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Calculation of the N-N Phase-Shifts Taking
into Account Exited States of the Nucléons1)

by S. Wagner
IL Institut für theoretische Physik der Universität Hamburg

and P. Winiger
Physikalisches Institut der Universität Fribourg

(10. IV. 68)

Summary. Elastic N-N phase-shifts are calculated using the strong-coupling potential derived
by Fierz [1] who employed the fixed source PS-PS meson theory of Wentzel [2]. In the limit
of strong coupling, isobaric states of the nucléon appear, and consequently the N-N interaction
has to be treated as a multi-channel problem. Using the experimental values of the renormalized
pion coupling constant and of the N^ resonance energy, we introduce a hardcore of about 0.5 fermi
as the only phenomenological parameter. The multi-channel Schrödinger equation is solved for
positive energies. As a result of the calculations we obtain the correct energy dependence of the
two S-wave phase-shifts at intermediate energies. All D-wave phase-shifts check with the
experimental values up to 100 MeV; for higher energies the computed phase-shifts are too large. For high
values of angular momentum they tend to OPEC phase-shifts; here all phase-shifts with / > 3

are in agreement with experiment. But for most of the intermediate odd phase-shifts there occurs
the same kind of disagreement that is known from perturbation theory, when no vector mesons
and no spinorbit potential are introduced into the theory.

1. Introduction
Meson field theories in the strong coupling limit were developed between 1940 and

1945 after W. Heisenberg introduced the idea of spin inertia in 1939 [6]. Following
Wentzel's paper [2] of 1940, in which he developed the concept of strong coupling,
Schwinger and Oppenheimer [9] and Pauli et al. [7, 8] developed different
approaches to this concept with common results. Then Wentzel and his school [2-5]
again took up the problem and obtained solution .for ji-N, N-N and multinucleon
interaction in the limit of strong coupling. The main result was the appearance of
nucléon isobars for high values of the pion coupling constant, These isobars appear as
intermediate states in the N-N interaction. Fierz [1] obtained a strong coupling N-N
potential in matrix form, which is better suited to straightforward numerical calculations

than the equivalent operator of Serber and Dancoff [8]. The early numerical
results failed to agree with the experiments, because too low values of the isobar excita-

x) Work supported by IBM (Schweiz), Schweizerischer Nationalfonds zur Förderung der
Wissenschaften and by the Physikalisch-Philosophisches Sonderstudium (Fribourg).
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tion energy had been taken, and in addition, unacceptable approximations were
introduced2).

Villars [4] found, that by using an intermediate pion coupling constant and an
isobar excitation energy greater than 100 MeV, reasonable N-N low energy results
could be obtained; but he used square well potentials for the radial dependence.
Coester [5] came to similar results for the higher nuclei by employing statistical
methods to solve the many-body problem. Houriet et al. [11-14] employed the strong
coupling theory to calculate N-N interactions. The Fierz' representation was used,
but only the isobars of low excitation energy were taken into account. Experimental
values of the N^3 resonance energy and of the renormalized coupling constant were
used. Good agreement with experiments was obtained in the calculation of the low
energy scattering parameters and the deuteron parameters by Houriet and Héritier
[11]. Following their calculation, the elastic N-N phase-shifts were computed. Some
results of these latter calculations are discussed in this paper.

In part 2 Fierz' strong coupling potential, including the isobaric intermediate
states, is reported. In part 3, the way, in which the strong coupling Schrödinger
equation can be used, to treat the case of intermediate coupling, is demonstrated.
Part 4 contains the description of the adopted numerical methods. The last part
contains the discussion of the calculated phase-shifts in comparison with the
experimental phase-shift analysis values.

2. N-N Interaction in the Strong Coupling Meson Field Theory
The N-N interaction at sufficiently large distances can be simply described by a

static pion field. The Hamiltonian of a pseudoscalar meson field coupled by symmetrical

PS-coupling to two fixed nucléons can be written as follows:

# % + %
g

*i - |/4^ y È È È°f < fdV U^ v" Va
i" a-l t=l A-l

with fx m^j% c. cpa and LJa are the canonical field operators obeying the familiar
boson commutation rules. ol and rx are the Pauli matrices of spin and isospin respec-

2) After the N^, isobars were found by experiment in 1952, the strong coupling theory was again
further developed in different directions (mainly the charged pseudoscalar theory in application
to n — N interaction). Pais and Serber introduced transformations, in which the isobar operators
are expressed in the form of integrals oi the movement of the total system. Landowitz and
Margolis, Wakano (Progr. Theor. Phys. 31, 879 (1964)), Goebel and Jahn [10] extended the
strong coupling method to obtain the unstable isobars in n — N interaction. Jahn developed
approximate procedures to deal with intermediate coupling, starting from the strong coupling
limit; contrary to earlier calculations he used canonical commutation rules. He also developed
a strong coupling version of the Chew-Low equation and treated the inelastic n — N interaction
numerically with this method. A detailed review of the literature of this period can be found in
Jahn's papers. A new period of strong coupling began with the application of Lie group theory
(see footnote 6]).
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tively. / is the dimensionless pion coupling constant. U(r{) is a source function3),
normalized to 1, describing the meson field near the nucléon centers.

Oppenheimer and Schwinger [9] have defined a mesonic radius of the nucléon :

«-1 =JdVjdV' JrèrAj UW U^ ¦ ®

A potential can be derived from (1) for the two limiting cases of weak coupling and

strong coupling. For weak coupling and large sources (ay > 1) no nucléon isobars

appear and the familiar OPEC (one pion exchange) potential is obtained, which also

follows from first order perturbation theory for point sources. This potential has a

physical meaning only for distances r > 2 fermi, where the meson clouds are as weak,
that only one-pion exchange is probable; in spite of this, the one meson potentials are
also applied for small distances in the modern OBEC theories. The strong coupling
potentials are derived for small sources (a [x <^ 1) under the condition

Ì2>afx. (3)

Here the number of exchanged mesons is not limited. There are two distinct kinds
of solutions, one inside and the other outside of the overlapping region of the two
source-functions. The far distance solutions were derived by Oppenheimer and
Schwinger [9] for classical field theory and by Serber and Dancoff [8] who applied
Pauli's strong coupling approach [7]. The same result was also obtained by the
approach of Wentzel [2]. Finally Fierz [1] developed a matrix representation of this
potential. It contains transitions between the ground state of the nucléons and an
infinite set of isobaric states, their spin values (equal to the isospin in each state)
being half integers4). The solutions in the overlapping region of the two source
functions, first derived by Serber and Dancoff [8] and later by Chun [15], are of the
Wigner type and are spin-isospin independent. The shape of this potential depends

only of the shape of the source-function. On the other hand, the above considered
solutions contain no other properties of the source-function than its range a. The

Schrödinger equation, given in the following, is derived in the region where the source-
functions do not overlap. It contains, besides the strong coupling potential, an isobaric
excitation term:

If [(- & + ^-) <W + V \« + V«M FJJP(x) k* FiTP(x) (3)

3) The use of the 'old fashiond' extended source treatment (1) is justified by the following
arguments : The pure pionic field with linear coupling is separated from all short range effects of a

more complicated interaction type. These effects are: vector meson exchanges (a), Q, cp), pseudo-
scalar mesons other than pions (rj, K, and N — N pairs. The structure of the function U(r)
may be more or less influenced by the exchange of these particles only within a sphere of about
0.7 fermi. The strong coupling solutions contain no explicit properties of the source function
except its range. (In the early numerical strong coupling calculations of the radius a, the proton
Compton wave-length was chosen, since at this time the form-factor of the nucléon was not yet
known; therefore these results do not check with experiments.) If a range greater than the
nucléon Compton wave-length is introduced, some effects of the vector mesons are implicitly
accounted for. The spherical symmetric form-function has the same effect as an isospin zero
vector meson, e.g. the co.

*) The derivation of the strong coupling solutions and their matrix representation is given in the

papers of Wentzel [2] 1943 and of Fierz [1].
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where k2 (EdmNj2 m2.), Ed scattering energy in lab.-system, x /j. r and r
\rA- rB\.

The total momentum /, the total isospin T and the parity P axe conserved

quantum numbers and therefore any combination (/, T, P) gives a separate system
of Equations (3). Fierz [1] has given a complete decomposition4) of the potential
Vnn,(x) in the irreducible basis

n=\L,S,j1,j2); n'=\L',S',j'1,j'.l) (4)

where L and S are the quantum numbers of angular momentum and spin of the N-N
system, and

/i h > h h (5)

are the quantum numbers of spin and isospin of the single nucléons; they are equal
to 1/2 in the ground states and greater than 1/2 in the isobaric states. The term en

containing the excitation energy Er (which is determined by the range a of the source
function and by the coupling constant) becomes :

[h tii + 1) + U (H + 1) - 4] • (6)

The potential decomposes as usual into a spin dependent central potential and a

tensor potential :

V„AX) * y- <h. h !ß' I ïi.fù òss- òll-

+x -x- f1 + \ + i) <L S /i /« I& I L' S' /i i'2> W

where X f'f (mNjmAi and the Fierz matrices can be obtained from the formulas in [1] :

Q' 3Q(T, S,j1,j'1,j2,j'2)

0' 9 [t(J, T, S, S', L, L', j\, i{, n, j'2) - | Q] (8)

In the limit of very strong coupling Q' and 0' are infinite quadratic matrices, whose
elements are all of the order of magnitude 1. These matrices connect the isobaric states

5) Recently the Lie group properties of Wentzel's strong coupling ji— N solutions were studied in
some papers [16]. The original Hamiltonian (1) transforms according to the rotation group for
the spin and for the isospin. In the limit of strong coupling the interaction part of the
transformed Hamiltonian has the Lie group symmetry SU(2) x SU(2) x T9. The matrix representation

of Fierz [1] adapted here, is equivalent to these results, as mentioned by Jahn [10]. But
there is an essential difference in the two approaches. The term (6) containing the excitation
energy is directly derived in strong coupling theories; it is not allowed in the case of the pseudo-
scalar symmetrical theory that this term vanishes (which would mean, that the range of the
source function were zero). On the other hand, an equivalent mass breaking term can be
introduced ad hoc in group theories in the usual way, which has be done by Ne'eman [16].
The so called strong coupling group was also extended by Goebel and by Dullemond [16] to
deal with the octet representation, containin,r the strange particles; the lowest excited multiplet,
which is obtained in this case, is the decoujlet Ass. Deshpanade derived the same group from
Chew's reciprocal bootstrap dynamics.
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with the scattering states j1 j2 1/2. The radial dependence is the same as that of
OPEC potentials, but here the renormalized coupling constant

fr | /2 (9)

occurs, because the greater part of the mesonic field is coupled to the spin of the bound
meson clouds.

There are some limitations for the set of irreducible bases according to the
conditions :

I h -h\ <S, T < j\ + /j,
|S-l|</<S4-L,

AL, AS ==0 or 2; Aj1,Aj2 0or 1. (10)

Symmetrized eigenfunctions in jx and /2 can be used. These functions then have to be

totally antisymmetric according to Pauli's principle, which demands :

L + S + T odd (11)

Thus the strong coupling Schrödinger equation turns out to be an infinite system of
coupled differential equations of second order. The potential (aside from usual
meaning of the matrix elements with jx j2 =1/2 in the oscillatory differential
equations) couples the differential equations of the different irreducible bases. These
solutions of the field theory are of some interest, since the physical case can thus
be restrained between the two limits of weak and strong coupling, where explicite
solutions are possible. Since the system is infinite, the question of convergence
arises. Obviously the contribution of higher isobars decreases, because the large
centrifugal terms L (L + l)jx2 occurs in their differential equations. This is so,
because the restrictions (10) cause the large values of S j\ + j2 to be connected
with the higher isobars, and consequently also the large values of L.

3. Modification of the Strong Coupling Equations
for an Intermediate Coupling Calculation

The TOMONAGA-approximation enables an intermediate coupling calculation
of the 7T.-N system without limiting the number of exchanged mesons. M. Friedmann,
T. D. Lee and R. Christian [17] have shown by this, that the physical case is very
close to the strong coupling limit of quantum field theory. An equivalent TOMONAGA-
calculation of the strong coupling equations, which shall be used in this paper,
resembles very much such a more realistic case. In this case it makes no sense to take
all the higher isobars into account. For finite coupling constant the splitting of the
bound and unbound meson states for high angular momentum is no longer strict.
Only the isobars with the lowest excitation energy should therefore be treated in the
strong coupling manner, while the extremely unstable higher isobars can be added to
the continuum. Then the system of Equations (3) is finite and containes only the
following channels:

(N + N) and (N + N*3) for T 1,
(N + N) and (N*s + N*3) for T 0 (12)
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The (N*3 + A7*3)-channel needs twice the excitation energy than that of the (N + N*s)-
channel. The latter is therefore less important, but neither is neglectable. Below the
inelastic threshold only the channel (N + N) gives solutions of an oscillatory type
with finite amplitudes at infinite distances. The isobaric eigenfunctions are nonzero
only within the range of the potential. But they contribute to the phase-shifts of the
asymptotic wave-functions.

No explicit use shall be made of the source function U(r), but it is implicitly
assumed, that it is of spherical symmetry. Two effects depending on t/(| r |) are
treated phenomenologically : the isobar excitation energy and the core. In both cases

only the range is of importance and not its shape.
The excitation energy of the N£3 and the renormalized coupling constant are fixed

by their experimental values :

Er 300 MeV

/2 0.07 to 0.08 or g2 12 to 13 (13)

The second consequence of the source function is the potential in the inner region,
where both source functions overlap. Here the solutions of the previous chapter are no
longer valid; the interaction depends essentially of the shape of U(r). While the strong
coupling potential (7) for a large separation of the sources depends of the renormalized
coupling constant /2/9, the latter is proportional to the unrenomalized coupling
constant/2. If a suitable shape of U(r) is taken, there will be no singularity of this
potential for r -> 0, as would be the case in weak coupling potentials. Here as in [11]
this potential is idealized by a hard core, independent of the state :

f oo for r rc
V(\r\) \ (14)

l Kn-(x) for r > rc.

The core radius rc is the only phenomenological parameter of this theory. In this
approximation scheme the core radius rc and the excitation energy Er axe treated as

independent variables. But actually they both depend on the same source function
and coupling constant.

With these modifications, the strong coupling Schrödinger equation can be solved
exactly, both for the bound states of light nuclei and the positive energy stattering
states. These solutions may be significant for as high energies as the dynamic of the
nucléon can be treated non-relativistically and recoil effects are negligible.

4. The Numerical Methods6)

For obtaining the phase-shifts, the solutions of the coupled system of Schrödinger
equations are worked out. Schwinger's method of variation-iteration (which was
successfully adapted by Houriet and Héritier [11] in the case of low energy
scattering and bound state wave-functions) failed to converge in most of the cases con-

The computer calculations were performed on IBM 7090 at CERN (Geneva), on UNIVAC III
of the Centre Electronique (Fribourg), on IBM 7040 of the Ecole Polytechnique (Lausanne),
on IBM 7094 of Deutsches Rechenzentrum (Darmstadt) ; preliminary calculations were done on
IBM 1620 of Gebr. Sulzer AG (Winterthur).
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sidered here. The methods described here are sufficient for solving the scattering
problem with the used potentials and within the treated range of energy. In the case
of the phase shifts of high angular momentum, where the precision is not sufficient,
and in the cases of strong spin-orbit potentials, these methods were extended later by
Achour [12], Ade [13] and Wagner [14].

The system of Equations (3) contains two types of differential equations: one or
two wave-functions of oscillatory type v(x) F-[Tsfi(x), and several wave-functions
of isobaric type, the latter with the boundary condition to be zero at infinity. For the
cases of one oscillatory type differential equation in the system, the following iterative
procedure has been developed: The wave-function v(x) is obtained by parabolic
approximation and continuation step by step. In a first iteration stage all isobaric
wave-functions are neglected in Equation (3) :

[& - -Ï- + *"] VM F"W *(*) • ^
The Taylor series solutions are constructed by

v (x + Ax) v(x) + v'(x) Ax + v"(x) (Ax2j2)

v' (x + Ax) v'(x) + v"(x) -Ax (16)

Starting at the core xc, v(xc) has to be zero. The value of the derivative v'(xc) may be
chosen arbitrary, affecting only the amplitude of v(x). The solution v(x) is then
calculated point by point according to Equation (16).

The differential equations of the isobaric components FJnTP(x), which are coupled
to the oscillatory function v(x) by the system (3) are transformed into integral
equations by their corresponding Green's functions,

oo

FiTP[x) =/gl(x, x') [ZFJJP(x) V.A*)] dx d?)

with the conditions GL(xc, x) 0 and GL(co, x') 0. The Green's functions are
constructed as follows :

x < x': GL(x, x') A- tâ(x) - p\(x) p[(xc)jpL2(xc)] p\(x')

x>x': GL(x, x') J- \_p\(x') - p\(x') p\(xc)jpi(xc)] p\(x) (18)

p\ and p2 are the two fundamental solutions of the homogeneous equation

and may be calculated by the recursion formulas

p\(rj x) - p\-\rj x)2(L-\)jrjX + p^Hr, x)

P\(rj x) pt1 (rj x) 2 (L - ~)jr] x + p^2(r, x) (20)
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The fundamental solutions of lowest order are :

p\(rjx)=e^ ; p\(nx)=e** [l - ^]
Pl(r, x) <T»; p\(rj x) e~"x [l + -j-\ (21)

The approximate solution for v(x) of Equation (15) is used in (17), where in the first
step the isobaric wave-functions are set equal to zero on the right-hand side. In the
following iteration step the solutions of (17) are introduced into the completed
differential Equation (15) :

d2 L(L + 1)
dx2 x1

k2} v(x) Vn(x) v(x) +£fJJp(x) VnAx) (22)
J »'-2

This solutions and the wave-functions of the isobaric type previously obtained, are
then again introduced into (17). This procedure of iteration converges in several steps
to the exact solution of Equation (3).

A modification of this method is needed in the triplet states with / #= L, where the
system (3) contains two differential equations of oscillatory type. Both asymptotic
wave-functions u(x) with L / — 1 and w(x) with L J + 1 ought to have the same
phase-shift, according to the definition of the eigenphase-shift solutions of Blatt and
Biedenharn [18]. Besides the phase-shifts, the quotient of the asymptotic wave-
function amplitudes has to be determined. There are two solutions a and ß with
negative reciprocal quotients of amplitudes:

à* àu ôw; òp òu òw

tge [wa(x)lua(x)] - iuß(x)jwp(x)] for k x > L + 2 (23)

Again, as in the above procedure, the wave-functions of the isobars are obtained from
integral equations, and the wave-functions of oscillatory type are constructed by
parabolic approximation. Several solutions with different initial derivative quotients
have to be found in order to interpolate the parameters of the eigen-phase-shift
solutions [18].

5. Discussion of the Calculated Phase-shifts

In Figure 1 the calculated 1D2 wave-function solutions of 200 MeV are shown. The
shape of oscillatory wave-functions with and without coupled isobars is not very
different, even in the case of lD2, where the major contribution to the phase-shift is
due to the isobaric channels. All isobaric functions are of the type illustrated and
vanish within the first arc of the oscillatory function. Their amplitudes are about two
orders of magnitude smaller than the asymptotic scattering amplitude. The
parameters/2, Er and rc have to be fixed. Those values are chosen (see Fig. 3), which are
compatible with the low energy data according to Houriet and Héritier [11].
In Figure 2 the dependence of the two most important phase-shifts on these
parameters is shown. This dependence is reciprocal for/2 and rc. Therefore, the coupling
constant can be fixed at the experimental value, allowing only rc to be determined.
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XD2 eigen functions for 200 MeV, Set A.
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Figure 2

Dependence of the phase shifts 1S0 and XD2 on the parameters f% rc and Er
(for scattering energy 200 MeV).

The reciprocal dependence of/2 and rc for the phase-shifts 1S0 and 1D3 (which depend
essentially on the core) is in accordance with the theoretical results of Wentzel, namely

E aß
T2 const. —;

The dependence on the resonance energy Er of the iV*3 isobars is very weak. Therefore,
the neglected resonance broadening is no serious weakness of the theory.

The calculated phase-shifts are compared with the values of the last published
phase-shift analysis by Arndt and MacGregor [19]7), which contains all experimental
data until 1966. The coupled phase-shifts of their analysis were transformed into the
parametrization of the Blatt and Biedenharn convention [18], using Reference [20].

The energy dependence of the calculated phase-shifts are shown in Figures 3 and 4.

The inclusion of the isobaric intermediate states in this calculation of the wave functions

The last published ex values of Arndt et al. [21, 22] for 23 MeV and 50 MeV are nearly zero.
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Singlet phase shifts. Triplet even phase shifts.

causes the phase-shifts to rise. This contribution to the phase-shifts increases mostly
with energy, except for S-waves, where only a parallel displacement occours above
10 MeV. The isobaric contribution, which is quite different in the treated states, will
now be discussed in detail :

1) The correct energy dependence is obtained for both S-waves, which are also in
good agreement for very low energies, according to [11]. The deviation from OPEC
phase-shifts is considerably great for the S-waves, expecially for 1S0, where the lower
channel (N + N*s) contributes. The 1S0 phase-shift, which is negative at all energies
in OPEC-approximation, is displaced to about 50° by the N*s intermediate state.
The equivalent displacement of the 3S1 phase-shift is less, because only the 600 MeV
niveau (N*3 + N*j) contributes. The splitting of both S-wave phase-shifts, which
would be zero for unbroken SU(4) symmetry [23, 24], is of correct sign, but slightly
small. Below 50 MeV the slope is smaller than the experimental one. The mixing
parameter ex has a quite different behaviour in the weak and strong coupling case.
The latest published phase-shift analysis values seem to agree only with the latter case.
The deviation of the aS1 — 3D1 and ex phase-shifts above 200 MeV cannot be explained
by any kind of a static potential, including the strong coupling potential. Perhaps, the
nucléon recoil may account for.
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Up to now no other theory allowed to obtain the correct S-wave phase-shifts
without the addition of several phenomenological parameters or hypothetical mesons.
This may be explained by the fact, that in the usual field-theoretical or S-matrix
calculations only the one- and two-meson states are contained. But the S-waves
depend also on multi-meson exchanges.

2) The Z)-wave phase-shifts are in agreement with experiments below 100 MeV,
but get too large for higher energies. Essential is the enlargement of the 1D2 phase-
shift as compared with the OPEC phase-shift. At higher energies nearly the whole
phase-shift is effected by the (N + N*3)-channels. Relativistic effects might lower the
D-wave phase-shifts at higher energies, so that they are close to the experimental
values [14].

3) In contrary to the considerably good agreement of the above discussed even
phase-shifts with experiment, there occours the same kind of discrepancy of the most
odd phase-shifts as in the well known case of OPEC-calculations. But here the
discrepancy is even enlarged. The 3P1 phase-shift equals OPEC-values and is in good
agreement with experiments. But all / 4= L odd phase-shifts (3P0, 3P2 — 3F2 and e2,
and less 3F4 — 3H4 ande4) differ considerably from their experimental determinations8).

PP, *3F,
i\l\
1%

^r-i^E

:-,£Eu

A>i i

i i
i —-

_ -i

* 'F' *
i—*—* i—•*

H. }
¦-5"

MeV-200 .300 0 100 200

Figure 5 Figure 6

Triplet odd phase-shifts. Mixing parameters,
F-phase shifts.

8) The results of the 3F4-3H4 phase-shifts are published with the kind permission of F. Ade.
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This may be explained by the lack of a spin-orbit potential in this théorie. Only
the above phase-shifts are very sensible to such potentials. In addition, other short
range effects, which are idealized by the state-independent hard core, might have a

certain influence of these phase-shifts.

4) All phase-shifts / 2; 4, which are not shown here, are in agreement with experiments;

they tend all closely to OPEC-values. This has been shown by Achour [12].
This OPEC-condition is consistent with this theoretical assumption in the 'modified
phase-shift analysis'.

6. Conclusions

In the weak coupling field theories in Born's approximation (OPEC) only the
higher phase-shifts with / > 4 are in agreement with experiments; this is also the
case in the strong coupling theory. Yet in the latter case, there is also a remarkable
agreement to the S-wave phase-shifts at intermediate energies. The Z)-wave phase-
shifts at not too high energies are also in good agreement. But greater discrepancies
occour in both cases of the odd / + L phase-shifts, and they are even enlarged in
strong coupling theory. These phase-shifts are very sensitive to the inner part of the
potential and to a spin-orbit potential, which is not considered in this work.
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