Cuspidal points on Landau singularities

Autor(en): Westwater, M.J.
Objekttyp: Article
Zeitschrift: Helvetica Physica Acta

Band (Jahr): 40 (1967)
Heft 4

PDF erstellt am: 22.07.2024
Persistenter Link: https://doi.org/10.5169/seals-113772

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Cuspidal Points on Landau Singularities ${ }^{1}$)

by M.J. Westwater
Seminar for Theoretical Physics ETH, Zurich

(17. XI. 66)

Abstract

A necessary and sufficient condition on a Feynman graph, whose dual diagram is normal, for its leading Landau singularity to have cuspidal points is given. It is shown how an equation determining the location of these points may be written down and the method is illustrated by some examples.

1. Introduction

The analytic properties of scattering amplitudes in perturbation theory have been studied by R. J. Eden and co-workers with the aim of establishing the Mandelstam representation to all orders in perturbation theory. They were able to show that the Mandelstam representation holds, under certain conditions related to the masses involved and determined by the fourth order graphs, for all graphs whose leading Landau curves did not have isolated real points (acnodes) lying in normal threshold cuts (for a report on this work see [7]). In a later paper [1] they made a detailed analysis of the crossed square diagram. The scattered particles were taken to have masses M, m and the particles exchanged, mass m. The leading Landau curve of this diagram has two acnodes lying in the normal threshold cuts and above the continuous branch of the curve in this region, provided that $M^{2}>(4+2 \sqrt{2}) m^{2}$. It is therefore possible that the complex part of the Landau curve attached to the acnodes should be singular and the Mandelstam representation fail for these mass values. The authors of [1] show that this is indeed the case by considering what happens as M / m is further increased. One of the acnodes moves downwards and to the left until it meets the continuous arc of the Landau curve. The acnode then disappears and instead the continuous arc develops a pair of cusps. As M / m is further increased these cusps separate and for $M^{2}>4 \sqrt{3} m^{2}$ part of the segment of the Landau curve between the cusps lies outside both normal threshold cuts. Thissegment corresponds to positive values of the Feynman parameters and is therefore singular on the physical sheet, and the piece of complex

[^0]curve attached to it which joins this segment to the second acnode is therefore also singular. It then follows from the continuity theorem for singularities of functions of several complex variables, that the complex part of the Landau curve joining the acnodes is singular as soon as they appear, i.e. for $M^{2}>(4+2 \sqrt{2}) m^{2}$. If it could be proved that the complex part of a Landau curve attached to an acnode is singular only when its singularity is guaranteed by this mechanism, it would follow that the Mandelstam representation holds for diagrams which do not have cusps.

Cuspidal points on Landau singularities have a general importance for the singularity structure of the corresponding Feynman amplitude. A general understanding of the behaviour of Feynman amplitudes may be obtained by analogy with the behaviour of a function F of a single complex variable z, defined as a contour integral with respect to a second variable t of a function g analytic in z and t. The singularities of $F(z)$ arise for values of z for which two singularities of $g(z, t)$ coincide in the t plane, trapping the contour of integration. A general point on a Landau singularity corresponds to the occurrence in the integration space of the analogue of this mechanism for functions of several complex variables. It may happen that there are values of z for which three singularities of $g(z, t)$ coincide in the t plane. A cuspidal point on a Landau singularity corresponds to the analogue of this situation for function of several complex variables. The more complicated nature of the 'pinch' is reflected in a more complicated behaviour of the function $f(z)$ for values of z in the neighbourhood of the pinch.

In this paper we give a necessary and sufficient condition on a Feynman graph, whose dual diagram is normal, for its leading Landau singularity to have cuspidal points. For two-particle scattering graphs this condition takes a particularly simple form: the Landau curve of a two-particle scattering graph has no cusps if and only if the graph belongs to the class C of graphs which are generated by two particle unitarity and crossing (graphs which arise in the strip approximation). The class C was introduced by T. RegGe and G. Barruchi [2]; they prove that the Landau curves of graphs of this class have no cusps in the course of a detailed analysis of the properties of these curves. Our result thus completes theirs. If the leading Landau singularity of a graph has cuspidal points, then an equation determining the location of these points may be written down. This equation, like the Landau equations themselves, is implicit in the sense that it contains the loop momenta and Feynman parameters in addition to the external momenta. It is, in practice, more convenient to determine the location of cuspidal points by solving this equation, together with the Landau equations, than to obtain, from the Landau equations, by eliminating the loop momenta and Feynman parameters, an explicit equation $L=0$ for the Landau singularity in the external momenta, whose cuspidal points can then be determined by writing down the necessary conditions on the derivatives of L with respect to the external momenta. For two-particle scattering graphs where one has a curve $L(s, t)=0$ these conditions are

$$
\frac{\partial L}{\partial s}=\frac{\partial L}{\partial t}=0 \quad\left(\frac{\partial^{2} L}{\partial s \partial t}\right)^{2}=\frac{\partial^{2} L}{\partial s^{2}} \frac{\partial^{2} L}{\partial t^{2}}
$$

where s, t are the Mandelstam variables. They appear to be rather restrictive, leading one to suppose that cusps are not to be expected for general mass values (see the discussion at the end of [1]). The argument is misleading because it ignores the specific
geometric way in which the Landau singularities arise. This feature of the problem has been placed in its general mathematical setting in the work of F. Pham [3] to which we refer the reader.

In section 2 we set out our main result. In order to show in what way the results are dependent in the dimensionality of space-time, we take our momentum vectors from an n-dimensional vector space. Since we wish to discuss the local form of the Landau singularity in the complex region, our vectors will be complex and we may take the scalar product to be the complex Euclidean scalar product. In order to avoid entering into a discussion of the Feynman integrals we define the Landau singularity as the set of solutions of the Landau equations. In section 3 we give some examples to illustrate the general discussion.

2. The Main Result

Denote by P an n-dimensional vector space over the complex numbers. We denote by ${ }_{s} q$ the $s^{t h}$ component of q relative to a stated basis in P. The scalar product of two vectors a, b in P is defined by

$$
\begin{equation*}
a \cdot b=\sum_{s=1}^{n}\left({ }_{s} a\right)\left({ }_{s} b\right) . \tag{1}
\end{equation*}
$$

The scalar product has the same algebraic form as the Euclidean scaler product in a vector space of dimension n over the real numbers, so P may be called a complex Euclidean space of dimension n. To describe configurations of vectors in P we may therefore use the language of Euclidean geometry with the convention that the geometrical concepts are to be interpreted algebraically by means of the formula (1).

Let G be a connected graph having N vertices, E edges with one vertex (external lines) and L edges with two vertices (internal lines). Label the vertices, external lines and internal lines by the integers from 1 to $N, 1$ to E, 1 to L respectively, and denote by p, m, i, variables with these index sets as their replacement sets.

Choose an orientation for G, and denote by $\varepsilon(i, p), \varepsilon(m, p)$ the incidence numbers of the lines i, m relative to the vertex p. We denote by T the $n(E-1)$ dimensional space whose points are sets of E vectors p_{m}, one associated with each external line of G, satisfying the condition

$$
\begin{equation*}
\sum_{p} \varepsilon(m, p) p_{m}=0 . \tag{2}
\end{equation*}
$$

For fixed $t=\left(p_{m}\right) \varepsilon T$ consider the space Q of all sets of L vectors q_{i}, one associated with each internal line of G, subject to the condition

$$
\begin{equation*}
\varepsilon(i, p) q_{i}+\varepsilon(m, p) p_{m}=0 \tag{3}
\end{equation*}
$$

Note that (2) is implied by (3).
The space Q may be parametrised in the following way:
G has $l=N-L+1$ linearly independent loops. Choose a basis for these loops and index the basic loops by an index j running from 1 to l. Adjoin to G one more vertex, to be called ∞. Each external line of G is joined to ∞. The resulting graph G^{∞} has

[^1]no external lines and an orientation determined by that of $G . G^{\infty}$ has $E-1$ more loops than G. We may obtain a basic set of loops for G^{∞} by taking the l basic loops of G and, for each of the first $(E-1)$ external lines of G, choosing a loop m^{\prime} in G^{∞} which contains this external line, the external line E and no other external lines. Choose an orientation for each of the l basic loops for G, and give each loop m^{\prime} of G the orientation coherent with that of the external line m^{\prime}. Then any set of N vectors q_{i} satisfying (3) may be uniquely expressed in the form
\[

$$
\begin{equation*}
q_{i}=\eta(j, i) k_{j}+\eta\left(m^{\prime}, i\right) p_{m^{\prime}} \tag{4}
\end{equation*}
$$

\]

In (4) the index m^{\prime} is summed from 1 to $(E-1) ; \eta(j, i), \eta\left(m^{\prime}, i\right)$ denote the incidence numbers of the loops j, m^{\prime} with respect to the line i and the k_{j} are l vectors of P. Conversely, if $\left(k_{j}\right)$ is a set of l vectors of P, and vectors q_{i} are defined by (4), they satisfy (3).

Denote by K the $n l$-dimensional space whose points are sets of l vectors k_{j}. In K define an analytic set $S(t)$ by

$$
S(t)=\bigcap_{i=1}^{N} S_{i}(t) \quad S_{i}(t)=\left\{k: q_{i}^{2}-m_{i}^{2}=0\right\}
$$

We suppose n sufficiently large that $S(t)$ is nonempty for all $t \varepsilon T$. The Landau singularity of the graph G is the set of points $t \varepsilon T$ such that $S(t)$ is not a manifold. This is the case if and only if the Landau equations

$$
\begin{gather*}
\alpha_{i} \eta(j, i) q_{i}=0 \tag{5}\\
\alpha_{i}\left(q_{i}^{2}-m_{i}^{2}\right)=0 \quad(\text { no summation on } i) \tag{6}
\end{gather*}
$$

are satisfied by some $k \varepsilon K$ and some set of L complex numbers α_{i}. The set of points $t \varepsilon T$ for which (5) and (6) have a solution for which no α_{i} is zero form an analytic set whose closure L_{G} in T is called the leading Landau singularity of G.

Let $t_{0}=\left(p_{m^{\prime}}\right)$ be a point on L_{G} and suppose that for $t \varepsilon L_{G}$ in a neighbourhood V of t_{0} the Landau equations have a unique solution $k=k(t)$ for k and a solution unique up to a factor for the α_{i}. Construct the space $Y=K \times T$, and denote by p the natural projection of Y onto T. Denote by $L_{G}(\mathrm{Y})$ the set of points $(k(t), t) \varepsilon Y, t \varepsilon V$. The projection p maps $L_{G}(Y)$ analytically onto $L_{G} \cap V$. Let $\left(d p_{m^{\prime}}\right)$ be a tangent vector to L_{G} at t_{0} and let $\left(d k_{j}, d p_{m^{\prime}}\right)=\left(p^{-1}\right)^{*}\left(d p_{m^{\prime}}\right)$ be the tangent vector to $L_{G}(Y)$ at $\left(k\left(t_{0}\right), t_{0}\right)$. From (4) we have

$$
\begin{gather*}
\eta(j, i) q_{i} \cdot d k_{j}+\eta\left(m^{\prime}, i\right) q_{i} \cdot d p_{m^{\prime}}=0 . \tag{7}\\
(\text { no summation on } i)
\end{gather*}
$$

From the first of the Landau equations it follows that

$$
\begin{equation*}
\alpha_{i} \eta\left(m^{\prime}, i\right) q_{i} \cdot d p_{m^{\prime}}=0 \tag{8}
\end{equation*}
$$

The normal to L_{G} is thus $\left(\alpha_{i} \eta\left(m^{\prime}, i\right) q_{i}\right)$. The normal is unique so L_{G} is either nonsingular at t_{0}, i.e. locally a manifold or cuspidal, i.e. singular but having a unique tangent primal in T.

Since the physical amplitudes are functions defined only on the mass shell M

$$
\begin{equation*}
p_{m}^{2}-M_{m}^{2}=0 \tag{9}
\end{equation*}
$$

one should consider $L_{G} \cap M$ rather than L_{G} to be the Landau singularity. Now L_{G} may be nonsingular in T at $t_{0} \varepsilon M$ but $L_{G} \cap M$ may nevertheless be singular in M because the normals for L_{G} and M are linearly dependent. This is true if there exist complex numbers β_{m} such that

$$
\begin{gather*}
\alpha_{i} \eta(m, i) q_{i}+\beta_{m^{\prime}} p_{m^{\prime}}+\beta_{m} p_{m}=0 \tag{10}\\
\quad \beta_{m}\left(p_{m}^{2}-M_{m}^{2}\right)=0 \quad \text { for all } m \tag{11}
\end{gather*}
$$

Equations (5), (6), (10), (11) are the Landau equations for the graph G^{∞} which has no external lines. They are therefore compatible only if the internal and external masses of G satisfy some relation. We suppose that this relation is not satisfied. For a full discussion of this point see [3].

Denote by $n_{G}(P)$ the dimension of the subspace S_{G} of P spanned by the vectors $q_{i} \varepsilon P$ which satisfy the Landau equations for $t=t_{0}$. Denote by S_{E} the subspace of P spanned by p_{m}. The dimension n_{E} of S_{E} is given by $n_{E}=\min (E-1, n)$. Without loss of generality we may suppose at most one external line incident to any vertex. Then $S_{E} \subset S_{G}$ so $n_{E} \leqslant n_{G}(P)$. If $n_{E}=n_{G}(P),(G, P)$ is said to be normal; if $n_{E}<$ $n_{G}(P),(G, P)$ is anomalous. If n is sufficiently large $n_{G}(P)=n_{G}$ is independent of P

Let $d q_{i}$ be a tangent vector to $S\left(t_{0}\right)$ at $k\left(t_{0}\right)$ in K.

$$
\begin{align*}
d\left(q_{i}^{2}-m_{i}^{2}\right) & =2 q_{i} \cdot d q_{i}+\left(d q_{i}\right)^{2} \\
& =2 \eta(j, i) q_{i} \cdot d k_{j}+\left(\eta(j, i) d k_{j}\right)^{2} . \tag{12}
\end{align*}
$$

Hence we must have

$$
\begin{equation*}
\left.\eta(j, i) q_{i} \cdot d k_{j}=0 \quad \text { (no summation on } i\right) \tag{13}
\end{equation*}
$$

By (5) the N equations (13) are linearly dependent and since the $\left(\alpha_{i}\right)_{0}$ are unique there is just one linear dependence relation between them. The local form of $S(t)$ is determined by the rank of the Hessian

$$
\begin{equation*}
H=\alpha_{i}\left(\eta(j, i) d k_{j}\right)^{2} \tag{14}
\end{equation*}
$$

on the $n l-(N-1)$ dimensional vector space of tangent vectors $d k$ satisfying (13). If H has maximum rank then L_{G} is nonsingular at t_{0} - this is established in the course of the proof of the Picard-Lefschetz theorem [4]. If H has rank less than maximum then we call $t_{0} \varepsilon L_{G}$ a cuspidal point and we refer to the equation $\operatorname{det} H=0$ which expresses this condition as the cusp equation. This terminology will be justified in the following paragraph.

If H has rank 1 less than maximum then there is a unique tangent vector which is a null eigenvector of H. We may choose local coordinates (z) in the neighbourhood of $k\left(t_{0}\right)$ in K so that $\mathrm{S}_{1}(t), \ldots, S_{N-1}(t)$ have local equations.

$$
S_{1}: z_{1}=0, \ldots, S_{N-1}: z_{N-1}=0
$$

Let $s_{N}=0$ be a local equation for S_{N} and denote by f the restriction to $\bigcap_{i=1}^{N-1} S_{i}$ of s_{N}. The Hessian form H, which we have written down in coordinate-free notation, may
be identified with the Hessian of f, i.e. the square matrix of second derivatives of f with respect to the coordinates $z_{k}, k>N-1$. We may choose the local coordinate system so that the null eigenvector of H is in the z_{N} direction. If

$$
\left.\frac{\partial^{3} f}{\partial z_{N}^{3}}\right|_{z=0} \neq 0
$$

then by a lemma similar to that of Morse [5] we may choose local coordinates so that

$$
f\left(z_{N}, \ldots, z_{n l}\right)=a(t) z_{N}+z_{N}^{3}+z_{N+1}^{2}+z_{N+2}^{2}+\ldots+z_{n l}^{2}-b(t)
$$

where $a(t), b(t)$ are holomorphic functions of t and $a\left(t_{0}\right)=b\left(t_{0}\right)=0$. If the analytic sets $\{t: a(t)=0\},\{t: b(t)=0\}$ are in general position in T for $t=t_{0}$ we may choose local coordinates in T so that

$$
a(t)=u_{1} \quad b(t)=u_{2}
$$

u_{1}, u_{2} the first two local coordinates. In these local coordinates L_{G} has the local equation

$$
4 u_{1}^{3}+27 u_{2}^{2}=0
$$

and is therefore cuspidal. If t_{0} satisfies the additional conditions set out in this paragraph, viz. that H have rank exactly 1 less than maximum, that

$$
\left.\frac{\partial^{3} f}{\partial z^{3}}\right|_{z=0} \neq 0
$$

and that for $t=t_{0}$ the sets $\{t: a(t)=0\},\{t: b(t)=0\}$ be in general position in T, then we call t_{0} a cuspidal point in the strict sense. An analysis of the local behaviour of a Feynman amplitude in the neighbourhood of such a point may be made with the help of the Picard-Lefschetz theorem. This analysis shows that a cuspidal point in the strict sense may be regarded as a point of 'effective self-intersection' of the Landau singularity. The additional conditions which define a cuspidal point in the strict sense will be violated only if further polynomial equations, additional to the Landau equations and the cusp equation are satisfied by the external momenta for $t=t_{0}$. It is therefore to be expected that a cuspidal point on L_{G} is, in general, a cuspidal point in the strict sense. In [3] it is indicated how this assumption of 'sufficient generality' can be precisely formulated within the framework of R. Thom's theory of stable differentiable mappings [6]. This theory shows that our expectation is justified if for $t=t_{0}$ the transversality condition (see [6] for general definition and [3] for the form the condition takes in the present context) holds.
H is singular for the tangent vector $d k$ if

$$
\begin{equation*}
C_{j j_{1}} d k_{j}=\lambda_{i} \eta\left(j_{1}, i\right) q_{i} \tag{15}
\end{equation*}
$$

where $C_{j j_{1}}=\alpha_{i} \eta(j, i) \eta\left(j_{1}, i\right)$ is an $l \times l$ matrix and the λ_{i} are Lagrange multipliers for the constraints (13). Suppose that the subspace S_{G} and its orthogonal complement in P, S_{G} are disjoint so that P may be written as a direct sum

$$
\begin{equation*}
P=S_{G} \oplus S_{G}^{\perp} \tag{16}
\end{equation*}
$$

Denote by $d k^{s}, d k^{\perp}$ the components of $d k$ with respect to the decomposition (16). Then (15) splits into the equations

$$
\begin{gather*}
C_{j j_{1}} d k_{j}^{\perp}=0 \tag{17}\\
C_{j j_{1}} d k_{j}^{s}=\lambda_{i} \eta\left(j_{1}, i\right) q_{i} \tag{18}
\end{gather*}
$$

If we substitute for q_{i} in terms of k_{j} in the loop equations (1) we obtain them in the form

$$
\begin{equation*}
C_{j j_{1}} k_{j_{1}}+B_{j m^{\prime}} p_{m^{\prime}}=0 \tag{19}
\end{equation*}
$$

where $B_{j m^{\prime}}=\alpha_{i} \eta(j, i) \eta\left(m^{\prime}, i\right)$ is an $l \times m^{\prime}$ matrix. If $\operatorname{det} C=0$ the equations (19) allow the internal momenta k_{j} to be expressed as linear combinations of the external momenta $p_{m^{\prime}}$. Thus $\operatorname{det} C=0$ for all points on L_{G} only if G is anomalous. We will suppose that G is normal. The condition that $S_{G} \cap S_{G}^{\perp}=\phi$ is then equivalent to the assertion that the Gram determinant of the external momenta $p_{m^{\prime}}$ is non-zero. This condition is satisfied at a general point of L_{G} and we may assume in particular that it is satisfied for $t=t_{0}$. Similarly we may assume $\operatorname{det} C \neq 0$ for $t=t_{0}$. Then (17) implies $d k_{j}^{\perp}=0$; in other words we need consider only tangent vectors $d k_{j} \varepsilon S_{G}=S_{E}$. The linear space of tangent vectors in S_{G} satisfying (13) is of dimension

$$
\begin{equation*}
n_{G} l-(N-1)=\tau \tag{20}
\end{equation*}
$$

If $\tau>0$ we can express the $d k_{j}$ in terms of a basis for this space S_{τ} and, substituting these expressions into the equation (14) for H obtain a quadratic form H_{τ} on S_{τ}. H will be singular if and only if H_{τ} is singular. The cusp equation is thus

$$
\begin{equation*}
\operatorname{det} H_{\tau}=0 \quad \text { for } t=t_{\mathbf{0}} \tag{21}
\end{equation*}
$$

If we exclude the unlikely possibility that $\operatorname{det} H_{\tau}=0$ is incompatible with $t_{0} \varepsilon L_{G}$ it follows that L_{G} has cuspidal points if and only if $\tau>0$.

This possibility is realised in the following situation:
Suppose that G has one or more pairs of vertices joined by more than one line. Then L_{G} is reducible $L_{G}=\bigcup_{v}\left(L_{G}\right)_{v}$. Each component $\left(L_{G}\right)_{v}$ is the leading Landau singularity of the graph G_{1} obtained from G by replacing every set of lines joining the same pair of vertices by a single line and giving the internal mass ${ }^{2}$, m^{2}, for this line one of the values $\left(\pm m_{1} \pm \ldots \pm m_{u}\right)^{2}$ where m_{1}, \ldots, m_{u} are the internal masses for the u lines. The components $\left(L_{G}\right)_{v}$ have no effective intersections. Hence if $\tau=0$ for G_{1}, so that $L_{G_{1}}$ has no cuspidal points, then L_{G} has no cuspidal points. Nonetheless the interpretation of the condition $\tau>0$ given in the following paragraph shows that $\tau>0$ for G.

Clearly there is no loss of generality in considering only irreducible graphs, i.e. graphs for which L_{G} is irreducible (as an algebraic variety in T for general values of the internal masses). The example given above, and others suggest that det $H_{\tau}=0$ for $t=t_{0}$ may be incompatible with $t_{0} \varepsilon L_{G}$ only if L_{G} is reducible. We shall assume that this conjecture is correct.

To interpret the condition $\tau>0$ consider the Landau equations which define L_{G}. These are algebraic equations in the components of the loop momenta k_{j} and of the
external momenta p_{m}. Also L_{G} is of complex codimension 1 in T. It follows that the freedom d of loop momenta k_{j} satisfying the Landau equations for given $t \varepsilon T$ must be -1 . For a normal graph the Landau equations (5) imply $k_{j} \varepsilon S_{G}$ for all ${ }_{j}$. The Landau equations (6) impose N further independent conditions on the k_{j}. The freedom of vectors k_{j} satisfying these two conditions is

$$
\begin{equation*}
d^{\prime}=n_{G} l-N=\tau-1 \tag{22}
\end{equation*}
$$

If $\tau=0, d^{\prime}=d$, i.e. these conditions are equivalent to the full set of Landau equations. If $\tau>0, d^{\prime}>d$ and there must be $d^{\prime}-d=\tau$ further conditions imposed on the k_{j} by the loop equations (5). In [7] it is shown that these additional conditions are of two kinds-tautening conditions and caplanarity conditions ${ }^{3}$). Hence we have the

Cusp criterion

The leading Landau singularity of a normal and irreducible graph G has no cuspidal points if and only if the dual diagram of G is determined by the internal mass conditions alone ${ }^{4}$).

A loop of G which has less than $n_{G}+1$ lines we call deficient. The single loop subgraph of G formed by a deficient loop we call a subgraph of type A. The subgraph of G formed by the loops of G around a vertex of G for which there is a tautening condition we call a subgraph of type B. Note that if we have a set of tangent vectors $d q_{i}$ satisfying the orthogonality conditions (13) for the lines of a subgraph G_{1} of G then we may construct a set of tangent vectors satisfying (13) for all lines of G by defining $d q_{i}$ to be zero for any line i not in G_{1}. To obtain a basis for S_{τ} choose τ independent caplanarity and tautening conditions, which together with the internal mass conditions define the dual diagram of G. Corresponding to each of these conditions is a subgraph of G, of type A or type B. Construct for each of these subgraphs a set of tangent vectors $d q_{i}$ satisfying the orthogonality conditions for the lines of the subgraph and extend this set to a vector of S_{τ}. The vectors of S_{τ} constructed form a basis ${ }^{5}$).

Let G_{1} be a subgraph of G. The restriction to the space of tangent vectors $d q$ satisfying $d q_{i}=0$ for $i \bar{\varepsilon} G_{1}$ of the Hessian form H of G is the Hessian form H_{1} of G_{1}. However, a tangent vector singular for H_{1} is not in general singular for H. This will be the case only if the subspace $S_{1 \tau}$ of S_{τ} is an invariant subspace for H. Denote by G_{c} the subgraph of G formed by taking the union of all subgraphs of types A or B. From the method of construction a basis for S given in the preceding paragraph it follows that $S_{c \tau}=S_{\tau}$. Let $\left(G_{c}\right)_{b b=1, \ldots, d}$ be the connected components of G_{c}. Then $S_{\tau}={ }_{b}^{\oplus} S_{b \tau}$ and H_{τ} is completely reducible with respect to this decomposition.
Thus the cuspidal points of L_{G} are the points on L_{G} which satisfy one of the conditions $C_{G_{b}}: \operatorname{det} H_{b \tau}=0$.

[^2]If G is anomalous then $\operatorname{det} C=0$ at all points on L_{G}. Moreover it is not true that for a general point of L_{G} the corresponding solution of the Landau equations is unique in k and unique up to a factor in the Feynman parameters α_{i}. The pinch in K corresponding to a general point of L_{G} for an anomalous graph with $n_{G}-n_{E}=s$ and $n_{G} \leqslant n$ corresponds to a non-simple pinch of dimension equal to that of the manifold of s-dimensional subspaces of P orthogonal to S_{E}. This is so because there is no way to single out a particular s-dimensional subspace of P orthogonal to S_{E} from which the components of the internal momenta orthogonal to S_{E} should be taken. H is now nowhere of maximum rank on L_{G} and cuspidal points on L_{G} are to be expected when the rank of H falls below its general value. The condition $\tau=0$ remains sufficient to exclude cuspidal points since the rank of H remains constant on the space of tangent vectors taken from S_{G}. It should be pointed out that the analysis of the type of a Landau singularity given in [7] does not apply to the singularities of anomalous graphs.

3. Examples

Example 1. The Mercedes diagram (Fig. 1).
Loop momenta k_{1}, k_{2}, k_{3} may be chosen so that

$$
u_{1}=k_{3}-k_{2} \quad v_{1}=k_{1}+w_{1}
$$

where $w_{1}=1 / 3\left(-p_{3}+p_{2}\right)$, together with 6 further relations obtained by permuting the indices cyclically.

Fig. 1
Mercedes diagram
The Mercedes diagram is normal and irreducible and $n_{G}=2$. There are no deficient loops and one tautening condition corresponding to the 3 loops around the center vertex. Choose loop momenta as indicated in the figure. We denote by b_{1}, b_{2}, b_{3} the tangent vectors $d k_{1}, d k_{2}, d k_{3}$. Then the Hessian H is given by

$$
\begin{align*}
H\left(b_{1}, b_{2}, b_{3}\right) & =\alpha_{1} b_{1}^{2}+\alpha_{2} b_{2}^{2}+\alpha_{3} b_{3}^{2}+\alpha_{12}\left(b_{1}-b_{2}\right)^{2} \\
& +\alpha_{23}\left(b_{2}-b_{3}\right)^{2}+\alpha_{31}\left(b_{3}-b_{1}\right)^{2} \tag{1}
\end{align*}
$$

and the orthogonality conditions are

$$
\begin{gather*}
b_{1} \cdot v_{1}=b_{2} \cdot v_{2}=b_{3} \cdot v_{3}=0 \\
\left(b_{1}-b_{2}\right) \cdot u_{3}=\left(b_{2}-b_{3}\right) \cdot u_{1}=\left(b_{3}-b_{1}\right) \cdot u_{2}=0 . \tag{2}
\end{gather*}
$$

The dual diagram defining L_{G} may be constructed by the rules given in [7] for planar graphs G. (Fig. 2).

Fig. 2
Dual of Mercedes diagram

The tautening condition implies that the lines of the vectors v_{1}, v_{2}, v_{3} are concurrent in 0 . Denote by a^{\perp} the vector in S_{G} perpendicular to a given vector a in S_{G}, obtained from a by a positive rotation throught $\pi / 2$. From the dual diagram (Fig. 2) it is clear that the orthogonality relations (2) are satisfied by

$$
\begin{equation*}
b_{1}=\overrightarrow{00}_{1}^{\perp} \quad b_{2}=\overrightarrow{00}_{2}^{\perp} \quad b_{3}=\overrightarrow{00}_{3}^{\perp} . \tag{3}
\end{equation*}
$$

Then $H\left(b_{1}, b_{2}, b_{3}\right)=H\left(b_{1}^{\perp}, b_{2}^{\perp}, b_{3}^{\perp}\right)$

$$
\begin{equation*}
H\left(b_{1}, b_{2}, b_{3}\right)=\lambda^{2}\left\{\alpha_{1} \overrightarrow{00}_{1}^{2}+\alpha_{2} \overrightarrow{00}_{2}^{2}+\alpha_{3} \overrightarrow{00}_{3}^{2}+\alpha_{12}{\overrightarrow{0_{1} 0_{2}^{2}}}_{2}^{2}+\alpha_{23} \overrightarrow{0}_{2} \overrightarrow{0}_{3}^{2}+\alpha_{31}{\overrightarrow{0_{3}} \overrightarrow{0}_{1}^{2}}_{\}}\right\} \tag{4}
\end{equation*}
$$

Thus cuspidal points on L_{G} are given by

$$
C_{G}: \alpha_{1} \overrightarrow{00}_{1}^{2}+\alpha_{2} \overrightarrow{00}_{2}^{2}+\alpha_{3} \overrightarrow{00}_{3}^{2}+\alpha_{23} m_{1}^{2}+\alpha_{31} m_{2}^{2}+\alpha_{12} m_{3}^{2}=0
$$

Example 2. The double crossed square. (Fig. 3). The internal momenta are related to the loop and external momenta by the equations

$$
u_{1}=k_{3}-k_{2}+w \quad v_{1}=k_{1}+w_{1}
$$

where $w=-1 / 3\left(p_{1}+p_{2}+p_{3}\right), w_{1}=-1 / 3\left(-p_{3}+p_{2}\right)$, together with the equations obtained by cyclically permuting $1,2,3$. The double crossed square diagram is normal and irreducible and $n_{G}=3$. It has 3 linearly independent loops and 6 lines so $\tau=4$. There are 4 loops of deficiency 1 . For each loop of deficiency 1 we construct a vector of S. These vectors are

$$
\begin{equation*}
d k=\left(s_{1}, 0,0\right) \quad d k=\left(0, s_{2}, 0\right) \quad d k=\left(0,0, s_{3}\right) \quad d k=(s, s, s) \tag{5}
\end{equation*}
$$

Here s_{1}, s_{2}, s_{3}, s are vectors in S_{G} perpendicular to the planes determined by v_{1}, u_{2}, $u_{3} ; v_{2}, u_{3}, u_{1} ; v_{3}, u_{2}, u_{1} ; v_{1}, v_{2}, v_{3}$.

$$
\begin{align*}
& H\left(b_{1}, b_{2}, b_{3}\right)=\alpha_{1} b_{1}^{2}+\alpha_{2} b_{2}^{2}+\alpha_{3} b_{3}^{2}+\alpha_{23} b_{23}^{2}+\alpha_{31} b_{31}^{2}+\alpha_{12} b_{12}^{2} \tag{6}\\
& \quad H=\alpha_{1}\left(\lambda_{1} s_{1}+\lambda s\right)^{2}+\alpha_{2}\left(\lambda_{2} s_{2}+\lambda s\right)^{2}+\alpha_{3}\left(\lambda_{3} s_{3}+\lambda s\right)^{2} \\
& \quad+\alpha_{23}\left(\lambda_{2} s_{2}-\lambda_{3} s_{3}\right)^{2}+\alpha_{31}\left(\lambda_{3} s_{3}-\lambda_{1} s_{1}\right)^{2}+\alpha_{12}\left(\lambda_{1} s_{1}-\lambda_{2} s_{2}\right)^{2} \tag{7}
\end{align*}
$$

In (6), $b_{i}=d q_{i}$. In (7) $\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda$ denote the components of $d k$ relative to the basis (5) of S. Cuspidal points on L_{G} are given by the vanishing of the determinant of the quadratic form $H\left(\lambda_{1}, \lambda_{1}, \lambda_{2}, \lambda_{3}\right)$.

Fig. 3
Square with non-intersecting diagonals
Example 3. The crossed square diagram (Fig. 4).
The crossed square diagram is normal and irreducible and $n_{G}=3$. It has two independent loops which can be chosen as in Fig. 4. Each of these loops has deficiency 1. Denote by $a \times b$ the vector product of two vectors a, b in the 3 dimensional space S_{G}. The space S may be parametrised by writing

$$
\begin{equation*}
d k_{1}=\lambda_{1} k_{1} \times p_{1} \quad d k_{2}=\lambda_{2} k_{2} \times p_{2} \tag{8}
\end{equation*}
$$

Fig. 4
Crossed square
Then the Hessian form

$$
\begin{equation*}
H=\alpha_{1}\left(d k_{1}\right)^{2}+\beta_{1}\left(d k_{1}\right)^{2}+\left(d k_{1}+d k_{2}\right)^{2}+\alpha_{2}\left(d k_{2}\right)^{2}+\beta_{2}\left(d k_{2}\right)^{2} \tag{9}
\end{equation*}
$$

has the restriction to S

$$
\begin{align*}
H=\lambda_{1}^{2}\left(\delta_{1}+1\right)\left(k_{1} \times p_{1}\right)^{2} & +\lambda_{2}^{2}\left(\delta_{2}+1\right)\left(k_{2} \times p_{2}\right)^{2} \\
& +2 \lambda_{1} \lambda_{2}\left(k_{1} \times p_{1}\right) \cdot\left(k_{2} \times p_{2}\right) \tag{10}
\end{align*}
$$

in (10) we have for convenience chosen a normalisation of the α 's in which the parameter for the diagonal line is set equal to 1 . Here

$$
\begin{gather*}
\delta_{1}=\alpha_{1}+\beta_{1} \quad \delta_{2}=\alpha_{2}+\beta_{2} \tag{11}\\
H=\lambda_{1}^{2}\left(\delta_{1}+1\right) G\left(k_{1}, p_{1}\right)+\lambda_{2}^{2}\left(\delta_{2}+1\right) G\left(k_{2}, p_{2}\right) \\
+ \tag{12}
\end{gather*}
$$

where $G\left(k_{1}, p_{1}\right)=\left(k_{1}^{2}\right)\left(p_{1}^{2}\right)-\left(k_{1} \cdot p_{1}\right)^{2}$ is the Gram determinant of k_{1} and p_{1} and $G\left(k_{1}, p_{1} ; k_{2}, p_{2}\right)=\left(k_{1} \cdot k_{2}\right)\left(p_{1} \cdot p_{2}\right)-\left(k_{1} \cdot p_{2}\right)\left(k_{2} \cdot p_{1}\right)$. From (12) we obtain the condition satisfied by cuspidal points on L_{G}

$$
\begin{equation*}
C_{G}:\left[G\left(k_{1}, p_{1} ; k_{2}, p_{2}\right)\right]^{2}-\left(\delta_{1}+1\right)\left(\delta_{2}+1\right)\left[G\left(k_{1}, p_{1}\right)\right]\left[G\left(k_{2}, p_{2}\right)\right]=0 \tag{13}
\end{equation*}
$$

A detailed analysis of the Landau curve for this diagram for general values of the internal masses has been carried out by G. Barruchi [8] and independently by the author (unpublished). The Landau curve has total degree 12 and class 16. It has 24 cusps and 10 finite nodes. The genus is 9 . In the case considered in [1] the internal masses are so specialized that $L(s, t)=0$ splits into two components, one of which corresponds to points whose dual diagrams have a certain symmetry. The points on $L(s, t)=0$ at which the cusp condition is satisfied are then six points on the symmetric component at which the symmetric component has cusps and six further points which are points in which the two components touch and the unsymmetric component has cusps. These points are all the intersections of the two components which are rational curves of order 6 .

References

[1] Eden, R. J., Landshoff, P. V., Polkinghorne, J. C., and Taylor, J. C., J. Math. Phys. 2, 656 (1961).
[2] Regge, T., and Barruchi, G., Nuovo Cim. 34, 106 (1964).
[3] Pham, F., Singularities des Processus de Diffusion Multiple, I, II. CERN preprints 65/487/5TH. 651 66/1039/5-TH. 687 1966. Submitted to Ann. Inst. H. Poincaré.
[4] Fotiadi, D., Froissart, M., Lascoux, J., and Pham, F., Analytic Properties of Some Integrals Defined over a Complex Manifold. Preprint, Paris, Centre de Physique Théorique, École Polytechnique, 1963.
[5] Milnor, J., Morse Theory, Princeton University Press, 1963.
[6] Тном, R., Ann. Inst. Fourier 6, 43 (1956).
[7] Polkinghorne, J. C., Analytic Properties in Perturbation Theory. Lectures in Theoretical Physics, Brandeis Summer Institute, 1961, Vol. 1, New York; W.A. Benjamin, Inc. 1962.
[8] Barruchi, G., Nuovo Cim. 45, 436 (1966).

[^0]: ${ }^{1}$) The content of this paper forms part of a thesis submitted by the author to the University of Cambridge in August 1966 in partial fulfillment of the requirements for a PhD .

[^1]: ${ }^{2}$) In (2), and in subsequent equations, we use the summation convention.

[^2]: ${ }^{3}$) If G has a loop with less than $n_{G}+1$ lines, then the Landau equations require the momenta for these lines to be linearly dependent. This imposes one condition on the loop momenta independent of the two conditions above. We call this a caplanarity condition whether or not the loop has only three lines.
 ${ }^{4}$) We refer to the configuration of vectors $q_{i} \varepsilon P$ satisfying the Landau equations for L_{G} as the dual diagram of G (irrespective of whether G is planar).
 ${ }^{5}$) For a subgraph of type A the construction of the tangent vectors $d q_{i}$ presents no difficulty. An example of the construction for a subgraph of type B is given below (Ex. 1).

