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On the Analyticity Properties of the Scattering Amplitude
in Relativistic Quantum Field Theory

by Klaus Hepp

Seminar für theoretische Physik, Eidgenössische Technische Hochschule, Zürich*)

(11.V.64)

Abstract. The well-known analyticity properties of the 2-particle scattering amplitude are
rigorously derived in the Wightman framework of a local relativistic field theory. No use is made
of the LSZ asymptotic condition and of implicit 'technical assumptions'.

§ 0. Introduction

Dispersion relations1) have brought a fruitful new approach to the physics of
strongly interacting particles. Since these relations are to a high degree model-
independent, much work has been done in proving the necessary analyticity properties
from a minimal set of mathematically well-defined postulates. The framework of
LSZ15) or Bogoliubov4) has usually been the starting point for these quite involved
investigations.

Recently a physically satisfying relativistic scattering theory has been given by
Haag8) and Ruelle16), which is based on the general set of axioms of Wightman21)
for a local relativistic quantum field theory. On the other hand there has been some
doubt6) as to whether a rigorous proof of dispersion relations is possible or not. The
aim of this investigation is to show that, if one-particle states are created from the
vacuum by Wightman fields and if certain mass-spectrum conditions are satisfied,
the well-known analyticity properties of the 2-particle scattering amplitude can be

rigorously proved. Therefore no further assumptions on the asymptotic behaviour of
matrix elements of the interacting fields15) or on the existence and regularity of
Green's functions (see 19)) are necessary.

Needless to say our considerations are mainly technical, which is also reflected in
the choice of a theory of only one kind of neutral scalar massive particles in self-
interaction. Although the main idea of the proof is known to many workers in the field,
it seemed desirable to fit this mosaic together, in order to clarify the interplay of
locality, relativistic invariance and mass-spectrum conditions leading to dispersion
relations in relativistic quantum field theory.

I am greatly indebted to many physicists in Zürich and Paris for stimulating
discussions, especially to Professors R. Jost and A. S. Wightman and to Drs.
M. Feoissart, J. Lascoux, and R. Stora. I further wish to thank Dr. L. Motchane
for extending to me his kind hospitality at the Institut des Hautes Etudes Scientifiques.

*) Present address: Institute for Advanced Study, Princeton.
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§ 1. Asymptotic Condition and Reduction Formulae

In this section we shall clarify the relation between the Haag-Ruelle asymptotic
condition and the LSZ reduction formulae for the 2-particle scattering amplitude.
For completeness we start by stating the general assumptions, which characterise
the theory of a neutral scalar field in the axiomatic framework of Wightman21).

(A) A neutral scalar field Afx) is a tempered operator-valued distribution17). For
all cp e S(i?4) the linear operators A fcp) / Afx) cpfx) dx are defined on a common
invariant dense linear manifold D in a Hilbert space §>. D and Afx) transform co-

variantly under a continuous unitary representation Ufa, A) of the inhomogeneous
Lorentz group i Ly.

Ufa, A) Afx)U-1fa,A) A(Ax + a), Ufa, A) D CD ¦ (1-1)

The spectrum of the energy-momentum operator J"1 is assumed to lie in the foreward
light-cone V+, except for a one-dimensional eigenspace spanned by the vacuum state
Q, corresponding to the eigenvalue 0. Q is cyclic with respect to the algebra generated
by {Afcp) : cp e <5(Ri)}. Finally the theory is local:

[Afx),Afy)} =0 for fx - y)2 < 0. (1.2)

In our investigation A fx) is to be the interpolating field for a relativistic scattering
theory of particles of mass m and spin 0. The most natural way is to postulate that
the one-particle states of the discrete irreducible representation [m, 0] of i L| are
generated by the application of A fx) to the vacuum, which we express by :

CO

(B) {Afx) Afy)\ ÌA+ fx - y) + i J dgf/i) A+ fx - y), (M > m) (1.3)

M

Let Afp) he the Fourier transform of Afx). We consider for /e S(.R4) and mp

j/p2 4- m2 the well-defined operator :

Aff,t) f dxAfx) f*fx,t)

ffx, t) (2 n) -5/2 f dp ffp) (^YZA9- ei{p° " a'v e ~i{p'x). (1.4)

Let DM ={p : fp.p) < M2}. Then if follows from (1.3) for/6 <S(DM) that Aff,t)ii 0

and that A* (f, t) Q is a one-particle state @f= \f) e§[mo] with a wave function of
the form:

/(*) f2n)-^2J-^- Jfp) e-^P*°-P-*\f(p) f(wp, p) e S(i?3). (1.5)

Under the assumptions (A) and (B) relativistic scattering states can be constructed,
as has been shown by Haag8) and Ruelle16) in a much more general version of the
following theorem :

Theorem 1.1: Under the assumptions (A), (B) let $ L4(*> (/,-, t)} be an arbitrary
polynomial in the Afft, t), A*(f, t),ft,fj e <BfDM). Then one has strong convergence
in § for t -> Az oo (ex out, in) :
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Rexs-lim<${A*\fi,t)}Q ®%. (1.6)

m a A
In particular s — lim nA* (fit t) Q — \fv f%) is an asymptotic w-particle state with

/—>± oo i l
wave functions (1.5) f{fp) =f{ fcop,p).

This theorem can be proved by following closely Ruelle16)11). Yet the use of the
local expressions A ff, t) instead of the quasi-local operators of Haag and Ruelle has
to be paid for by a more careful study of the asymptotic behaviour of the truncated

k

vacuum expectation values (TVEV) < YJ A^ff, <)>J for k > 3. This is contained in
i-l

the following :

Lemma 1.1: Under the assumption (A)

[i + \t\)w*-*><nAwv»t»i (i-?)
i-l

is bounded for all t, if /~ e S(iv4) for 1 < * < k, k > 3.

Proof: Using (1.4) the TVEV (1.7) can be written as

/ dHx...dHkd*px...d*pk {Af- x\, xx) ...Af- x°k, xk)yl x

f'xfx\, px) flfxl, pk) exp i f± fcopx t- pxxx) ± fcopkt-pkxk)), (1.8)

with/î e S(Ä4). From the asymptotic behaviour of <[A fxx) ...A fxk)}^ for large spacelike

separation of the arguments16)3), it follows that for any integer M > 0 there
exists an integer N N(M) > 0 such that

na + fOTm"nn(i + «i-4)2)MI2<a(-x\,*i)...Af-xi,xk)>0r (1.9)
i-l l-l j-1

is a bounded distribution in x°, £ x\+x — xß., 1 < i < k, 1 < j < 3,1 < / < k —1.
Q

According to17) (vol. II, p. 57) (1.9) can be represented as £ Dq Fq fx°x,... x°k,§x,... £k_x)
q-l

with functions Fq e Lœ fx13, x%,§x, §k_x) and monomials Dq in the derivatives
d/dx°, d/di[. After partial integrations one can therefore transform (1.8) into

jr f d*xx... d% FAx\,...xi,$x,... $k_x) nn (i + m-1 x
r-lJ l-l j-1

TI f dp, e± <PV ~* "tl flfxl Pi) (1.10)
i-l •>

with continuous bounded functions pr and with/' fx°, pt) e S(i?4). Then we can
majorize (1.8) by:

£cr fdx°1...dx°kdxkmax /J | f dp^fA, Pt) e±A°>»ë-Pt\l\ • (1.11)
r-l J x, ...Xk-, i-l •>

From the asymptotic behaviour of the solutions (1.5) of the Klein-Gordon
equation16)2), it follows that (1.11) is bounded for all t when multiplied by (1 + 111)3'2 (*"2),
k > 3. This proves theorem 1.1 as in 8), 16).

41 H. P. A. 37, 7/8 (1964)
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For a pure scattering theory of one kind of neutral scalar particles (see 16) for the
general case) it is reasonable to assume that the asymptotic states are dense in §,
that is :

(C) § &, ï{| h,., ft): m 0,l,.Z.eSW}, (1.12)

where L {...} denotes the closed linear hull of the vectors {|/1( _/**)} and 'ex' stands
for 'in' or 'out' (equivalent due to the TCP theorem). Then the following weak
convergence theorem can be proved :

Corollary 1.1: Under the assumptions (A), (B), (C) one has in the sense of weak

convergence in §> :

w - lim n A*(f{, t)Q=\fx,... /») (1.13)
t-> ± oo i 1

m n m Ä

w- hm nMfi, t) n^fgj, t)Q n Aj,u) &. ¦¦¦&)• a-14)
(-»¦-too t l ;" 1 t l

for U e S(Ä*), g, e 6(0,J with /<(p) />>,,p), £(p) £>,, p).

The proof of H. Araki 2) for local rings of observables can be immediately translated
into the Wightman framework9) using lemma 1.1 for the majorization of the higher
TVEV.

LetO Pj Dßhe the intersection of the domains of the closures B B** of all
Beiß

quasi-local operators Be*p (polynomials in the smeared-out fields). Then one can

prove the following version of the LSZ asymptotic condition15) :

Corollary 1.2: Under (A) and (B) one has

(a) \gx... gf) e D for non-overlapping wave-packets gt e T>fR3) (supp gt n supp g. <f>

for i 4= j).

(b) B \gx..Ag-) s -lim B fjA*fgi,t) ÛGD *)
t—>± OO î l

Oi {B, Hi -. - C)) 01 52 |â £*) for S, Blf Oa 6 $.

(c) s - lim AM ff, t) I gx.. Ag™ 4£ (/)!&... £ for/e S(0M) (and for/e S(Ä*)
t—>± oo

in the weak topology in §>ex

For m 0, 1 the proof follows immediately from theorem 1.1 and corollary 1.1.

All the reduction formulae necessary for the proof of the analyticity properties of the
2-particle scattering amplitude can be derived using only this information. For n > 1

and B e 'üß one uses the Schwarz inequality:

\\B ^ n A*fgiA) Ü\\2 <\\-A n A*fgut) Q\\\\B^ B ± n A*fgi,t) Q\\ (1.15)
t-l i-l i-l

*) One can choose e.g. gi(p) g,(p) ai f\lp2 A- m2-p°) with â; e 35«-e, 4-e», £>0
sufficiently small, /2 ti â(0) 1.
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For non-overlapping wave-packets {g\-} the first factor decreases stronger than any
power of (14- | t |)_1 for t -> 4- oo (see 9)), whilst the second factor increases only
polynomially in 11\, due to the temperedness of the Wightman distributions. Thisproves
the convergence of (b) and similarly of (c). One can see that on the smooth non-overlapping

states | gx... gfff) the mapping cp -> A (cp) \gx ¦¦¦ g%) is a vector-valued
tempered distribution. Finally corollary 1.2 can be extended to the general Haag-
Ruelle scattering theory *).

Under the assumptions (A), (B), (C) the Fock spaces §,„ and §„„, are related by
a unitary S-matrix, which is defined in terms of its matrix elements :

Smn ffÌ, ¦ ¦ ¦ fi ìl,--- gn) ffl, • ¦ • C | 11. • - ¦ ÌÌ) ¦ (1-16)

The tempered distributions
m-\-n

Smn fPl, ---Pm,- Pm+L ••- ~ Pm+n) 77 do(Pi) Ô(PÏ ~ m*) <"'out (Pi) ¦ ¦ ¦ «*„ (Pm+n) > 0

(1.17)

are Ly and TCP-invariant, symmetric in the {px, ...pm} and {pm+x, pm+„} and
m m+n

have their supports on the mass sheU {p2 m2, p% > 0,1 < i < m A- n, 2JPt H Pj}
i-l /—m+1

as well as the scattering amplitudes Tmn, defined in (1.16) by S 1 + i T.
The aim of our investigation is to derive analyticity properties of the 2-particle

scattering amplitude T22. For that purpose we express T22 and its 'imaginary part'
by certain matrix elements of retarded or time-ordered products :

R(x, xx, ...xn)= fi)"2JOfx - xm) 6fxp{n_1} - xm) [[Afx), Afxp(1))l... A(xm)]
peyn

Tfxx, ...X„) =£6(XP(1) - XP(2)) ¦¦¦ 6(XP(n-l) - Xp(n)) A(XPU)) ¦¦¦A(XP{«)) ¦ (1-18)
p 6 yn

R and T are well-defined for C°°-functions 6 with supp (6 — 0O) compact (0O: Heaviside
step function). Let a™bfp) be the 0M(i?4)-function:

òmab fp) =[2n iff, - cop) 2 cop]'1 {e^o-»p)» _ ,-^o-^)*}, (1.19)

which converges to 00(p) afp2 — m2) for a, b tending independently to oo. In this
notation one can prove the following 'reduction formula'15)4) :

Theorem 1.2: Under the assumptions (A) and (B) one has in the strong topology
iorpl, q\<M2:

TiifP-L.Pi, -qi,-q2)
2 n lim lim Ó» (fc)* «5» (fc) [fp\ - m2) fq\ - m2) <f2 | Rffx, - qx) \ fc>] (1.20)

a,b—*-oo c,d—+co

independently of the order of lim and lim. If (C) holds in addition, then (1.20) is
true for all fc, fc. a>b-*°° c>d-*°°

*) Professor R. Haag has kindly informed me that results similar to those in corollajy 1.2.

have been obtained by him and D. W. Robinson.
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Proof: We choose fx, ~gx e <S(DM) (e S(i?4), if (C) holds), f2,g2 e QfR3), and a

C°°-function 0 with supp fd — 60) compact. Then one proves that for fixed s the limit

lim / dx dy f\(x, s) gxfy, t) dfx -y)Ô2\A fx) A (y) | g2 > (1.21)
t—*- - OO

is equal to (gxfp) — gxfcop, p) and using theorem 1.1 or corollary 1.1) :

lim / dx dy /*(*, s) gxfy, t) </2 | Afx) Afy) | g2>
t —*¦ — OO

lim fA*ffx, s) 0?2, A*fgx, t) 0k) (A*ffx, s) 0r2, 0fj) (1.22)
t—> - oo

This follows from the fact that for supp (0 — 0O) compact there exists an R > 0, such

that the tempered distribution (1 — dfx — y)) < f2 \ A fx) A fy) \ g2> has support in
GR {fx,y) 6 R8, y0>x0-R}. Therefore (1.21) is equal to (1.22) in the limit
t -t>— oo, if for fixed s

lim f*xfs,x)gxft,y)=0 (1.23)
/—>¦ - oo

in the topology of <5(GR). For any monomial tyxfy) in they,- and ty2fdldy) in the d/dy{
one has

$i fy) % (^r) gify, t)

p*)-*/**-™ [*x (- .--£¦) w- ip)hff) (-^) ei(p"-mp)t]

m r
27^ / dp e-«*.* +A°-'pY ^ (fc (1.24)
t>-o J

with ghlle S(Ä4) and M M(tyx). Therefore:

\yo-t\L\y1(y)%z(~)gi(y,t)\< (1.25)

M r /i r M

< EI ' I" I [*P e-^y^o-pY U \ g (fc i < 2; ^ IZ•"

for all L and £. Finally one has for fixed s and K,LA M and for sufficiently large \t\:

sup 1 yxfx, y) qS2 U-, -A) /* (s, x) gx ft, y) \ < (1.26)
y0>x0-R

< sup c\t\Mf\x0-s\KA-iA1f\yo-t\L + 1A1-^°,
y0>*0-R

for £ —*¦ —oo. This proves (1.23).
Applying theorem 1.1 or corollary 1.1 again to (1.21) one obtains:

lim lim f dx dy f*fx, s) gxfy, t) dfx - y) <f2 | Afx) Afy) \ g2}
5~> ± OO t —> — OO

<}Jj»\gig2in>- A-27)
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By the same argument one can show that :

lim / dx dy /*(s, x) gxfy, t) dfx - y) </2 | Afx) Afy) | g2> 0
t-

lim - lim lim / dx dy f\fx, s) gxfy, t) dfx - y) | </2 | Afy) Afx) | g2>
S —* + CO s —*¦ — co t—*- ± co

Collecting these terms one obtains in momentum space :

< /i /r I ii St > - < Â />' I ii ÎT > 2 tt lim lim
a,6—>oo c,d—>oo

X / # <Z? /* (fc gife) «5» (fc* OT, fq) [fp2 - m2) fq2 - m2) </, | Ä(fc - ç) | £2> (1.29)

In (1.29) a, b and c, <i, respectively, tend independently to oo and the order of lim
a, b—>oo

and lim is immaterial. The majorizations leading to (1.27) and (1.28) can be carried
c, d—>oo

through uniformly in fxe Bx, gxe B[, f2e B2, g2e B'2 for bounded sets Bx, B'XC

<ZfDM), B2, B^cQfR3). As a consequence of the nuclear theorem7) the limit (1.29)
equally holds for any W e ZfRs x DM x 0M). Since weak and strong sequential Hmits
are identical in the topology of S'17), theorem 1.2 is proved.

Remark: One sees that the reduction formula (1.20) can be derived for^, q\ < M2
without using the postulate (C) of asymptotic completeness. In such a framework T22
is again defined by (1.16) but might lose its physical significance as scattering
amplitude. For the proof of dispersion relations for T22 one has then to make assumptions

on the mass spectrum of the theory (see postulate (D) in section 2). Another
reduction formula will be necessary for the proof of the analyticity properties of T22 :

Theorem 1.3: Under (A), (B) one has (independently of the order of Hm and
lim) ioxp\,p\<M2: "'^00

c,d—>oo

^22 (Pi, P2, - fc. - fc)

2 n lim lim %h (fc)* Ó» (fc)* [fp\ - m2) {p\ - m2) < £(fc, fc) | fc q2" >]
a, b —> oo c, d —> oo

and for p\, p\, q\, q\ < M2 (with a,b,c,d-><x> independently) : 7

(Pi - ™?) (fc' - ™2) <P2 \Äfpx)Äf-qx) | q2>

2n lim ÒZ(fc)* c^(fc) [ffl - m2) (fc2 - m2) fq\ - m2) fq% - m2) (1.31)
a, b, c, d —> oo

x <£(fc,fc|£(-fc,-?2)>].

Proof: One chooses /1( /2 6 S(0M) with/(co^p) /(p). Then theorem 1.1 gives
forali t: „|/i/,Sr>= Hm 4*(/i,«M*(/..<)fl- (1.32)

s—>± oo

Furthermore one has as in theorem 1.2 for fixed s:

/4*(/j, s) 4*(/2, if) ß lim / dx dy fxfx, s) /*(y, t) 0(% - y) Afx) Afy) Q (1.33)
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for any C°°-function d with supp (0 — 0O) compact. Since the other terms in (1.30) and
(1.31) can be treated in the same way, theorem 1.3 is proved in the weak and therefore
in the strong topology.

We finally remark that T22 can be expressed (essentially as in 15)) by the VEV of a
4-fold retarded or time-ordered product (1.18) of Afx).

§ 2. Integral Representations

The reduction formulae in section 1 gave a large class of 'off-shell' extrapolations
for the 2-particle scattering amplitude T22 and for the 1-particle matrix element

(Pi I JfPi) jf~ fc) I fc> of the currents jfp) fp2 — m2) Afp). All these retarded
expressions derived from the 4-point function <,A fxx) ...A fxt) >0 turned out to be

equivalent on the mass shell.
In this section we shall construct a class of 'sharp' admissible extrapolations, which

are tempered i L^-invariant distributions with the necessary support properties in
x- and /-space, for the proof of the analyticity properties of T22. The construction is
based on two lemmas on invariant distributions.

Let fi > 0 and V"+ s {/ : fc > ]/p2 + pt2}. Let ê'fV% X Rin; L\) be the subspace
of Lt-invariant tempered distributions Te &fRi[n+1)) with supp T C Vi\_xRin.
Let [fi2, oo> be the interval pt2 < t < oo, let 0+ he the proper real rotation group in
3 dimensions and <S'f[fi2, oo>xi?4"; 0+) he the subspace of tempered distributions

Tft, q°x, <Zi> • • • ?«. Qn) wlth supp T C [ß2, oo> x Rin, which are 0+-invariant in qx, ...qn.
Then one has:

Lemma 2.1: S' fVß+ x Rin;L\) and è'fffi2, oo> x Rin;OA are (topologically)
isomorphic.

Proof: For any p e V+ let Lfp) he the pure Lorentz transformation into the
standard rest-frame of p corresponding to the Afp) e 5 L (2, C) (ff;: Pauli matrices) :

A(/) [2l/(fcfc~ (}/(fcfc" + /o)]"1 { (]/(fc~fc + fc) a0-pa}. (2.1)

Then for any fi > fi > 0 and cp e <o(V+ x Rin) the function

(M cp) ft, fc, fc) / dp dfp, p) - t) cpfp, O-1 (/) fc, L-Mfc fc)) (2.2)

lies in Sf(.fi2, oo> x i?4") (see e.g. 7)). One can further prove that the linear mapping

M: (5fV^ x i?4") -> <Zf(pt2, oo> x i?4") (2.3)

is onto and continuous. The homomorphism M defines then an isomorphism M'
between S'(PZ-Xiv4"; L\) and ê'f[fi2, oo>XÄ4"; 0+) by

<[T,cpy <:M'T,Mcpy. (2.4)

In this sense T e k'fV"h x Rin; 0|) is given by its value' ree' (|>2,0 X i?4"; 0+) in
the standard rest-frame of p :

np, Pi,- Pn) r(fP, P), Lfp) fc, Lfp) fc) 0o(fc (2.5)
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a formal notation, which will be convenient in the sequel.
Let S'(i?6; 0+) be the subspace of tempered distributions Ffqx, q2), which are

0+-invariant in qx, q2. Let D he the closed convex set

{fa, b, c)eRs:a,c>0,ac> b2}

Then the following lemma holds :

Lemma 2.2: The spaces <S'fRe; OA and S'(O) are (topologically) isomorphic.
Proof: Let dR be the invariant Haar measure of 0+ normahzed to J dR 1.

Then the mapping 0+

Nx: cpfx, y) -~> / dR tpfR-1 x, R-1 y) (2.6)

is a continuous projection from QfR6) onto the subspace ©(i?6; 0+) of the 0+-imp.riant
testing functions (cpfx, y) tpfS-1 x, S-1 y) for all S G 0+). As in 18) one can see that
the mapping

N2: rpfa, b, c) ^vfx2, xy,y2) (2.7)

gives a topological isomorphism between S(i?6; 0+) and S(O). For N2 is evidently
one-to-one, linear and continuous. Furthermore to every cp e S(i?6; 0+) there exists
an in O continuous function tp such that tpfx2, x y, y2) cpfx, y). By evaluation of the
derivatives of xp in special 0+-frames for cp one can show by complete induction that
tpeSfD) and that Nr'1 is continuous.Setting N AT"1 o Nx the isomorphism N'

o

between <Z'fR6; OA and S'(O) is given by duaHty:

<fT,cp> {N' T,Ncp}. (2.8)

If Tfx, y) is a 0+-invariant tempered continuous function, then there exists in O a

tempered continuous function T with Tfx2, xy, y2) Tfx, y). For cpeQfR6) and
cp Nepe <3(ö) one has

(T, cp} 2 n2 J Tfx2, x y, y2) cpfx2, x y, y2) dx2 dx y dy2 (2.9)

and therefore N' T 2 m2 T e S'(O). In the sense of (2.8) we shall sometimes use the
functional notation (2.9) in section 3.

Let I: R12 -> it"6 be the mapping into the LÎ-invariants:

I- (Px, P» Ps) e #12 -> ((Pv Pi), ¦ ¦ ¦ fPs, P3)) e R* ¦ (2.10)

Let G C R6 he the closed convex /-image of V+ X Rs. Then by combining lemma2.1
and 2.2 and using the nuclear theorem of L. Schwartz7) one obtains:

o o
Lemma 2.3: The spaces <5'fVt\. x Rs; Ly and S'(G) are (topologically) isomorphic.
In trying to generalize lemma 2.3 to more than 3 four-vectors one encounters the

difficulty that the image of V\ X Rin, n > 3, in the space of the LÌ -invariants is an

algebraic variety V C Rm (m (n + 1) fn A- 2)/2 4- \\ with singularities, on
which no reasonable spaces of testing functions have yet been defined. For L^-invariant
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continuous functions Tfp0, ...pn) with supp T Q ITJ-Xiv"4", however, there exists a

continuous function T on V with J(fc, fc) 7"((fc, fc), (fc, fc)), a frequently-
used result in relativistic scattering theory.

Lemma 2.1 justifies the study of Lorentz invariant distributions in special
Lorentz frames, if certain support properties are satisfied. Furthermore the construction

of a sharp extrapolation for 7"22 or for <fc | jfpx) j(— qx) | q2} in the Breit- or centre-
of-mass system can be i L_j_-invariantly extended into an arbitrary Lorentz frame.
This we shall illustrate by constructing and discussing the sharp 2-fold retarded
commutator <i0(fc, fc) R0(- fc, - fc)>0.

Let E0 he the projection on the vacuum and Ex the projector on the 1-particle
space §[*,()]¦ Then in order to derive analyticity properties of the 2-particle scattering
amplitude we have to make some assumptions on the mass spectrum of the theory.
For convenience we postulate for the spectral measure EfA) jA dEfp) corresponding
to Ufa, 1) / ?<*•") dEfp)11):

(D) (1 - E0 - Ex) EfA) 0 for A n {fc > |/4 m2 + p2} cf>,

(D) follows from (C) for an asymptotic complete theory of one kind of [m, 0]-particles.
More general mass-spectra are treated in the Hterature a).

The 2-fold commutator <L4(fc) Afp2)] E^ [A(— qx) A(— fc)]>0 has support in
{Pi + Pi e v+) and is of the form:

ôfPi + fc - fc - fc) d0fpx A- Pe

Too((/i + /2)a, 0(fc + fc)J>^, Offc + fc)^5-). (2.11)

as a consequence of translation invariance and of Lemma 2.1. The tempered
distribution r00 fs, k2, fc) is 0+-invariant in k2, k3 and has its support in {s > m2, \ £° | >
|/V»2 A- fe? — 1/2 )/s, t 1, 2}. Since the partial Fourier transform t00 (s, f2, |3) vanishes
for (f2, |2) < 0 or (f3, |3) < 0, t00 fs, k2, k3) can be extended6)22) to a rotation-symmetric

tempered solution t00 fs, K2, K9) of the 6-dimensional wave equation in K2, Ks

With the same methods as for a simple 6-dimensional wave-equation (see e.g.20))
it can be shown that the Cauchy problem has a unique solution in terms of the Cauchy
data on the surface {k°2 k\ — 0}. This gives a 2-fold Jost-Lehmann-Dyson (JLD)
representation12)5)22) for r00(s, k2, k3), which is (because of the symmetry of supp t00)

of the form :

Too(s. K h) f du2 du3 dx\ dx\ efk°2) efk°3) ó((^)2 - (fe2 - u2)2 - x\)

x òffkl)2 - (fe3 - us)2 - k\) [0xx A- k\02X A- k°3 012 A- k\ k°3022] (2.12)

The integral (2.12) is to be understood in the sense that for cp fk2, k3) e S(iî8)

/ dk, dk3 cp(k2, fc) efk\) efki) ôffk°2)2 - fk2 - u2)2 - x\) òffkl)2 - fk3 - u3)2 - k2)

is a testing function in the variables u2, u3, x\, x\. The 0^ 0{j (u2, u3, x\, >?3, s)

(being derivatives of the initial values of t00, t00, ko, r00, ko, t00, ko, ko22)) are
'-"2.
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tempered distributions, in u2, u3 0+-invariant, which have for fixed s > m2 their
support in

Gfs) {u2 < A
t x. > max jo, »-(-£-- uffß}, i, j =1,2}. (2.13)

In the standard construction1) of a sharp retarded commutator <i?(/1, fc) Efr Rf— fc,
— fc)>0 one studies the integral

rfs, fc, fc) / du2 du3 dx\ dx\ x [0X1 A- k\ 021 A- k\ 0X2 4- k\ k\ 022)] (2.14)

with the kernel ^ defined by :

„ fcfc\2 ((k^-(k2-U2)yXl0)Na{{kl^-(k3-U^ + Klo)NS
% Un] ((ky-(k2-u^-xl)((k^-(k3-usf-xl)(}<l + xl0)N,(xl + >(l0)Na y I

(2.14) converges in the weak sense, for x\0, «30 > 0 and sufficiently large integers
AZ N3 > 0. uniformly for aU (fc, fc) e Dfs):

Dfs) {fk°)2 * (fe, - u,)2 + xl i 2,3 V fu2, u3, x\, x\) e Gfs)}, (2.16)

rfs, k2, k3) is 0+-invariant and holomorphic in (fc, fc) G Dfs) and a tempered measure
in s > m2 u). Z)(s) contains for all s > w2 the direct product of the foreward and
backward tubes fX+ u ZA X (37 U 37). t(s, fc, fc) fulfills due to the temperedness of
the 0{J the growth condition in fX+ u 37) X (37 u 37) (see 7)20)), which guarantees the
existence of the boundary values :

rrrfs, fc, fc) lim rfs, fc, fc) (2.17)
aa Imk2, /«^el7, ->0

as 0+-invariant tempered distributions. From (2.14) one proves the following support
properties of the partial Fourier transform rrr fs, Ç2, |3) :

aa

~rr Tra — Xar ^aa T00 '

r„fs, fc, £3) 0 for (fc, fc) < 0 or (fc, £3) < 0 (2.18)

and ïrr (s, |2, £,) 0, if |° or |° < 0 for (r, r) ; - |° or 1° < 0 for fa, r) ; f° or - |» < 0
aa

for (r, a) ; 1° or f° > 0 for fa, a).
Therefore the i ZZ-invariant tempered distribution

<Äo(fc, fc) OóL i0(- fc, - ?2)>0 i2 «3(fc 4- fc - fc - fc) 0»(fc 4- /2)

x Tr,((fc + /2)2, I(fc + fc) Zi^, I(#1 + p2) AiyAAj (2.19)

is a sharp 2-fold retarded commutator, which can be used for the off-shell extrapola-
tion of <fc I /(fc) /(- fc) I q2y <fc \jfpx) Efr ff- fc) | fc> in (1.31).

_

rjs, k2, k3) is unique up to 0+-invariant tempered distributions djfs, k2, fc),
* 2, 3, which are polynomials in fc i 2, 3, and which result e.g. from a different
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choice of the subtractions in (2.15). In the reduction formula (1.31) this ambiguity does

not contribute to

(Pi - ™2) (Pt - ™2) (q\ - ™2) (q\ - m2) 0o(fc + fc)

x Trr((fc 4- fc)2, 0(fc + fc) *^fi-, 0(fc + fc) Ji^S-)

By (2.18) the latter distribution differs from any sharp retarded commutator

<r( fPi + P2)2, LfPi + Pè -2^-, LfPx + Pè -^l2-) 00 (Pi + Pè

constructed as above from

Wi) hò\ Efrm- fc) ff- fc)]>o

only by trivial terms of similar structure. For the discussion of the analyticity
properties of the sharp off-shell extrapolations one has therefore only to study r'rr,
where the support of the spectral distributions in (2.14) is due to (D) determined by
the mass 2 m of the lowest 2-particle state.

Sometimes it is convenient to treat the 'pole term' in <i?0 (fc.fc) Oo" O0 (— fc, — fc)>o
separately. Since Ex is of the form :

Ei =JacAA Ia« (p) Q) {a** (p) QI (2 -20

<i?0(fc, p2) Ex R0f— fc, — fc)>o leads to a product of vertex functions

/ dp 0o(fc off2 - m2) <0 | R0fpx, fc) | fc </ | R0{- fc, - fc) | 0>

Then the continuum contribution

<Ô0(fc, p2) E2 R0(- fc, - fc)>0 (£2 1 - E0 - Ex)

starts from s > 4 m2.

Executing the same standard construction for the other cases in the Breit- or
centre-of-mass system, one obtains

Theorem 2.1 : Sharp retarded commutators (RC) can be defined in the form*):

<P2 | O0(fc, - fc) [ fc> i <5(fc 4- fc - fc - fc) 0„(fc) àfpl - m2) 0o(fc) òfq\ - m2)

X Tlr(0(fc + fc) hzh. Lfp2 A- fc) -^) (2.21a)

<O0(fc, /2) | fc qt> i à&i + P2~qi- fc) Ö0(fc) òfq\ - m2) 0o(fc) òfq\ - m2)

X T2r(L(fc + fc) ^A t L(qi + q2) «iZiLj (2.21b)

*) The space-part of q 6 -R4 is denoted here by q.
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<Ò0(fc, Pi) Ex R0f- fc, - fc)>0 i2 <5(fc 4- fc - fc - fc) 0o(fc + Pi)

x o((fc 4- fc)2 - m2) r3rfLfpx + fc) h^Èìj r4r(fcfc + /2) -^) (2.21c)

<Ò0(/i, /2) 02 Rf- fc, - fc)>0 i2 ôfpx + p2-q1- fc) 0„(fc + Pi)

x r2r((fc + fc)2, I(fc -f- fc) ZzA
; jr ^ + ^g Jiz*.) (2.2ld)

Hererlr(J, co),T2r(fc, fe3),T3r(fc), t4r(fc) and r2r(s, fc, fc) are 0+-invariant tempered
distributions, boundary values from X+ or î+x37 of weakly convergent integral
representations of the type (2.14), which are derived from the JLD-representations
of the corresponding commutator matrix-elements.

Although the 'sharp' RC (2.21) are not of the class considered in section 1, it is

easy to see that theorem 1.2 and 1.3 also hold for them, the difference between a

'sharp' and a 'smooth' RC being a tempered distribution, which does not contribute
in (1.20), (1.30), (1.31), by an argument like (1.23).

We conclude this section with a remark on a doubt expressed recently as to the
validity of the proof of dispersion relations6). It follows directly from the temperedness
of the 0'ij in (2.14) that for a sufficiently large M > 0 the integral

00

j as t22 (s k.2, ks) 12 22\
(s'-s)M+l

converges uniformly for all complex s ^ [4 m2, oo> and all (fc, fc) mapped by (3.9) into
the compact set (3.10), with M independent of s and e. For, it is seenby a tedious, but
straightforward majorization that for any choice of N2, N3 > 0 and x220, x30 > 0 in
(2.15) the function:

v (Aj? »A2)2- (k2-U2)* + 40)Ns ((£0)2- (fc3-U3)2 + tt§0p3
**•*• \2n) {{k^-(k2-u^-xl)((k^-(k3-us)^-x2) 7- >

is for all (fc, fc) e (3.10) a multiplier e 0M in a small neighbourhood of the support of
the tempered distributions 0i}. Since in the (formal) integral:

no

f ds' dx2 dyc^

(s'-s)M+l J ^'-S)M+l{?(2 + xi)N,(>c2 + x20)N,
4 ma

xfdu2du3 %Nt N3 {0U + k\ 021 A- k\ 0'X2 A- k\ k\ 022), (2.24)

one has u\, u\ < s/4 in supp 0'ijt only the polynomial growth in s of the inner integral
will be affected by changing the powers N2, N3 > 0. Since the 0'ij Xn,n, increase

only polynomially in x\, x\, the left-hand side of (2.24) will converge uniformly for
sufficiently large N2, N3 > 0 and M M(A72, N3) > 0.

§ 3. Analyticity on the Mass Shell

In this section the off-shell extrapolations of the 2-particle scattering ampHtude
022 by sharp retarded commutators will be used to derive analyticity properties of T22
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on the mass shell. The investigation is scarcely original and will be centered around
the question as to how the classical results of dispersion theory1) can be rigorously
proved from the general postulates (A), (B), and (D) without making additional
'technical assumptions'.

The behaviour of 022 in the momentum transfer t (fc — fc)2 can be easily obtained
by the well-known argument of Lehmann13). Combining the results of theorems 1.3
and 2.1 one gets for T22 the distribution identity (for p\, p\ < 4 m2) :

T2ifPi, Pi, - fc, - fc) 2 n i <S(fc + fc - fc - fc) 0o(fc) %2 - m2) 0o(fc) òfq\ - m2)

x lim lim OZ (fc)* ÔZ (fc)*
a, b—>oo c,d—*x>

[(fc2 - ^2) fp22 - m2) r2r (0(fc + fc) hZÈl, L(3l + q2) IlZ*l)] (3.1)X

The distribution

(P\ - m2) (pt - m2) r2r (o(fc + fc) ^A, Lfqx + fc)Pi-Pi! T tr, I „ \ llZlA

can be replaced (neglecting an 0+-invariant distribution, which is a polynomial in
0(fc 4- fc) ((fc — fc)/2) by a retarded commutator

4 (o(fc + fc) V^, o(fc + fc) -^)
of the currents, defined by an integral representation xZffc, fe3) Hm r2fk2, fe3) :

Im k3 e F+ -> 0

7/t m _ / i \ f dAA dx* 0'A, x2- fe3) ((«- h)*+^)^ lo^r2{Ki, "s) - { 2 n J ((u_ki)*_Kz) (X*+X2)N ¦ Vó-Z>

Now, the support of the JLD-spectral distribution 0' of the commutator fü, [/(fc)
/(fc)] | fc fc") is such that T2(fc, fe3) (and therefore r'2r fk2, k3)) is for fixed fe3 analytic
in fc in a neighbourhood of the mass shell {k\ 0, fe2 fe2}13). Thus in the limit
a, b -> oo, c, d -> oo (3.1) is just the product of 0o(fc) òfp\ — m2) 0o(fc) òfp\ — m2)

with fp\ — m2) fp2 — m2) r2r, which is a real-analytic function in the critical variables
essentially given by (3.2).

T2(fc, fe3) is for real fc, fe3 a tempered 0+-invariant distribution and thus by
lemma 2.2 a distribution in the invariants k2, fe2, fe2 fe3, fe2. The well-defined restriction
to the mass shell is then a tempered distribution in s (fc 4- fc)2 4 m2 A- 4 fe3 and

t=fpx-qx)2 2fk2k3-k23).
For fei 4= 0 (to be understood in the weak sense, i. e. integrated over a testing

function #(fe3) with sufficiently small support) the only dependence of the 0+-invariant
distribution T2(fc, fe3) on fe2 fe3 can be brought into the kernel of (3.2) by taking the
mean over the rotation group around fe3. In this way it can be shown13) that on the
mass shell T2(fc, fe3) is, for fixed s > 4 m2, holomorphic in t in the small Lehmann
ellipse :

Ex(s) {\ t \ A- \ t A- s - 4 m2 \ < Us - 4 m2)2 + ZZZ (s _ 4 mz)\ll2\. (3.3)
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The same holds for the reduced 2-particle scattering amplitude, which is defined by
lim [ffkl)2 - k\ Ar fe2)2 - 4 fk\)2 fm2 A- fe2)] r2r(fc, *,) :

Theorem 3.1 : Under the assumptions (A), (B), (D) the 2-particle scattering
amplitude is of the form :

022(fc, fc, - fc, - fc) <5(fc + fc - fc - fc) 0o(fc) àfp\ - m2) 0o(fc) ôfp22 - m2)

X 0o(fc) àfq\ - m2) 0o(fc) ôfq\ - m2) T22ffpx + fc)2, (fc - fc)2) (3.4)

The reduced scattering amplitude T22fs, t) is a tempered distribution in the physical
domain {fs, t) : s > 4 m2, 2 m2 — s/2 < t < 0}, which has for fixed s > 4 m2 an
analytic continuation in t e Exfs).

Next we discuss the behaviour of T22fs, t) for fixed momentum transfer t in the
centre-of-mass energy s, following closely the classical idea of Bogoliubov4). By
theorem 1.2 and 2.1 one can use the following sharp off-shell extrapolation for T22:

T2ifPi, Pi, - fc, -q2)=2ni <5(fc 4- fc - fc - fc) 0o(fc) afp\ - m2) 0o(fc) %2 - m2)

x lim lim Ofc)* ÔZ(fc)
a, ô—»oo c,^—*-oo

x [(^2 - ™2) (fc2 - m2) rlr(l(fc 4- fc) *=*, L(fc + fc) A+*l)], (3.5)

rlr(A, co) is defined as the limit, Im co 6 V+ -> 0, of

The distribution [(co2 — w2 — 42)2 — 4 (ft) J)2] rlr (J, eu) is, up to a polynomial in co,

identical with the boundary value of a r'x(â, m), defined as in (3.6) with spectral
distributions cplfu, x2, A) corresponding to the commutator of the currents:

<Pi [ UfPi) ïf- fc)] I fc> <5(fc + fc - fc - fc) 0o(fc) off2, - m2) 0o(fc) Òfq\ - m2)

x r;0(L(fc 4- fc) hz*L>L(p2 + fc) ifcp.) (3.7)

where

r'xofA, ft.) / du dx2 e(co0) òfco20 - (ft) - u)2 - x2) { ^ + o>0 <p2}- (3.8)

rx(A, co) is, for fixed A, holomorphic in the domain DxfA) {w : ft)2 4= (ft) - u)2 4- x2

V (u,x2) eG1(/l)}withG1(^)= {(w,«2) : u2<w2+ d2,*>max{0,2m-)/w24- d2- u2}}.
Dx(4) contains 3;+u X_ and real co with |eo0| <)/4m2 A- O)2 — ]fm2 A-A2, except for

'pole terms' singular at | œ0 | )Aw2 4- ft)2 - [/w2 4- 42. The domain of holomorphy
Dx(4) is well known6), and one can see that no conclusive analyticity properties of
T22fs, t) can be proved using only the information contained in (3.5).

Following the argument of Bogoliubov et al.4) we shall therefore construct an
analytic continuation of ffco2 - m2 — A2)2 — 4 (ft) A)2) rxfA, m) by a Cauchy integral
representation for 'virtual masses'. The commutator (3.7) will appear in the integrand,
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and we shall use for (3.7) the far-reaching information contained in the reduction
formula (1.31) with a sharp retarded commutator (2.19).

fp\ - m2) fp\ - m2) (fc2 - m2) fq\ - m2) <i?0(fc, fc) E$ R0f- fc, - fc)>0

is the boundary value of an analytic function r'fs, fc, fc), which is, due to its 0+-
invariance, a holomorphic function r'10) in the invariants k2, k\, fe2, fe2 fe3, fe2. These
variables are for s > 0 biholomorphically related to the Lorentz invariants :

^-^z + ^-fe2 z,=Pi (^-k°X *P; (rrr + kl) -K Z2 f2=\y--kl) -k2,

H - fc2 - (£ + 4 - fe2 ,4 q\ - \% - kl)* - k\ (3.9)v3 * ï2 y 2 3/ 3

zh t=fk\- k\)2 - (fe2 - fe3)2

oo

The analysis of the domain of analyticity (~| Dfs) O Dfm2) of t' r'fs, zx, ...zA.
s 4m2

shows 4), 13), 1), that r' is for s m2, s > 4 m2 holomorphic in zx, z5 from:

\zx - C2 | < ô, | z2 - m2 | < ô, \z3 - C2 | < ô,

|z4 - m2 | < Ó, - 8 m2 A- e < Re z6 < 0, ] Im zs | < y, (3.10)

with (5 ôfe) > 0 for ali e > 0 and 3 m2 < C2 < w2.

The physical values of pl, p\, q2x, q\, t are for — 8 m2 < t < 0 contained in (3.10).
The same applies to

(pi _ m2) (p2 _ W2) (?2 _ m2) (?2 _ w2) <^o(_ ?i> #i) £X fl0(fc, _ ?a)>o

which is given by t' (m, z1; z6), where u s A- t — fp2x + p22 A- q\ A- q22). Using this
one sees that in the reduction formula (1.31) the limit Hm ò™bfp2)* Hm ö™dfq2) leads

a,6—*oo c,d—*-oo

to the product of the ^-distributions 0o(fc) òfp\ — m2) d0fq2) òfq\ — m2) with the
functions r', which are again regular in the critical variables.

In order to insert the reduction formula (1.31) in (3.7), we compute the invariants
(3.9) in the variables A L(q2 + fc) (fc — fc)/2 and co L (fc 4- fc) (fc 4- fc)/2 of
the Breit-system :

p2x,ql co2 ±2 0) A - A2; t - 4 A2; s, u m2 + A2 4- «j2 ±2 ft>0 |/w2 4- A2. (3.11)

Combining (1.31), (2.19) and (3.11) one obtains the important identity:

r'lafA, co) =2 n {r'fs, fc2, w2, ?2, m2, t) - A fu, fc2, m2, q2x m2, t)} (3.12)

for real A, co satisfying A2 < 2 m2, co2 4- ft) 4 — 42 < m2 A- <5. It follows from the

regularity properties of r' in (3.10) that r'xofA, co) is a measure in co0 and real-analytic
in co2, ft) /1, 42 in the above domain.

For sufficiently large M and for real co2, ft) A, A2 with A2 < 2 w — e, co2 Az

2 ft) A — A2 < m2 4- ôfe), the oj^-integral of the measure Zo^o- ft)2, ft) 4, 42) over the
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testing function fco'0 — co0) ~(M+1) exists for all Im co0 4= 0 and e > 0. Using (3.12) and
changing variables one obtains :

+ 0O

T*K CO2, 0)A,A2)^^ dœlf[lya>>a,A,A*)
v ° ' 2ni J (co0-co0)M+l

-OO
CO

-iM\ f ds(2)Jm2 + A2)M r'fs,co2+ 20) A- A2,m2oA-20) A - A2,m2,-4A2)
m*

x {(s - w2 - m2 - A2 - 2 w0 )/m2 A- A2)-{M+V

4- (- 1)M (s - co2 - m2 - A2 A- 2 co0 ]jm2 + A2)-lM+» }. (3.13)

According to section 2 the right-hand side of (3.13) converges for sufficiently large M
also for complex values of co2, ft) A. Therefore rM fco0, co2, ft) A, A2) is for 0 < A2 < 2 m2

a C°°-function in A2, which is for fixed A2 holomorphic in ft>0, co2, ft) A in a domain,
which contains the points :

| Im w2 | < 2 )/m2 4- A2 | Im co0 |

| eo2 ± 2 ft) A - A2 - f2 | < OfA) for -3»!<?<»2. (3.14)

In order to relate rMfcog,co2, ft) A, A2) to an analytic continuation [(co2 — m2 — A2)2 —

4 (ft) A)2] rxfA, co) of the 2-particle scattering amplitude, we prove:
Lemma 3.1 : Let f^fco; A, u, x2) be defined as

f (co- A u x2) A- f dR x(*-x 4) ("§-("--g-1")^*!!)-* (3 15)

o+
for

Z 6 Î) (Ä3), X supp z C {^2 < 2 m2 - e, e > 0},

fu,x2)e\jGxfA),coef\DxfA),xl>0.
X X

Then one has for integer M > MfN) > 0 :

\M N-j fxfcO;A,U,X2) Z^-o,;--Mixed

+ 00

-oo 0+

for all Im co0 4= 0, co2 < 0 and sufficiently small real ft) A.
For the proof one remarks that, for fu, x2) e (J GxfA) and co e f~| Dx(A),f%(m;

x x
A, u,x2) is 0+-invariant in A, u and holomorphic in co with f^fcox; A, u,x2)
/f(ft>2; A, u, x2) for col ^2, wi,o w2,o> ^ J ft)2 4. Therefore/^ is a holomorphic
function fx(co0, co2, 0) A; A, u, x2) in the variables co0, co2, ft) A in the image |~| 01(J)

of the saturated domain PJ DX(A)10). For fixed co2 < 0 and real ft) A sufficiently small,
x

fx can be seen to be holomorphic in the complex co0-plane, except possibly for singulari-
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ties on the real axis. After having replaced fm\ — (ft) — u)2 — x2)"1 in the definition
(3.15) of/0, by the following expression (under the reintegration equivalent):

co*-u*-xy 2(co A) (u A) (A A)-1 J2
(co2-u3-x2A-2((oA) (uA) (A A)-y-A(a>l-aA-(to A) Ay (u'-'(tt4)!J-!

ty^ _ U^ _ X2

co2-u2-*:2)2-4(co2-co2) u2
for d2 0 (3.17)

one obtains (3.16) for N 0 by Cauchy's theorem. The general case follows from the
fact that for sufficiently large M > M(N) one has:

be»,, Y £W W"' W d ; "' *2' 4) (lo);)M ^0' °*> W J ; "' **' 4)- (3-18)

We apply Lemma 3.1 to

fdA r'x(A, co) xfA) JdA r'x(A, co2, o) A, co0) %fA)

=fdu dx2 dA {cp[(u, x2, A) + co0 cp'2(u, x2 A)} /£>„, co2, ft) A; u, x2, A) (3.19)

and obtain for a sufficiently large M:

(oA^TJa ^' ^2'w û' œ°] tiA) dA

+ 0O

fl- [du dx2 dA /dro0 f dR *K> *(K)'- (co- ** ">'-*> *(*-» j) Mj^> gg
2îifc /7 (<a0-o)0)M+l

-oo 0+

+ 00

[dA xfA) -fL fdco'0 ^:m2'ZtA2) ¦ (3-20)

- oo

In (3.20) the i?-integration can be omitted, as the cpxfu, x2, A) are Cfc-invariant, and
the interchange of the co'q- and fu, x2)-integration is justified by Fubini's theorem17).
Since r'xfA, co) and [fco2 — m2 — A2)2 — 4(ft) A)2] rx(A, co) only differ by a polynomial

in co, one finally obtains for sufficiently large M the distribution identity:

/ d \m
\ dco,

)M [fco2 - m2 - A2)2 - 4(0) A)2] rxfA,,

.1/ A ' Ao« w2, co A, A*) _ M 2 ^ A Ai) ß2U

for A2 < 2 m2 — e, co2 < 0, sufficiently small real 0) A, Im co„ 4= 0 and e > 0. Since

the left-hand side is analytic in DX(A) and the right-hand side in the set D2(A) defined

by (3.14), (3.21) holds identically in DX(A) n D2(A). This shows that the M-fold &)0-

integral of rM is an analytic continuation of [(co2 — m2 — A2)2 — 4(&) A)2] rx(A, co)

except for an 0+-invariant distribution PfA, co), which as a distribution in the
invariants co0, co2, ft) A, A2 is a polynomial of Mth degree in co0.
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For all fixed real A the physical values of co0, co2, ft) A (corresponding to real
4-vectors co) lie on the boundary of X±(A) and also on the boundary of the domains

D±(A) D2fA) n {Im co0 ^ 0} for 0 < A2 < 2 m2, as well as on the boundary of

DAA) n XAA)1). The boundary value of tm(co0 - i e, co2, ft) A, A2) for real co0, co2,

ft) A, A2 with A2 < 2 m2,co2 4- 2 ft) A - A2 < m2 + òfA) is for e j 0 the tempered
distribution in co0:

Hm TM(co0 + i e, co2, ft) A, A2) -(^Y rxo(co0, co2, ft) A, J«)
e | 0 £\tt<B0/

4-00

+ -fZ p /^ Sot^^8) (3.22)

and the same limit distribution is obtained taking a sequence from 27(d) n 0+(4)
converging to co0, co2, O) A, A2. This shows that tm is for these points an analytic
continuation of the Mth co0-derivative (for co2 co2 — ft)2 fixed) of the off-sheH

extrapolation [fco2 — m2 — A2)2 — 4(ft) A)2] rXrfA, co) of the 2-particle scattering
amplitude.

The mass-shell is characterized by co2 m2 + A2, ft) A 0. It follows from (3.22)
that rMfco0, co2, ft) A, A2) is, for physical points with A2 < 2 m2 — e, e > 0, co2 ±
2 ft) A — A2 < m2 + dfs), regular in co2 and ft) J in a neighbourhood of the mass sheU.

Therefore the limit of <5™6(fc)* ôfdfqx) rM again exists as the product of rM with
0o(fc) «Hfc2 - «2) 0„(fc) %2 - w2).

From (3.21) and (3.4) tm(co0, m2 + A2, 0, A2) is up to a factor (2 Yjm2 + A2)M
identical with fd/ds)M T22fs, t). Therefore fd/ds)M T22fs, t) is for - 8 m2 < t < 0

infinitely often differentiable in t and for fixed t a boundary distribution of an analytic
function for Im s 4= 0, which fulfills the integral representation (3.13). Integrating M
times with respect to s one obtains the same result for T22fs, t), except for a polynomial
M-l
£ c^ft) s'1 in s with coefficient distributions in t. But T22fs, t) is for fixed sA 4m2
n-ci
holomorphic in 16 Ex fs) and the M-fold s-integral of rM is again C°° in t for 0 > t > — 8 m2.

Therefore the cßft) must also be C°°-functions in t for 0 > t > — 8 m2, and we obtain
the

Theorem 3.2: Under (A), (B), (D) the reduced 2-particle scattering amplitude
T22fs, t) is the boundary value from Im s > 0 of a holomorphic function in s for
Im s 4= 0, which is C°° in t and fulfills in s an Af-fold subtracted dispersion relation.
Furthermore Im T22fs, t) is a measure in s and for fixed s holomorphic in t in the
'large Lehmann ellipse'

E2fs) [t: 11 | + \t + s - 4 m2 \ < fs - 4 m2) {A [l 4- —^ f'-l)}. (3.23)

To prove the last statement we remark that, for physical points, Im T22fs, t) is
essentially given by the measure

r'fs, m2, m2, m2, m2, t) — r'fufs, t), m2, m2, m2, m2, t)

42 H. P. A. 37, 7/8 (1964)
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Then the analyticity properties of Im T22fs, t) foUow by studying the domain of
analyticity D'fs) of r'fs, zx,... zs) (see 13) ^ 6)).

The theorems 3.1 and 3.2 contain the necessary analyticity properties for the
proof of Mandelstam and Lehmann14) that T22fs, t) is the boundary value of a function

simultaneously holomorphic in s and t.
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