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Phaseshift Analysis in Single-channel Reactions*)

by G. Pisent
Istituto di Fisica dell'Università di Padova, Italy

Istituto Nazionale di Fisica Nucleare - Sezione di Padova

(1. IX. 62)

1. Introduction

A general method for phaseshift analysis of single channel reactions is outlined.
The purpose of this paper is to give a complete survey of this subject1).. .6), in order
to relate the phaseshift ambiguities closely to the mathematical structure of the cross
section and to allow the quick numerical calculation of all mathematical phase shifts
compatible with input data. The method is outlined for the general case of arbitrary
maximum orbital angular momentum, and discussed in detail for S, P and D wave
analyses.

2. Outline of the Method

The differential cross section for the scattering of neutrons by zero spin nuclei is

given by
k2a(d) =\£iaLl2i)PL(cosd)\2,

where

£ibJ2i) P'L(cost
L

a0 (cos 2 0°, - 1) A- i sin 2 c5?

aL (L > 0) uL - (2 L A- 1) A- i vL

bL exp (2 i b\L +,) - exp (2 i ôl2L_,)

and
uL-xL cos 2 Ô%L +, A- ßL cos 2 ò'2L„,,

vL a.L sin 2 b\L + ßL sin 2 Ô^L_,.

(1)

(2a)

(2b)

(2c)

(3a)

(3b)

ò2j is the phaseshift for the interaction in the state of orbital angular momentum L
and total angular momentum / L Az 1/2; and xL L 4- 1, ßL L. Let Lmax be the

*) This work has been carried out under contract EURATOM-CNEN.
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maximum orbital angular momentum involved at the considered scattering energy.
Equation (1) can be written as

2L.

2
-V-0

k2a(B) JT .4vcos'v0, (4)

where the coefficients AN, expressed in terms of the real and imaginary part of aL and
bL, are determined by the least square fit of the measured angular distribution. Using
the optical theorem Im/(0°) (&2/4 n) a(k), where/(0°) E iaA2 *)> and the relation
k2 a(0°) [Re/(00)]2 + [Im/(0°)]2, one obtains L

cos 2 Ô0! A-2JuL= UL, (5a)
L

sin2<5î+2X=X< (5b)

where in the case of L Ln

ULnax E [(2 N A- 1) - 2 A2XH2N + 1)], (6a)

'¦'-max I ^rnax / \
E An- (Z A2N{2N+1}) (6b)Vr =2ÜVL-max v

L.
i

.jV^O \-V-0

Qv being the signum function*

Oy=±t. (7)

Since VL is a real quantity, the angular distribution coefficients must obey the
condition

2 Lrnax Lmax I \ 2

E AN-( £ A2J{2N+1}\ >0. (8)
JV-O \v-o / /

The following procedure will be entirely based on Equations (3) ; the importance
of these equations arises from the fact that they allow the determination of the two
phaseshifts corresponding to a given L > 0, provided all other phaseshifts are known.
The solution of Equations (3) in compact form may be written as

cos 2 b\L +, FAQL, uL, vL) \xL (9a)

sin2ô%L + 1 F+(QL,vL,-uL)l«.L, (9b)

cos2òL2L_, FAÜL,uL,vL)lßL, (9c)

sin 2 ÔL2L_, FAQL, vL, - uL)lßL, (9d)
where

FAOL,P,q)={P[iP2 + q*)Aixl-ßl)] 1

± QL q [(2 xL ßL)2 - iP2 + q2-x2L- /OT2} {2 iP* A- 92)}"1 •

'

*) Unless otherwise stated the symbol Q will always be referred to a sgn function.
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Equations (9) show that the evident ambiguity implied by Equations (3) is described

by the sgn function QL. (In the particular case of L 1, this ambiguity corresponds,
in the neutron-He4 scattering, to the normal or inverted doublet, which is known as

the Fermi-Yang ambiguity in the 7r+-proton case).
Since we consider elastic scattering only, the following inequality must be satisfied,

in order to ensure that the L phaseshifts be real

»£-*¦ ?2 I < 2 x, (H)

A geometrical representation of Equations (5) is shown in Figure 1, which visually
demonstrates the two doublets.

X
?[u„,vL„]

Jl-BP \
(fi)

• [UL-„VL-,]

[u^.vX

Fig. 1

Linkage system allowing the calculation of the dL doublet, if all other phaseshifts are known. The
Qr, ambiguity is evident.

In order to evaluate the S phaseshift, it has been found convenient to start from
the coefficient A0, the general expression for which is found from Equations (1), (2), (3)

4A0= |X2+ |rX2 + 2(cos2c$?- 1) (Re 2-1) + 2 sin2ó? Imi (12)

where

a =2; (-if 2

/t=E(-l)«2
JV=0

N._2N (2N)\
a.ny i\2 "2.V >

2JV (2V + 1)!
(-V <\2 "2.V+1 •

(13a)

(13b)
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After some lengthy manipulations, using Equations (5) with L 1, and (12), the S

phaseshift is still found to obey Equations (9a), (9b), where now

•40= (U1-2)/2 + ReÂ,

¦j0 V,j2 + lmÂ,

*o 1.

30= [2 1X2+ lit* I2 — |*>i|2+ (^i-4) Re2+ V^mÂ

-U1-(UtA-Vl)l4-4A0 11/2

(14a)

(14b)

(14c)

(14d)

It may be remarked that the sgn function Q0 introduces an ambiguity even for the S

phaseshift, as does QL for higher partial waves.

3. S and P Wave Approximation

In the Lmax 1 approximation, U, UL and V, s VL are determined from
Equations (6), so that Equations (14) become

u0 (L\ - 2)12

vo V,\2,

xn 1

Ì7(-i)Ax,
.V-0

1/2

(15a)

(15b)

(15c)

(15d)

A straightforward calculation gives then 0°, by means of Equations (9a), (9b), (10),

provided condition (11) is satisfied, which in this case becomes

\A0-A, + A2I3\<
2

N 0
27 (-!)*%

1/2

(16)

The P doublet is now immediately found by means of Equations (9), (10), since

u, U, — cos 2 ò, and v, V, — sin 2 (3J, are known quantities. The inequality (11)

now reads

{Ux - cos 2 òfj2 A- (V, - sin 2 <5?)2 - 5 I < 4 (17)

Since the inequality (17) is a condition imposed on the S phaseshift, a preliminary
resolution of theI20 ambiguity turns out to be possible in particular cases. The problem
is now completely solved, i.e. 23 8 mathematical solutions are compatible with the
input experimental data (3 number of independent sgn functions). The choice of
the physical solutions cannot obviously be made simply on mathematical grounds and
additional physical information [polarization, continuity prescriptions versus energy,
effective range approach7) etc.] is required for this purpose.
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The above formulas can be geometrically

represented by the linkage system
shown in Figure 2 where all possible
configurations allowed in S and P wave
approximation are drawn.

Fig. 2

Linkage system for phaseshift calculation in
the Lmax 1 approximation. The configuration

refers to neutron-He4 elastic scattering
at the neutron energy of 2.87 MeV8), where
the D waves contribution has been found
negligible. The system, completely «frozen»,
shows that all mathematical ambiguities,
including the S wave one, are allowed here,
because condition (17) is satisfied. 'Physical'

phaseshifts are explicitely shown.

[(U, -2)/2 ¦ V,] o[

[(Ur2)/2--V,] c|

U,jV

i

2 5?

2ft

1 [Uj'-Vj]

25

4. S, P and D Wave Approximation

In the Lmax 2 approximation*), U2 UL and V2 VL are known, whereas
the unknown quantities U, and V, are connected by the following relation

(U, -U2A- 3)2 4- (V, - V2)2 4 (1 + (4/15) AJ (18)

The geometrical meaning of Equation (18) is evident: the point (U,, V,), lies on a

circle of center (U2 — 3, V2), and radius R 2 j/l + (4/15) A4= )/x2 A- y2. Equation

*) For easy reference, the angular distribution coefficients in the Lmax 2 approximation are
listed below

4 A0 | a„ \2 A [ b, \2 A- (1/4) | a21« - Re(«0 a*)

A A, - 2 Re(a0 a*) - Re^ a*) A- 6 Re^ b*)

4 A2 | a, \2 - \ b, [2 - (3/2) | a2 \2 + 9 | b2 \2 + 3 Re(a0 a*)

A A3 3 ~Re(a, a*) - 6 Ke(b, b*)

AAi (9/A) \ot\*-9\bt\*.
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(18) reduces the mobility of the linkage system to one degree of freedom only. It
follows that all phaseshifts can be parametrized as functions of one variable parameter
only. An additional condition between all phaseshifts, and input coefficients is then
required in order to 'freeze' the system.

Choosing as variable parameter the abscissa x XJ, — U2 + 3 of the point
(U,, V,), relative to the center of the circle, it is immediately found that y Qy

l/iv2 - x2.

All phaseshifts are now obtainable as functions of x. The D doublet is determined
by taking into account that u2 3 — x and v2= — y. The determination of ò, is
carried out by means of Equations (14), which, by means of (18), can now be
written as*);

uQ= (U2-3)j2 + x, (19a)

v0 I/2/2 + y (19b)

«o l, (19c)

Zi-1)" A,
1/2

(19d)

Finally the P doublet is calculated using the relations

u, - (U2 - 3) A- x - ces 2 of, v, V2 + y - sin 2 0°,.

Inequality (11) becomes

|({72-3 + *-cos2(5?)2-r- (F2 + y-sin2<5?)2-5|<4. (20)

This inequality would allow a preliminary elimination of the Q0 ambiguity as in the
S and P wave. The linkage system for the determination of the phaseshifts as functions
of x, is shown in Figure 3.

The 'freezing' condition is now provided by either of the two odd angular
distribution coefficients, for instance by solving the equation

with W(x) -(4I3)A3, (21)

W(x) (x + 2)(U2-6 + x-cos2 ÔÏ) +y(V2 + y- sin2 of)

A- 2 (cos 2 òl - cos 2 d{) (cos 2 0% - cos 2 òl)

+ 2 (sin 2 òl - sin 2 ò\) (sin 2 <5| - sin 2 Ò2)

(22)

*) It must be stressed that the determination of the interval in which the parameter x is to be

varied, involves timeconsuming procedures which are more cumbersome than may first appear.
The following restrictive conditions, derived from (11), define, together with the obvious \x\ < R,
the ' accessible' intervals of x :

\x-(8IA5)Ai\<2, \üvQy\Vi\]/R2-x^-(X Aß2) A- (R2 A S2) - (U2 - 3) x | < 2 ßB

where
4 S2 (U2 - 3)2 + V\

Inspection of the last inequality shows that the domains of existence of phaseshifts solutions,
depend on the twofold ambiguity of the product sgn function Qv Qv.
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For each value of x, one has in general 26 32 sets of phaseshifts, corresponding
to 5 sgn functions ; furthermore the effective number of solutions might be different
in each case, depending on the possible manifold of solutions of Equation (21). It must
be said however that in practical cases the various restrictive conditions required by
the procedure outlined in Section (3) and (4) drastically reduce the number of solutions
mathematically compatible with the input data.

5. Numerical Calculation

A straightforward analogic determination of the phaseshifts is made possible
using the linkage system described in Figures 2 and 3. A program for this kind of
calculations, using digital computers, can be readily written, by following previous
considerations (Section 3 and 4).

i *

S >. \
*o [(U2-3)/2.-V2/2j

[u2-3,-V2]

o [u2.-v2]

Fig. 3

Linkage system for phaseshift analysis in the Lmax 2 approximation. Points signed by open
circles are fixed, according to the experimental ^4 ;v coefficients. The system is seen to have one

degree of freedom.

Phaseshift analyses are remarkably simplified, both in the Lmax 1, and Lmax 2

approximations, by using the following symmetry properties: the quantities U,, U2,

x, W(x), cos 2 ò2 j are symmetric, and V„ V2, y, sin 2 ò2J antisymmetric, against the
simultaneous reversal of all sgn functions. Such a specular symmetry reduces by half
the number of phaseshift solutions to be calculated. The linkage system, which introduces

into the phaseshift analysis the element of continuous movement, is a useful
device for preliminary calculation of those single channel reactions for which the
energy dependence of phaseshifts is not well known. In fact, the linkage system
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realizes the continuity prescriptions on the phaseshifts versus energy, which are
concealed by standard electronic programming. In particular, the use of the linkage
system, the degrees of freedom of which are established by the mathematical structure
of the cross section, might represent in some cases an additional criterion for testing
the reliability of the experimental data [see conditions (8) and (11)]. Of course, once
the general trend of the phaseshift behaviour is known, the electronic computer can
be used for a precise calculation, while the phaseshift stability against variation of the
data, within quoted experimental errors, is readily evaluated by small movements of
the analogic system.

6. Ambiguities

It may be useful to relate the well-known ambiguities in single channel reactions
to the sgn functions Q.

It is immediately established that the symmetry properties of cos ò2J and
antisymmetry properties of sin ò2j with respect to a symultaneous reversal of all sgn
functions, is equivalent to the obvious property that the cross section is invariant
with respect to the change of sign of all phaseshifts.

The P wave ambiguity, arising when D waves are absent, is brought about by
sign reversal of Q, (Q0 and Qv being fixed). It follows that the well-known relation
holds

ò\(Qt) - Ò\(Q+) ò\(Qr) - òl(Q,A (23)

Equation (23) is no longer valid when D waves are switched on. In the general case,
there still exists a D wave ambiguity, the nature of which is somewhat more complicated

than the well-known P ambiguity. This fact is brought about by the function
W(x), which does not possess definite symmetry properties under the reversal of one

sgn function only. It follows that each component of the D doublet is associated with
a different S and P wave set of phaseshifts.

For the sake of completeness, it should be stressed that the sgn function Q0 gives
rise to an 5 wave ambiguity. In the examples given below (Figures 2 and 4), this
ambiguity turns out to be eliminated, in the ^-proton scattering, because one of
the two solutions is forbidden by condition (20), and in the neutron-He4 scattering,
because one of the two solutions is physically unacceptable.

The S wave ambiguity is also implied in the Minami ambiguity9), according to
which the cross section is invariant with respect to the interchange of all phaseshifts
belonging to the same / and different parity. In the very special case, where all phase-
shifts with / > 3/2 are zero, it can be easily demonstrated that the Minami ambiguity
corresponds to changing Q+ into Qr, and viceversa.

As an example, Figures 2 and 4 show the properties of the mathematical
ambiguities, in a practical case of Lmax 1 [neutron-He4 scattering at 2.87 MeV8)] and
Lmax 2 analyses [7r+-proton scattering at 310 MeV10)] respectively. By inspection
of Figure 4, the Minami ambiguity is seen to be still connected with an S arm inversion.

I would like to thank Prof. P. Huber, E. Baumgartner and W. Haeberly for
stimulating discussions about this work. I am also indebted to Professor C. Villi,
for helpful suggestions.
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S. > "¦ • —

26

X
\.

^° ^-3|/2 -V2/2]

25'
1 /

25^

' [u2-3*-V2J 2S
o[uzi-V2]

FERMI

MINAMI

YANG

Fig. 4

jT-proton scattering at 310 MeV, analized in theLmax 2 approximation10), a) Only one S wave is
allowed for each of the three solutions, b) ' Fermi' and ' Yang' solutions show an inversion in P
arms only, and belong to slightly different values, since small D waves contributions are present,
c) It has to be stressed that a Minami-like ambiguity is here possible, without resorting to F

waves, owing to the smallness of the <5j- phaseshift ; of course the correspondence <52 L + (Fermi)

<52Xi (Minami) is only approximately satisfied, d) The 'Minami' solution, compared to the
'Fermi' one, shows an inversion in the S, P and D arms.
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