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On Bravais Classes of Magnetic Lattices

by Aloysio Janner
Instituut voor Theoretische Fysika, Katholieke Universiteit, Nijmegen (Nederland)

(13. IX. 66)

Summary. The concept of Bravais classes is examined by looking at the extensions from which
«-dimensional space groups are obtained. It is shown how «-dimensional magnetic space groups,
too can be derived from extensions of abelian groups. This leads to a natural classification, which
interprets in terms of extensions that given by Opechowski and Guccione. Bravais classes of
magnetic lattices are defined by generalization of the concept of arithmetically equivalent
holohedries. A new group is introduced: the magnetic linear group ML(n, Z), i.e. the group of
linear basis transformations leaving invariant the magnetic lattice structure. This group is

isomorphic to subgroups MLv(n, Z) of index 2"— 1 in GL(n, Z), which subgroups replace GL(n, Z)
in the magnetic case. Some basic properties of these new groups are discussed. As illustration, the
two-dimensional Bravais classes of magnetic lattices are derived.

1. Introduction
The Bravais classes of two- and three-dimensional magnetic lattices are well

known [l]1). But only recently has a mathematical definition for these equivalence
classes been given, by W. Opechowski and R. Guccione [2]. In their paper (here
quoted as OG) one also finds an explicit definition of the Bravais classes of the usual
translational lattices. In the non-magnetic case, the Bravais classes are given by the
arithmetic classes of lattice holohedries and correspond, therefore, to the classes of
conjugate finite subgroups of GLfn,Z). In the magnetic case, however, OG use the
concept of 'semidirect product' in order to have a simple definition.

In the present paper we show how this concept can be avoided. The result represents

a natural generalization of the arithmetic case, as it involves, for the equivalence
defining magnetic Bravais classes, conjugation with respect to a subgroup of GLfn, Z).
At the same time one learns how Bravais classes can be defined for more general
crystallographic symmetry groups (for example, in the relativistic case, as will be
discussed in a subsequent paper). For definitions and properties of magnetic symmetry
groups, we refer to OG.

2. Bravais Classes of Euclidean Lattices
Let us briefly examine the euclidean case, because it forms a natural basis for our

subsequent treatment. The approach indicated below is discussed in detail in a paper
of E. Ascher and A. Janner [3] (here quoted as AJ).

We consider a «-dimensional lattice A in a euclidean space V of same dimension.
The most general (invertible) isométries of F which leave A invariant are elements of

space groups G obtained from extensions of a «-dimensional translation group T
by an abstract crystallographic point group R with<p0: R ~> Aut(T) a monomorphism.
Actually cpfR) is the (no more abstract) crystallographic point group belonging to G.

1) Numbers in brackets refer to References, p. 682.
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One has the following exact sequence :

0^J7g4ä^1 (cp0) (2.1)
That is :

TOG and GjT ~ R (2.2)

Throughout this paper x is the natural injection of the subgroup T and a the canonical
epimorphism (i. e. the homomorphic projection onto R considered as factor group of G).
In what follows we therefore omit their indication.

Between isomorphic space groups G ^ G, it is possible to construct a morphism of

group extensions by :

0^T->G-r-R^l (<p0)

Xo ] V> I il

y y II

0-+T^G-+R-+l (cp0) (2.3)

with Xo an<i W isomorphisms such that :

V a e T, Y ote R,cp0xoa XaWc, ««) xJ • (2-4)

The isomorphism between G and G is then explicitly given by :

\pfa, a) fxo a, a) for fa, a) e G, Y tie T and \f ae R (2.5)

If one gives the one-to-one correspondence between the generators of T and those of T,
then Xo is completely defined for all « e T and ä e T. The free abelian group T is

generated by a basis of the lattice A, therefore T ^ Z", and analogously : T ^ Z".
Let us consider the following commutative diagram of group-isomorphisms :

Xo —T)—»T
(2.6)

Y X Y
Z">— -?> Z"

with ^0 as in (2.3). One has from construction : % X %0 A-1. Through the isomorphism
X, the monomorphism cp0 of (2.3) induces a monomorphism cp: R -> GLfn, Z) given by :

99 oc A(ç90a) X"1, Y ae R (2.7)

where GLfn, Z) is the group of the «-dimensional integral matrices with determinant
-J-1. In the same way one obtains another monomorphism y: R ->GL(«, Z) by:

q> a Xfq>0 a) Jr1, V a £ R (2.8)

Relation (2.4) becomes (for any xe R):

cp a %fcp a) x~x, with % e GLfn, Z) (2.9)

From this last formula, there follows that cpfR) and tp(R) axe related through an inner
automorphism of GL(n, Z) and belong to the same class of conjugate finite subgroups
of GLfn, Z) isomorphic to R. Such class is called an arithmetic crystal class. One says
that cp(R) and cp(R) are arithmetically equivalent.
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If tpofRo) is the largest point group leaving A invariant with cp0 a monomorphism
as above, then going over to cpfR0) by means of (2.6) and (2.7) one defines a holohedry
of the lattice A by :

Def
H tp(R0) C GLfn, Z) (2.10)

For a given A one has an infinite number of possible holohedries (corresponding
to different choices of basis), all belonging to the same arithmetic crystal class.

A determines this arithmetic class but not vice versa. What such an arithmetic class

determines is a whole Bravais class of lattices. Two lattices A and A are said to belong
to the same Bravais class if and only if they have arithmetically equivalent holohedries :

A ^A^-H XH x-1 lox xeGL(n,Z) (2.11)

where H and H axe holohedries of A and A, respectively. Looking now at (2.3), (2.6),
and (2.9) one realises that in order to obtain all non- isomorphic space groups, it is
sufficient to consider one representative of each Bravais class. This representative is
also called Bravais lattice. The result is independent of special choices in (2.6)
precisely because it depends only on the arithmetic crystal class and not on the
representative point group considered.

In crystallography it is customary to identify not all isomorphic space groups, but
only those having the same orientation. To obtain all differently oriented space
groups, one has to consider oriented Bravais classes. These are defined by the equivalence

arising from holohedries belonging to the same proper arithmetic crystal class,
i.e. :

A~Ä^H x+HxJ for x+ e SL(n, Z) (2.12)

where SLfn, Z) is the subgroup of GLfn,Z) consisting of the automorphisms of Z"
with determinant +1. Only in spaces of even dimensions may one expect differences
between Bravais classes with and without orientation (because a lattice always
permits inversion). Actually in the two-dimensional euclidean case, there is no such
difference, but this is a consequence of the particular simple case.

3. Magnetic Space Groups as Extensions
We consider «-dimensional non-trivial magnetic space groups M. According to the

general theory [2] the elements of M can be classified in primed and in unprimed
according to whether they are associated or not with the time inversion operation
(t -> - t).

The unprimed elements form a subgroup D Q_M of index 2. Therefore one obtains
all the magnetic space groups M of given dimension (the trivial case of 'grey' space
groups included) by considering extensions :

1 -> D -> M -y A -> 0 (3.1)

where fl is a space group of same dimension and A fE, E') ^ C2 is the group
consisting of the identity E and the time inversion E'. The difficulties lying in this
approach are due to the fact that in (3.1) the group D is in general non-abelian.

Non-trivial magnetic space groups, however, considered as abstract groups, are
isomorphic to space groups, so that, from this point of view, they can equally well be
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obtained from extensions of abelian groups, along the lines discussed in AJ. In addition,

one needs a careful discussion relative to the distribution of the primes among
the elements of the group M. In other words, a magnetic space group is a group M
together with a subgroup D of index two (D being a space group). We are now back
again to (3.1). Nevertheless, it is very instructive to discuss magnetic space groups in
the frame of the theory developed in AJ.

One then finds, for example, that the three cases MT, MR0, and MRoL considered
in the systematic presentation given by Opechowski and Guccione (compare with
Table II of OG) have a simple interpretation in terms of commutative diagrams with
exact sequences. Actually it turns out that it is convenient to split the case MRaL into
a case MRx. and into a case MRa„. Opechowski and Guccione, too, consider in their
book over magnetic groups [4] a somewhat equivalent separation of MRa_ in MRaX and
MRa2- We discuss below the mutual relations of these various cases.

In the first case (M MT), all primitive translations are unprimed, and D DT,
the subgroup of index two of (3.1), has the same lattice as MT. The other cases are
characterized by the presence of a magnetic lattice AM left invariant by the point
group cpfR). In other words, M MR has the same point group as D DR, and
primed, as well as unprimed, primitive translations occur. In the second case fMR
MR0), all non-primitive translations are unprimed, whereas in the cases denoted by
MRa, primes are distributed also among non-primitive translations. The subdivision
of MRaL into two other classes cannot be explained here in a few words.

a) The first case: M MT

All magnetic space groups MT belonging to the first case are obtained from extensions

of the following type :

0-+T^MT-+RM->l fcp0) (3.2)

where T is a discrete translation group generating a euclidean «-dimensional lattice,
RM a corresponding crystallographic magnetic point group and cp0 is a monomorphism
as considered in Section 2.

In fact, (3.2) is part of a more complete commutative diagram with exact rows
and columns:

1 1

Y 1

-> DT -> K ->i w
Y

-r~MT-> RM->i w
Y Y

A =-A

Y Y

0 0 (3.3)

where A fE,E')g^C2.
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The monomorphism cpa indicated in the upper extension is actually the restriction
of that appearing in the lower one, to the elements of the subgroup K of RM.

Let r stand for a set of representatives for the cosets of MT by T in MT. As T
consists only of unprimed elements, for any unprimed element a e RM, the representative

r(x) is an unprimed element of MT. For any primed element ß' e RM, r(ß') is a

primed element of MT, which can be noted as :

Def
r(ß') r(ß)' (3.4)

In this last notation, RM appears as an abstract group, the magnetic structure of the

crystallographic point group being taken over by primed and unprimed representatives

r(RM).
There follows that all unprimed elements of MT are of the form :

Def
(a, x) a r(x) £ DT V ete T y x (unprimed) £ RM (3.5)

(i.e. V xeK)
whereas the primed ones are given by :

Def

fa,ß')=arfß') arfß)'eMT-DT, YaeT, V /3'(primed) £ RM (3.6)

(i.e. V /3' £ RM - K)

We observe that using (3.4) and according to (1.1) of AJ:

cp0ß' oaDJrfß') a rfß')-1 rfß) a rfß)-1 «po ß o a (3.7)

so that RM operates (through cpfi as an abstract group on T (and not as a magnetic
group). One easily verifies that the elements of the factor set m: RM X RM -> T are,
as they have to be, always unprimed elements.

The Bravais classes of these non-magnetic lattices are precisely the non-magnetic
ones. The first case is also the simplest one.

b) The cases M MR

These cases need a preliminary discussion in common. Magnetic space groups MR
are obtained from extensions of the following type :

0 -> Tu -> MR -y R -> 1 ftpo) (3.8)

with TM a magnetic translation group generating a «-dimensional magnetic lattice
AM and R a non-magnetic crystallographic point group. cp0 is a monomorphism:
R -> Aut(TM). By Aut(TM) we mean the group of automorphisms of the magnetic
lattice AM into itself, so that cp0(R) maps unprimed elements on unprimed ones, and
primed on primed i. e. :

V x e R cp0ae Aut (TM) implies:

cp0aoaeTD for Y aeTD (3.9)

cp0xob'eT-TD for V V e T - TD (3.10)
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TD is the subgroup of index two of TM consisting of the unprimed elements of TM.
The choice of a basis in AM, which corresponds to choosing the generators of TM,

and the isomorphic mapping of these on the generators of Z", leads to a «-dimensional
faithful integral representation MLfn.Z) of Aut(TM) with ML(n,Z) C GL(n,Z).
The magnetic linear group MLfn, Z) can be interpreted as the group of linear
transformations which transform a basis of AM into all the other ones of the same magnetic
type (see Section 5). This justifies the notation. Some basic properties of MLfn, Z) are
discussed in Section 5. We consider the isomorphism X:

TM )J» Z" (3.11a)

According to (2.7), there follows from (3.8) :

cp x X fcp0 a) X'1, YxeR, (3.11b)

but now cp is a monomorphism: R -a- MLfn, Z) C GLfn, Z).
Choosing different representatives for the cosets of TM in MR, one obtains

equivalent extensions (i.e. extensions having systems (tp0, m) and (tp0, m), respectively,
which are equivalent). Equivalent extensions define isomorphic groups [3],

The point is that, in the case of magnetic space groups, we cannot simply identify
isomorphic groups. We can do so only if we can find an isomorphism which maps
primed elements into primed ones (and therefore unprimed into unprimed). In the case
of such an isomorphism we may speak of a magnetic-group-isomorphism. Henceforth,
by isomorphic magnetic groups, we mean groups related by this special type of
isomorphism (preserving the magnetic structure), for which we adopt the notation:

M~M. (3.12)

Let us now consider the diagram representing two equivalent extensions (3.8) :

0-^TM^MR->R^l (cpf
II

Y

0 -> Tu -> MR -> R -> 1 (cff. (3.13)

According to A(52)/A(56) in AJ, MR and MR are related by the isomorphism pt

induced by a different choice of the representatives of the cosets by TM, namely:

pt r(x) u(a) rfa) YxeR. (3-14)

The mapping u: R -> TM satisfies the conditions implying that (cp0, m) and (cp0, m)
axe two equivalent systems from R to TM, related by V x, ß e R) :

cp0 x o a ufx) fcp0 xo a) ufaA1, (3.15)

mfx, ß) ufx) [ç90 a o ufß)] mfa, ß) ufa ß) (3.16)

with of course ufe) 1. The isomorphism pt is then given by:

fi[a rfx)] a u(a) r(x) V a £ TM V « £ R ¦ (3.17)
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From the above relations one can see that pt is a magnetic-group-isomorphism if and

only if all u(R) are unprimed (i.e. u: R -> TD). Primed us change the distribution
of primes among the r's (possibly among the m's, too) and may therefore lead (but
not necessarily) to different magnetic space groups.

For this reason, we cannot restrict ourselves to inequivalent extensions. Note that
this difficulty does not arise in (3.2). All this is a consequence of the fact that a magnetic
group is a group together with a given subgroup of index two.

Actually, the diagram (3.8) has to be seen as part of a more complete commutative
diagram with exact rows and columns, given by:

0 1

0 -> TD -> DR -> RM -> 1 (£0)

I e I II

0 -> TM -+ MR _> RM -> 1 (cpfi

1 I
/1 =i4
| Y

0 0 (3.18)

with A as in (3.1). The injection q, which determines the relation between cp0 and tp0,

depends on the case considered (MR0, MRa> or MRan).
After these general remarks, we may treat these three remaining cases separately.

c) The second case: M MR0

One obtains all magnetic space groups of the type MR0 by choosing unprimed
representatives r(x) for any xe R. There follows that the factor set m(R, R) involves
only unprimed elements because of the relation :

rfx) rfß) mfa, ß) rfa ß) V «., ß £ R (3.19)

Therefore the unprimed elements of MR0 axe:

Def
fa, a) arfa)eDR0, YaeTD, Va£#, (3.20)

and the primed ones appear as :

Def
fb',a) b'rfa)eMR0- DR0, yb'eT-TD, Y<*.eR. (3.21)

The relations (3.20) and (3.21) correspond precisely to the characterization given by
OG for the second case.

In the case MR MR0 the injection q of diagram (3.18) is the natural one, and the
monomorphism tpQ is simply the restriction of cp0 to the elements of the subgroup
AntfTD) oiAutfTM).
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d) The third and the fourth case: M MRa

Magnetic space groups of this type are those which cannot be obtained by choosing
unprimed representatives rfx) only ; primed ones must also be chosen. This is a common
property of the third and fourth case. Distinction between primed and unprimed
representatives give a partition into / and I, respectively, of the set of indices
numbering the elements of R. For clarity, we denote by :

xt : any element of R with rfxt) an unprimed representative (i e I)
ßf. any element of R with rfß,)' a primed representative fj e J)
a : any element of 77 I

K : any element of TM - TD 1 " 1S a numberln§ lndex- (3-22)

According to (3.22) the elements of MRa can be divided into one of the following four
sets:

1st set: (*,.
Def

X;) av rfx,)

2nd set: (Z
Def

a,) b„ r(xi)

3rd set: (av ,ßj)™a,r(ßj)'

4th set: (K ,ßj)-Kr(ß,Y (3.23)

for any element of (3.22).
The first and the fourth set of (3.23) constitute together the group DRoL. The first

set alone in general does not form group, because for example in :

'(*,-) Ka*) mfxi.xf) r(x,ak) yi,kel, (3.24)

one does not know a priori if mfa{, xf) and r(x{ xf) axe primed elements or not of MRa.
The partition of Opechowski and Guccione [4] of DRx into DRaX and DRa2 is

based on the distinction between the case in which the first set of (3.23) forms a group
(denoted by Q or Qj0), and the case in which it does not.

Our partition of DRoL into DRa, and DRau distinguishes between factor sets

involving only unprimed elements and those involving primed elements as well.
Looking at (3.24) one sees that the two classifications are more or less equivalent.

We have not succeeded, however, in proving whether or not they always are
equivalent, or if in some cases they are not. We keep, therefore, the two different
notations mentioned above. They are:

(i) According to Opechowski and Guccione.
Case MRaX:ii the first set (3.23) :

Def
{avrfXi)\Y aveTD Y x{ e R i e 1} 0 (3.25)

forms a subgroup of DRaX.
Case MRa2: if the first set (3.23) does not form a subgroup of DRa2. (3.26)
(ii) According to our subdivision.
Case MRa,r. if the factor set involves only unprimed elements, i.e.:

m: Rx R->TD (3.27)
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Case MRaL„ : if for given y, ôe R,

mfy, Ô)' e T - TD (3.28)

The following propositions indicate the mutual relations between (i) and (ii) (insofar
as investigated).

Proposition 1.

A magnetic space group of the type MRa/ is also of the type MRaX.
Proof: The product of any two elements of the first set (3.23) is given by:

[a, rfx,)] [afl r(xk)] av (cp0 oq o af mfx,, af r(x{ xf (3.29)

Per hypothesis m(ait af e TD, therefore rfat ak) is unprimed and (3.29) is an element
of the same first set. The inverse of any element of the first set belongs to the set :

[ar r (a,)]-1 [cp0 aZ ° aJ] m(v-f, a,-)-1 rfaf1)- There follows that this set is a

subgroup Q of DRa,.
Corollary 1.

The group Q of proposition 1 is a subgroup of index two of DRx, (and therefore of
index four of MRoL+

Proof: The product of any two elements of DRa> not in Q is an element of Q:

[K r(ßf '] [b'„ r(ßk) '] b'v (cp, ß3 o b'f) m(ßj, ßk) r(/?, ßk) (3.30)

Proposition 2.

A magnetic space group of the type MRa2 is also of the type MRa„.
Proof: Consider two elements of the first set (3.23) with product not lying in the

same set. This product then lies in the fourth set (3.23) :

Av '(«.-)] [% K«*)] <*À<Po «-t o «¦„) m(*i • «*)' r(ßJ ¦ (3-31)

with ßj a,- ak. Therefore mfxit xf)' is necessarily primed.
From the above propositions one sees that a necessary and sufficient condition for

having the case MKal is:

mfxi.xfeT0, Yx{,xkeR with i,kel. (3.25a)

(3.25a) is a weaker condition than (3.27). However, it ensures already that the following
other factors are also unprimed :

mfxi, ßf) and m(ß}, oc,) £ TD, Y «j, ßj e R with te I, je J (3.32)

In fact: [b'v rfßf] rfxt) is not an element of the group Q, because rfa^ e Q but
b'v rfßfi' ^ Q, it is therefore an element of the fourth set (3.23) :

[b'v rfßf] rfxi) b'v mfßj, a,) r(ß} a,)' (3.33)

implying m(ß}, at) £ TD. In the same way and by considering rfat) [b'v rfßfi'] one
gets: mfXiJßf) e TD.

What (3.25a) not necessarily ensures (at least at the present stage of investigation)
is that mfßj, ßf) also is unprimed. The requirement of this last property for allj, kej
is equivalent to that of Q being a subgroup of index two of DRaX. With one of these

43 H.P.A. 39, 8 (1966)
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conditions, MRoll becomes equivalent to MRa, and we arrive at the following proposition

:

Proposition 3.

If the group Q of (3.25) is a subgroup of index two of DRxX (and therefore of index
four of MRaf, then the magnetic space group MKolX is of type MRa,.

Proof: Q being a subgroup of index two of DR a x, the product of any two elements
of the fourth set (3.23) is an element of Q:

U>, r(ßf '] ß, r(ßk)'] b'v (cp0 ßj o b'f) m(ßj, ßf rfßj ßk) (3.34)

thus mfßj,ßk) e Tü. (3.34), (3.25a), and (3.32) give (3.27).
According to the detailed investigation of Opechowski and Guccione [4], all

three-dimensional magnetic space groups of the type MRaX satisfy the condition of
proposition 3.

Let us remark that in the case MRrt>, the four sets (3.23) are cosets of MRa>
relative to Q. Take for example the following four elements of MRar.

(e,s), fb'0,e), fe,ß0) and (b'0, ßf
with rfßf)' and b'0 primed. Then (3.23) becomes:

1st coset: fav, a.t) e fe, s) Q

2nd coset: fb'v, a,) E fbf e) 0

3rd coset: fav, ßf) e fe, ß0) Q

4th coset: fb'v, ßf) e (bf ßf Q (3.23a)

The following corollary shows how MRa, can also be obtained from extensions of TM
by RM exactly in the way explained by OG.

Corollary 3.

In all magnetic space groups of the type MRa, the point group R has a subgroup
Def

K {Y X} 6 R\i £ 1} of index two.
Proof:

>"(«,•) r(«-k) m(*i. °0 r(«-i °Z (3-35)

r(xi af) being unprimed, at xk xt with l e I. Therefore {a,- \i e 1} forms a subgroup
K of R. The product of any two elements /j-, ßk not belonging to K lies in K:

rfßj)'rfßf mfßj, ßfrfßjßf, (3.36)
giving ßj ßk x„ e K.

In other words, we can equally well have the primes on the elements ßj of R

according to :

rfßjY^rfß',), V/e/. (3.37)

In the case of space groups of type MRa, the injection g of diagram (3.18) is explicitly
given by :

»K K<*f)] av r(aj) V «„ £ TD V a-i £ K

CK Hßj)] a, b'o rfßj)' b'v rfßj)' (3.38)
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for V «„ £ TD and uniquely given b'0 e TM — TD (i. e. Y b'v — avb'0e TM — TD), and

V ßj eRM- K.
In addition to (3.18), the following two other diagrams with exact rows and

columns can be constructed :

0 1 1

Y Y Y

0 -> TD -> Q -> K -> 1 (99;)

0 -> rM -> Mfia, -> RM -* 1 fa,)

Y y Y

0^-^ -^^x^->4 ^-0
Y Y Y

0 0 0 (3.39)

with A ç^ C2 as in (3.1). The monomorphism yr is the natural injection and, therefore,
cp'0 is the restriction of cp0 (this latter being the same as in (3.18)) to the elements of TD
and of K.

1 1

Y Y

0 -> tz -> ç -> i? -> 1 (<?;)

II <4

o->rD^rZ)Äa,^ivM^i (£„)

I Y

Y j
0 0 (3.40)

with cp0 as in (3.18) and tp'0 as in (3.39). The injection cr is defined by:

a[av rfx,)] av ~rfxt) Y av e TD Y^eK, (3.41)

so that tp'0 is the restriction of cp0 to the elements of K.
From (3.38) and (3.41) there follows:

q a n (3.42)
with ti as in (3.39).

Proposition 4.

Symmorphic magnetic space groups MRa axe of the type MRa,*.

Proof: In this case the extension (3.8) is a split-extension, the factor set may be
chosen to be the trivial one, thus unprimed, and (3.27) is verified.

What we indicate here is only a first step towards a theory of extensions for
magnetic space groups. In particular the case MSct» needs further investigation.
However, our reformulation of the results already obtained by OG (and summarized
in Table I) is sufficient in order to arrive at a simple definition of the Bravais classes

of magnetic lattices.
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Table I. Classification of magnetic space groups

H. P. A.

Type Magnetic
space group
M

Point group

R

Translation
group
T

Representatives
of the cosets of
MbyTinM:r(R)

cp(R)

finite subgroup
of

Factor set

m(R, R)

I Mt Rm
with a

subgroup K
of index 2

T
unprimed
elements
only

primed and
unprimed
representatives

GL(n, Z) unprimed

II Mro R Tm
primed
and
unprimed
elements

unprimed
representatives
only

ML(n, Z) elements

III MRa? Rm
with a

subgroup K
of index 2

primed
and
unprimed
representatives

only

IV MRai, R primed and
unprimed
elements

4. Bravais Classes of Magnetic Lattices

Magnetic lattices occur only with magnetic space groups of the type MR; from
now on we restrict ourselves to these groups (simply noted M).

Given two isomorphic magnetic space groups (M g M) we are able to construct
a morphism of group extensions in the same way as in (2.3) :

T,

Xo

M ¦-> i?

m rr
Y

M

1 W

R -> i fn) (4.1)

with monomorphisms tp0: R -> Aut(TM) and q>0: R -> Aut (77,) and y> a magnetic-
group-isomorphism.

According to AJ (A 34), Xo is an isomorphism ; it even preserves the magnetic
structure, because in our case (with x0 and x0 natural injections) Xo is the restriction

to TM of y>. But of course TM and TM generate in general two different magnetic
lattices AM and AM. For this reason it is convenient to go over to Zn by means of the
diagram (2.6) so that according to (3.11a,b), Aat(TM) is replaced by MLfn, Z). This
subgroup is determined only after specification of how the elements of Aut(TM) act on
basis vectors of AM and for a given type of lattice basis (see Section 5).

It is convenient to choose a covariant transformation (compare with (5.2)) of a
so-called magnetic basis (i.e. a basis consisting of primed elements only). Doing so,
and supposing that these primed elements (generators) are mapped by X on the
generators of Zn, one gets a uniquely defined subgroup MLfn, Z) of GLfn, Z). The
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integral matrices elements of ML0(n, Z) axe in one-to-one correspondence with the
transformations of a magnetic basis into an arbitrary other magnetic basis of the same
lattice AM. The same can be done for the lower extension of (4.1), and we can now
replace that diagram by:

x
0->-Z"-^M^R->l (cp)

i

* y r y
Y Y

0 -> Z" -> M-> R -> 1 (y) (4.2)
x

with x x0 X~\ x x0 X"1, X A-Xo ^_1 an(i monomorphisms cp and cp:R ^- MLfn, Z)
related to cp0 and to cp0 by (2.7) and (2.8), respectively. As Xo is a magnetic-group-
isomorphism and after the special choices discussed above, we have:

XeML0(n,Z). (4.3)
There follows from AJ(A62) :

j(R) X<p(R)X-\ (4.4)

so that tp(R) and cpfR) belong to the same class of conjugate finite subgroups of

MLüfn, Z).
The results obtained do not depend on the particular choice : the only important

point is to fix once for all the subgroup MLfn, Z) considered.
We may now define a magnetic holohedry H oi a given magnetic lattice AM by:

Def
H cpfR,) C MLfn, Z) (4.5)

where cpfRfj is the largest point group leaving AM invariant and cp is a monomorphism
referred, as above, to a magnetic basis of AM.

Definition of magnetic Bravais classes

Two magnetic lattices AM and AM are said to belong to the same Bravais class if
and only if their magnetic holohedries H and H respectively, are conjugate subgroups
of MLfn, Z):

AMxÄM^H xH x-1 for X e MLfn, Z) (4.6)

Looking at (4.2) one sees that in order to obtain all isomorphic magnetic space

groups, it is sufficient to consider one representative of each magnetic Bravais class.

In particular as extensions of a given type fcp fixed) always admit the trivial (or split)
extension which yields symmorphic magnetic space groups, our definition is equivalent
to that indicated by OG in terms of semi-direct products (consider in (4.2) the split-
extensions for R R0 as above, together with (4.4), (4.5), and (4.6)).

5. Basic Properties of the Magnetic Linear Group ML(n, Z)

We consider an arbitrary basis of a given «-dimensional magnetic lattice AM and
the corresponding translation group TM :

TM {ex,e2...ej ...en}, (5.1)
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and we fix the correspondence between the elements A of GL(n, Z) and the basis
transformations of the basis in AM by :

»

êj(A) =2jAjk ek, Y Ae GLfn, Z) j 1, 2, « (5.2)
k-l

In (5.1) at least one of the basis vectors is primed. In general we may distinguish
between primed indices (if the corresponding basis vectors are primed) and unprimed
indices (if not). We define as basis of the same type, those bases which have the same

sequence of primed and unprimed indices. In particular, denoting by p the number of
primed indices we have : 1 < p < «. For a magnetic basis (as defined in Section 4) :

p n.

Proposition 5.

For «-dimensional magnetic lattices the total number of different types of basis is

N 2" - 1.

(n\
Proof: For p k there are I I different types of basis. Altogether, therefore:

Proposition 6.

There is alway an element Tv e GLfn, Z) which transforms a basis of type pt into
one of type v fv,pi 0,1, N — 1).

Proof: To every permutation of the order of the elements of the basis there
corresponds an element of GLfn, Z). li p A « one can always increase p by one in the
following manner. Suppose e'k primed and e, unprimed elements of the basis. Define :

e'j e- A- e'k and ch eh for h 4= j (5.3)

By (5.2) there corresponds to the transformation (5.3) an element oi GLfn, Z). One

gets Jj, by suitable combination of these transformations.
Corollary 6.

The element Tj, of proposition 6 transforms every basis of type pt into one of

type v.

Proof: This follows directly from the construction of Tv indicated above.

Proposition 7.

The elements of GLfn, Z) which transform (according to (5.2)) a basis of a given
type v into another of the same type form a subgroup MLv(n, Z) of index 2" — 1,

isomorphic to MLfn, Z), and to Aut(TM).
Proof: From the definition there follows directly that MLfn, Z) C GLfn, Z).

That MLfn, Z) ^ ML(n, Z) ^ Aut(TM) is a consequence of the fact that the elements
of Aut(TM) and of ML(n, Z) axe uniquely given once one knows how they transform
the generators of TM, i.e. the corresponding basis of AM. To demonstrate that the
index is 2" — 1, we show that there is a set of 2" — 1 elements S e GLfn, Z), pt

0,1, ,N -1, such that for any A e GLfn, Z) :

A S^ B, with a uniquely determined B e MLfn, Z) (5.4)
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Consider a basis of type v. Every element A e GLfn, Z) can be classified according to
the type of basis (say pt) into which it transforms the basis v. Take 77 as in proposition

6. Then :

Tvu A Be MLfn, Z) (5.5)

For a fixed v, choose 2" — 1 such transformations Tj, By:

S T-1 (5.6)
ß vit \ I

these form the desired set. The unicity of the decomposition (5.4) follows from the

group properties of GLfn, Z) and from the fact that A as above transforms every basis
of type v into one of type pt.

We now consider the homomorphism: Z ->Z2, i.e.:

A y- A (mod 2) V^e GLfn, Z) (5.7)

obtained by using the elements of the Galois field GFf2) instead of integers. The
homomorphic image of GL(n, Z) is then GL(n, 2), which is a finite group of order [5] :

1 GLfn, 2) | (2" - 1) (2" - 2) (2" - 2""1) (5.8)

Denote by MLfn, 2) the image of the subgroups MLfn, Z) under the homomorphism
(5.7). There follows corollary 7.

Corollary 7.

The order of MLfn, 2) is:

| MLfn, 2) 1 (2" - 2) (2" -22) (2" - 2""1)

Proof: Propositions 6 and 7 remain true under the homomorphism (5.7). This
because the transformation by (5.2) of a primed basis vector into a primed, or into
a unprimed one, depends only on A (mod 2). Therefore the MLfn, 2) axe subgroups of
index 2"- 1 in GLfn, 2).

Remark.
In Section 4 we have denoted by v 0 the magnetic-basis-type (p «). In this

case, and using (5.2), one sees that those elements of GLfn, Z) which also belong to
MLfn, Z) have in each row an odd number of odd rational integers.

First example: « 2

GL(2, 2) S D3 {s, t} with s3 t2 fs t)2 e

The order is :

GLf2, 2) | - (22 - 1) (22 - 2) 6

The six elements are:

1 0\ /0 l\ /1 1\ /1 1\ /l 0\ /0 1

oi/' Uo/' Uo/' loi/' U i/' U y'
For AfL„(2, 2) we have:

| MLr (2, 2) | (22 - 2) therefore MLf= 2, 2) £ C2

and the index is 22 — 1 3.
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In particular for the types of basis :

v 0 TM0 {e[, 4} (magnetic basis), ML0 (2,2) jfj J

v=l Tm={ex,e2} MLf2,2) \j\\

v 2 TM2={ex,ef ML2(2, 2) j/J J

Second example: « 3

GL(3, 2) ^ LF(2, 7), linear fractional group of order 168 and abstract definition
[6]:

r3 s3 (r s)4 (y-l S)4 g

In our case for example :

/1 1 1\ /11 1\

f j 0 1 0 J and s I 1 0 1

\1 0 0/ \0 0 1,

MLf3, 2) ^ 0, octahedral group of order 24, index 7 and abstract definition:

u4 v2 (u v)3.
Fox ML0f3,2) take e.g.:

1 001 1 1

100 and» 00 1

0 10 0 1 0

6. The Two-Dimensional Magnetic Bravais Classes

To illustrate how our considerations apply in practical cases, we derive here the
magnetic Bravais classes for the two-dimensional case. Two magnetic lattices having
the same magnetic Bravais class have arithmetically equivalent holohedries, which
are in one-to-one relation with the non-magnetic Bravais classes. One therefore starts
from these (supposed known) and discusses the equivalence of the corresponding
magnetic lattices.

a) Oblique lattices

R0= C2 {a} with x2 e

The non-magnetic Bravais class is : P {a, b} with cp a o a — a, cp xo b — b

i.e. holohedrv

H(ZZ)|.
The corresponding magnetic lattices are : Px {a, b'}, P2 {«', b}, P3 {a', b'}
or expressed in magnetic bases: Px {a + b', b'}, P2 {a', a' + b}, P3 {a', bf.
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All these lattices have the same holohedry H and belong therefore to the single
magnetic Bravais class P'.

b) Rectangular lattices

R0=C2v {x,ß} with x2 ß2 fx ß)2 s

The non-magnetic Bravais class is : R {a, b} with :

cp x o a — a ; cp xo b — b ; cp ß o a a ; cp ß o b — — b

i.e. holohedry
(-1 0\ /1 0\|" il o-ij'\o-iJv

The corresponding magnetic lattices expressed in magnetic bases are :

Rx {a - b', b'} R2 {a', a' + b} Rs {a', b'}

with magnetic holohedries given respectively by :

0-1 ' 0-1/1' 2 I 0-l/'\2-l»i- : :i : : i*>

Now Hx x H2 because :

XHXX-^ H2 for X=(°110)eML0f2,Z)

but H3 belongs to another magnetic Bravais class. To establish this, it is sufficient
for this to consider the second generator of Hx and H3, respectively :

X Hx X~x H2 implies

<HZZK
and one finds that the possible values for X e GZ.(2, Z) are:

A ± L- \ ± J) * ML0(2, Z),oxX=±(±11T10)£ ML0(2, Z).

There are two rectangular magnetic Bravais classes and Rx, R2e R'a<b, R3e Rf

c) Diamond lattices

Ro c2v {x, ß}
as above.

The non-magnetic Bravais class is : D {a, b] with :

tp xo a — a ; cp x o b — b ; cp ß o a b ; cp ß ob a
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The corresponding holohedry is :

For primed a, this holohedry implies also primed b. The only compatible magnetic
lattice is therefore D' {a', b'} with holohedry H. By every other choice of the
magnetic bases, one obtains magnetically equivalent holohedries so that there is only
one magnetic Bravais class of this type.

d) Square lattices

This case can be discussed exactly as under c). There is only one magnetic Bravais
class Q' {a', b'} corresponding to a non-magnetic square lattice Q {a, b}.

e) Hexagonal lattices

R0=C6v {x,ß} with x* ß2=faß)2 e.

The non-magnetic Bravais class is : E {a, b} with :

cp x o a a — b ; cp x o b a ; cp ß o a a ; cp ß o b a — b

The corresponding holohedry is :

HOZMZi
One sees from 99(a) that this holohedry is not compatible with a magnetic lattice.
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