W+,kaA-aW+ikcpW+cx 0, ^°"^

g'kcp,jJc-x2cp-kW+aW =0. (10.3)

From these field equations follow the equation of continuity (4.4)
with (7.10) and the conservation law (1.4) with the energy-momentum

tensor

T!k i/A(V+^Prk + y+Xky,}~y+,kotjV-y+,j*kP) +

+cp,jcp,k-l/2gjk(g^cP,mcp,n + x2cp2). (10.4)
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Equations (10.2) and (10.3) can be written as integral equations
with the help of Hadamard's formula (J.10), namely

nx) =-ik [k(xJ) a(|) V(i) cp(i) dV-
v

-[K{x,t) **(£)¥($ dZ,, (10.5)
s

cp(x) =-k [d(x, i) W+(i) ct(i) W(i) dV +
v

+ [{-t^^)-D(x,i)%}dE, (10.6)
h

K(x, f) is the same as for the free spinors, whereas D(x, I) is given
by (2.8) with the real mass term x2.

The transition from a c-number theory to a g-number theory will
first be made on a particular space-like surface E which is described
by three parameters r1, v2, v3. On E a vector field r/v1, v2, v3) can
be defined by

dE{ rf(vx, v2, v3) dv1 dv2 dv3 (10.7)

with the convention (1.6). It simplifies the writing in the forthcoming

derivation if this E is assumed to be imbedded in a continuous
sequence of space-like surfaces. Each surface in this sequence is
labeled by a parameter u°, and the points in each surface are labeled
by parameters u1, u2, u3 in such a way, that the curves u1 const.,
u2 const., u3 const, are orthogonal to the surfaces u° const.
The parameters u°, u1, u2, u3 are used as new coordinates and the
new metric tensor has the property

gio goj 0 for 7 1,2,3. (10.8)

Two auxiliary fields are defined by

0(u) - (-g/l2—^- =t(-9yl2 W+(u) a», (10.9)
d [IFF)

n(u) - (-gy2 -™-^™-= (-#'2„Mè' (10-t0)
(AAA)
\dvA]
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The field equations can now be written as

d/du°0 -2/d/duk(0oiocA) + 0a.J^cAA3—ikoicp + a\, (10.11)
i \ o

'
3

dldu°n — 2Jd/du}((— g)li2gK-d/dukcp) +
i

+ (—g)ll2(x2cp+kìP+ctìP). (10.12)

Moreover a sort of Hamiltonian Hs can be defined on E by

Hz /"§(«) du1 C.M2 du3 (10.13)

with -
$(«) (-gyl2L-0-d/duOÌP-n-d/duocp.

This definition applies to each surface in an arbitrary sequence of
space-like surfaces. This is important because Hx will be used lat.r
to show the compatibility of the commutation rules with the field
equations. On the other hand Hs is not in general a constant of
motion, except e.g. in the following special case. Let the sequence
of space-like surfaces be generated by a 1-parameter group of
motions in such a way that the curves perpendicular to the surfaces are
the trajectories of the motion. The metric tensor does not depend
on the coordinate u°. Moreover after a proper choice of the coordinates

in the spin space, covariant differentiation and ordinary
differentiation with respect to u° become identical. Then HE turns out
to be the same as the constant of motion (1.7) with 0 and (10.4).
However compared to the cartesian coordinates in flat space this
special coordinate system has the disadvantage that it is not regular
everywhere and the surface E does not sweep over all points in the
space. A similar situation arises in flat space if one choses a coordinate

system whose time-like coordinate is the parameter of a hyperbolic

rotation (restricted Lorentz transformation). Therefore a general

coordinate system will be used henceforth.
The components of the spinors 0(u) and W(u), and the pseudo-

scalar fields cp(u) and n(u) are now considered as operators which
satisfy on a fixed space-like surface u° const, the (anti)commutation

rules
{0a(u),Wb(u')}=~ioaio(u-u'),
{0a(u),0b(u')}={UF(u),Pi(u')}=O;

\n(u), cp(u')] — iò(u — u'),
[n(u), 7.(«.')] [<p(u), <p(u')] 0;

0a(u) and ^(m) commute with cp(u) and n(u) on u° const. As

(10.14)

(10.15)
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usual],} stands for the anticommutator and [,] for the commutator.
ò(u — u') ist the triple ó-function for the coordinates u1, u2, u3 on
the space-like surface u° const.

The question arises whether the commutation rules (10.14) and
(10.15) are compatible with the field equations. The propagation
formulas (10.5) and (10.6) show indeed how to compute the field
operators for the whole space, if they are given on a particular
space-like surface. On the other hand the commutation rules (10.14)
and (10.15) can be postulated equally well on any of the surfaces
u° const. The two procedures are consistent with each other, if
it follows from the field equations and the commutation rules on a

particular surface u° const., that the derivatives with respect to
u" of the (anti)commutators (10.14) and (10.15) vanish. It is then
indeed legitimate to put these (anti)commutators equal to a c-number

independent of u°. Therefore consider for instance the derivative

d/du»{0a(uy »W}- (10.16)

It follows from (10.9), (10.10), (10.11), and (10.12) in the usual
mariner with the help of (10.14) and (10.15) that

(10.17)
d/du°0 i[Hs, 0(u)\, d/duu W i[Hs, W(u)];
d/du° n i[Hz, n(u)], d/du° cp i\H£, tp(u)]

Thus the expression (10.16) becomes

i{[Hs, 0a(u)l Wb(u')} + i{0a(u), [Hs, Wb(u')]},

and this is written using Jacobi's identity as

i,[Hz,{0a(u),yb(u')}}.

But this last commutator vanishes, because the anticommutator
{0a(u), Wb(u')}is a c-number.

The (anti) commutators in (10.14) and (10.15) can be written without

the help of the special coordinate system (10.8). It follows from
(10.7) that for instance

{Wa(v), 0b(v')} - % d(v - F) ôab, (10.18)

with [n(v),cp(v')] iô(v-v'), (10.19)

0 i 1//+(ai Tj) and n cp, t- g'k rk,

which is obviously independent of the particular coordinate system.
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It is easy to construct operators which satisfy the postulated
commutation rules on a particular space-like surface, e.g. x° 0 in thé
coordinate system (2.13). For this purpose the complete sets of
solutions which were discussed in section 3 and section 6 can be used
exactly as complete sets of plane waves are used in flat space. But
it is not necessary here to make an assumption such as the "big but
finite" box in order to make these sets denumerable. If the coupling
between pseudoscalar and spinor field vanishes, i. e. if k 0, such
a representation is valid throughout the whole space. Moreover the
commutation rules can now easily be deduced for two arbitrary
points x and f in the space. The propagation formulas (10.5) and
(10.6) with k 0 reduce indeed every operator to its values on a

particular space-like surface E through the point f, so that (10.14)
and (10.15) can be applied. This gives

{ya(x),yb(ï)} Kab(x,ï),
i[cp(x),cp(è)] =D(x,£), llU,ZUj

and all the other (anti)commutators vanish. Finally the distinction
between "positive energy" and "negative energy" states of section 9

can be used to define the vacuum according to Dirac's hole theory.
The interpretation of the various field operators in terms of creation
and annihilation will thus be the same as in flat space. Therefore all
the necessary elements have been assembled from which to compute

the effects of coupling between the spinor field and the pseudo-
scalar field using the same methods as in flat space.

These methods use expansions of the D-functions which are
similar to (8.14) etc. The integrations over the coordinates can then
be performed and one is left with a summation over the parameter
of the expansion. This summation has a very intuitive interpretation

in terms of intermediate states and virtual processes among
them. The difficulty in applying this method to the present case
consists in performing the integration over the coordinates. Indeed
the solutions of section 3 and 6 do not depend on the space and time
coordinates in such a simple manner as the plane waves of flat
space. In spite of these mathematical difficulties it may be of some
interest to investigate the interaction between quantized wave
fields in this more general theory.

The author wishes to express his sincere gratitude to Professor
Max Dresden for his many helpful discussions and very valuable
advice.
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