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Abstract. The problem of paramagnetic impurities in high field superconductors is analyzed.
Special emphasis is put on the effects that appear when the impurity spins align in an external
field or due to interactions. The impurities then produces an exchange field on the conduction
electron spins which in some cases may counteract the effect of the external field on the conduction
electron spins. In such cases the critical field of the dilute alloy may rise above the value of the
pure system and the phase boundary HCAT) will have an anormalous shape. This effect is discussed
theoretically in detail and experimental results on the system Moi_a:M:rGa4 (M Nb, Ru, Mn,
Fe, Co) are presented.

1. Introduction

Since the first measurements of Matthias et al [1] and the theory of Abrikosov
and Gorkov [2] it is well known that magnetic impurities in superconductors have

very drastic effects on the superconducting properties. One may distinguish two
different effects of the magnetic impurities : (a) the scattering of the Cooper pairs on
the impurities (2nd order effect), (b) the effect of the exchange field (1st order effect).
The last effect may become predominant in cases where the spins of the impurities
are aligned, due to interaction between them, or due to an external field.

If one goes to a well-ordered dense ferromagnet at T 0, the second order
processes, i.e. the scattering on the magnetic ions will be absent and at first sight we are
left only with the mean exchange field. As first shown by Clogston [3] and Chandra-
sekhar [4] a simple BCS superconductor in an exchange field Hj will make a first order
transition to the normal state when xpmtu Hjj2, the gain in free energy of the normal
electron gas, becomes equal to A2 A(0)/2, the condensation energy of the superconducting

state (A is the energy gap and N(0) the density of states at the fermi level).
This gives a first order transition at H Hpo (the Clogston limit)

Hp0 ]/2 -^— 18.4 Too (kGauss) (1)
gfAB

The exchange fields in dense ferromagnets, exceed easily this value by an order of
magnitude, thus giving a very simple explanation why so far no dense ferromagnetic
superconductor has been found.

In an antiferromagnet, on the contrary, the mean exchange field is zero, and we
expect that antiferromagnetism and superconductivity can coexist. This was
demonstrated by Baltensperger and Strässler [5] who showed that a well-ordered
antiferromagnet can coexist with superconductivity in the 'spin wave region' i.e.
Tc <4 6c (6c magnetic transition point). They also showed that the indirect
interaction via virtual spinwaves between two conduction electrons is repulsive, but
generally weaker than the attractive electron phonon interaction.

The high exchange field in a ferromagnet can, however, in certain cases be
compensated by an external magnetic field, allowing the ferromagnet to become
superconducting in a region of high magnetic fields. This was first suggested by Jaccarino
and Peter [6]. They considered, as Baltensperger and Strässler, a system of localized
magnetic ions and a gas of conduction electrons including the attractive electron-

phonon-electron interaction, leading to superconductivity. They pointed out that
such a compensation should be possible of the mean value of the polarization of the
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conduction electrons points opposite to the total magnetic moment of the magnetic
ions. In this case the range of superconductivity will be determined by the equation

~Xn(H~HjY ^~N(0)A2

i.e.

Hj — Hpo ^ H ^C Hj + Hpo

This is illustrated in Figure 1.

(2)

\\ F (H)

H,t,

1

Z \ yw
\Fs,M J \^<h>

Figure 1

Free energy of the normal state Fni(H) and the
superconducting state FsX(H) for a non magnetic
metal and the same quantities (Fn2(H), FS2(H))
for a magnetic superconductor with an
exchange field He/f pointing opposite to the
external field, neglecting orbital effects Hui,
Hl2, HU2 are the corresponding paramagnetic
critical fields.

However, for this to be true, the orbital effects of the external field must be

negligible. More recent measurements of critical fields in high field superconductors
show that one in those cases mostly has H*(0) «a Hpo, where H*(T) is the critical
field due to purely orbital effects. In such cases the possibility of superconductivity
may already be destroyed when H fulfills the condition (2). One question that arises
is therefore, how to increase Hf. One might think that it should be possible to
compensate the orbital effect of the magnetic field by an effective internal field, in the
same way as one may compensate the effect of the external field on the spins by an
internal exchange field. This problem was analyzed by Avenhaus et al. [7]. They
found that the internal field that acts like an external field, and thus might compensate

the latter is 4 ti M where M is the mean magnetization of the ferromagnet. The
reason is essentially that to compensate the orbital part one needs long range
interactions and the only long-range interaction in a ferromagnet is the dipolar magnetic
field of the ions [8].

Apart from the difficulties due to the orbital effects of the magnetic field, there
is a practical difficulty in observing the effect of Jaccarino-Peter. Since we do not
know any ordered dense ferromagnetic superconductor, we have to start with a

ferromagnet that we can only hope will become superconducting when the magnetic
interactions are removed. This makes of course a systematic search for this effect very
difficult.

However, the compensation effect itself may be more easily observed in a
superconductor with magnetic impurities, if the critical field is high enough so that the
magnetic ions are aligned at H Hc at the temperatures available. Schwartz and
Gruenberg [9] suggested that one might in such cases observe as one increases the
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external magnetic field (at a certain temperature lower that Tc), first a superconducting

region, than a normal region and than a superconducting region again, the latter
one being determined essentially by condition (2). This second region can again only
be observed of H*(0) > Hpo, a condition not realized in the superconductors we know
today. Parks [10] reported the failure of an attempt to find this effect in Va%^xcZeAn.

However, in this system one has certainly Hf2(0) < Hvo and the second domain
predicted by Schwartz and Gruenberg will not appear.

We want to point out that even in cases where H*(0) < Hpo it is possible to
observe the compensation effect of Jaccarino-Peter by looking at the behaviour of the
critical field as a function of concentration (c) of magnetic impurities. The basic idea
is the following:

As shown by Fulde and Maki [11], the orbital critical field H*(0) (neglecting the
Clogston limit) decreases linearly with concentration c. We may write

H*(c, T 0) H*(c 0, T 0) 1 — (3)

where cCru is the concentration where the superconductivity is destroyed in absence of
an external field. On the other hand, the mean exchange field Hj (for aligned spins)
increase linearly with concentration.

H^^f>. •

(4)
gflB

/o is the mean value of the exchange interaction, S is the spin of the magnetic
impurity. Obviously these two fields must meet, and at a certain concentration c! we
will have | Hj | H*(0 c'). If the sign of Hj is opposite to H (external field) at
H H*(0 c') we will' have Hj + #J0 c') 0 and there will be no effect on the
conduction electron spins. This means however that the real critical field HCo will
be equal to H* at that concentration. To both sides of c' we will have HCi < H*
since than there will be a field acting on the conduction electron spins. The quantity
Hc(p, 0)IH*(c, 0) plotted as a function of concentration should therefore show a
maximum at c' in the case of compensation. On the contrary, if Hj and H have the
same sign we expect Hc-(c, c)jHf(c, 0) to decrease monotonously. This is illustrated in
Figure 2.

To discuss this effect quantitatively we need an expression for the critical field
of a high field superconductor with magnetic impurities. The problem without
magnetic impurities has been discussed by many authors [12]-[17] but it is only the
work of Werthamer et al. [17] (WHH) which permits a quantitative comparison with
experiment, and most recent work on high field superconductors has been compared
with this theory. For that reason we shall derive the critical field of a superconductor
with magnetic impurities in the WHH-formalism. This is done in chapter 2, where we
also discuss the case of a thin film with magnetic impurities. Since the calculation
follows very closely the one of WHH, we only give its main features. The more detailed
calculations are partly given in Appendix A-D. The final result when specialized to the
dirty limit, gives an expression which is analogous to the one obtained by Fulde and
Maki [11] but in disagreement with the expression obtained by Bennemann et al. [18].
In chapter 3 we discuss the obtained equations with emphasis on the compensation
effect.
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He"(T=0,C=0) Tc(c=0)

N T.

X^ (T.O.J

\ \ H*(T=0.c)
' \ <2

concentration C

Hc(t=o.O^
Hf(T.Oc)

concentration C

Figure 2

Schematic description of the concentration dependence
of the critical field HC.(T — 0) for a superconductor with
magnetic impurities. In the case of a compensation of the
paramagnetic effect, the reduced quantity Hfs will show
a maximum at the concentration c' where Hj(c') H*2(c').
In the second case this reduced quantity should decrease

monotonously.

One obvious result from chapter 3 is that to observe this compensation effect
one needs very high critical fields. To reach these fields experimentally, we constructed
a pulsed field apparatus, described in chapter 4. In chapter 5 we discuss the
experimental results on the systems Moi-3:Ma:Ga4 (M Nb, Ru, Mn, Fe, Co). Only Mn as

impurity showed a well-developed magnetic moment and in that case we were also
able to demonstrate the compensation effect.

In chapter 6, finally, we discuss in view of the results obtained in chapters 2-5 the
possibility of observing the effect of Jaccarino-Peter in more dense systems.

2. Calculation of the critical Field

As shown by WHH [17], to get a realistic description of the critical field it is

necessary to take into account both the orbital and paramagnetic effect of the external
field as well as non-magnetic and spin-orbit scatterings. The effect of the non-magnetic
scatterings is essentially to reduce the effective coherence length and thus decrease
the effect of the orbital part of the magnetic field, whereas the spin-orbit interaction
increases the susceptibility of the superconducting gas, thus increasing the
paramagnetic limit Hp discussed in the introduction. In addition this we have to take into
account the presence of magnetic impurities. We shall, however, not take into account
the dynamics of the spins, due to eventual interactions between the ions, since we are
mainly concerned with a demonstration of the compensation of the exchange field.
Furthermore, due to a recent paper by Keller and Benda [19], the spin dynamics has

very little effect on the superconductivity in the limits we are concerned with.
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We take as Hamiltonian :

1

2 m\3tf d3r ip+(r) (V - * e A)2 - g hb(o H) ip(r)

d3r dsr' xp+(r) Va(r, r') + Vb(r, r') ip(r')

g r
— d3r ip+(r) ip+(r) ip(r) ip(r)

(5)

His the external field, A is the vector potential, ip+(r), ip(r) are the field operators.
Va is the potential due to non-magnetic impurities, Vb is the potential due to magnetic
impurities.

Va(r, r') ]T Vai(r - Rt) ô(r - r') + Va2 l^~ -Rt,r-A

£ Vti(r - R)) ô(r - r') + Vbi {^~ -R-t.r- A

(6a)

VB(r, r')

N J(r - RA (S ¦ a) ô(r - r') (6b)

Vai and Vbi are non-magnetic potentials, Va2 and V„2 are spin-orbit potentials and

f(r — Rf) is the exchange interaction between the localized ions with spin S and the
conduction electrons with spin a. N is the number of atoms in our system. Ri, Rj
are the positions of the non-magnetic and magnetic ions, respectively. Throughout this
and the next chapter we work with units h c ks 1.

To distinguish from the beginning between the mean exchange field and the
scattering effect of the magnetic ions, we subtract the mean value /o from f(r — Rj)
in Vb(r r'). We then write for the exchange potential

N Z(J(r-R*)-Jo)(S-o)

The subtracted term is added to the term proportional to (H o). After taking the
average of the impurity spins this gives us the mean exchange field, defined by
equation (4).

The Hamiltonian (5) gives us the following Gorkov equations

(*°Jn + 2*m (V ~ ie A)2 ^ëUB((H + Hj)-a)+ pij GJr, r')

- Va(r, n) + Vb(r, n) Gm(n, r') d*n (7a)

+ A(r) F+(r, r') ô(r - r')
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(h(ri, r) + Vi(n, r) Fm+(n, r') d*n (7b)/¦
+ A*(r) Gm(r, r') 0

where as usual mn n T(2 n + 1) and A ¦ B denotes the spin matrix product. Furthermore

^oc/j — Vßa > a> ß spinindices.

The order parameter A (r) is determined by

A(r) \i\T]TFJr,r). (8)
(0

To calculate the second order transition between the superconducting and the normal
state we have to find Fm(r, r) from equations (7), insert it into equation (8) and take
the limit A -> 0. Now, as first shown by Gorkov [20], by inverting the equations (7),
Fm may be expanded in terms of A(r) and G£(r, r'), where G%,(r, r') is the normal state
Green function determined by equation (7a) with A (r) 0. The term in lowest order
in A (r) is (see Appendix A) :

Fa(r, r) f Gnm(s, r) A(s) Gna(s, r') dH (9)

Using symmetry relations one can show that F, G, A may be written in the explicit
form

By multiplying equation (9) by i av and taking the trace (tr) of equation (8) in spin
space we get :

^W =yUI TZ I tx(Gn_m_<s(s,r)G\s(s,r))A(s)dH. (10)

Finally we have to average over the positions of impurities and the orientation of
their spins. This is done in the usual approximation by assuming that A(s) varies

slowly in space compared to G£(r, s). We then get:

A W \ \g I T£ \ tr «C1m..a(s, r) GUs, r)>W/) A(s) dH (H)

By a standard transformation (see Appendix B), introducing the BCS cutoff equation

(11) may be written:

]n{\fv)A{r) ?jdSr'
ô(r — r') 1 -[ }

trSJr.r')2» + 1 2
Zl(r<) (12)
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we have here introduced the WHH-Kernel [17]

Sm(r, r') -^ <G»a_a(r', r) G'ma(r', r))*. ^,,,. (13)

N(0) is the density of states at the Fermi surface. It is now useful to introduce the
Kernel S°m(r, r')

Sl(r, r') J^ <Gtm_a(r', r)yR.R.s. <ßla(r>, r)>W/. (14)

As shown by Abrikosov and Gorkov [2] Sm(r, r') can be calculated in terms of S° (r, r')
by summing the 'chain diagrams'. This gives an integral equation for Sm(r, r') which
in the WHH notation becomes

Sa(r, r') Sl(r, r') + j d3n S°m(r, n) Jj~L j d3r2 (15)

X [<ya(ri,r2)Sa(ri,r') Va(r2, n)yRiRjsj + (Vb(ri,r2) Sm(ri, r') V^.r^yRi^sr] ¦

V is defined as :

Va(r, r') V_a(r', r)

This form is introduced when we make the transformation with * ay since

(2 i Oy) -1 a'(2 icjy) — a

Thus V'a is transformed into Va.

Equation (15) is valid if the spin-orbit scatterings are infrequent compared to
non-magnetic scatterings. (For a discussion of this point, see WHH [15]).

We now note that equation (12) is an eigenvalue equation for Sm(r, r') with A(r)
as eigenfunction. From equation (15) one finds that if A(r) is an eigenfunction of

S«^, r') it is also an eigenfunction of Sm(r, r'). Thus if one knows the eigenvalue sJJ, of

Sa\(r, r>) equation (15) turns into an algebraic equation for the eigenvalue sm of

S(t>(r, r')- We thus have to study the equation

s- fa') f Sy, r>) cp(r') d*r' (16)

Introducing the explicit expressions for the Green function (Gnm(r, r')yR.R.s [21] we get:

0 m T ' d3r'
sw far) -r—ù Vf

[ d3r' f

J |r-r'|»°P{
i

1

i 2 g pb a(H + Hj) s gnco + 2\co\ -\

\ r — i

X J

Vf
2ie f A(s) ds \cp(r') (17)
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The lifetime t is given by a sum of contributions of the different potentials defined
in equations (6a-b). The different scattering times are defined more precisely in
Appendix C. Note here that if the mean free path, / t> t is short compared with the
dimensions of the sample, the only part in Sm(r, r') that depends on the shape of the
sample is the integral over A(s) in the exponent in S„(r, r'). Thus any difference in
the behaviour of the critical field of, for instance a thin film and a bulk sample must
come from that integral.

As shown by Helfand and Werthamer [16] equation (17) gives :

S° [ Jj)Le-(Q0Cm)e(V+)Q±<.(V-2ii!AV±>2cH (lg)m 2 vP(2 e H)V2 J Q2
' v ;

where g^ and (V — 2 i e A) x are the components perpendicular to the field H. The
parameter ocm is defined as

v* (2 e H)11'2
(19)

2|<w| H \-2i g pa o(H + Hj) s gnm

The mean value over (V — 2 i e A)\ is to be taken with the lowest eigenfunction
[23] cpo(r) of S°(r, r'), which is also an eigenfunction of (V — 2 i e A)2. Our problem is
thus equivalent to the problem of one electron in a magnetic field. For the bulksystem
we may therefore immediately write

<(V -2ieA)\y -2eH. (20)

For a thin film the boundary conditions make the problem difficult to solve in general,

however if d (the film thickness) is smaller than f an l/|o I we may take A(r) constant
over the film, provided that we use the London gauge [22], V ¦ A) =0. We then have :

<(V - 2 i e A)\y - 4 e2 (A2y

+ dj2

„ii2. f H2x2dx -—e2H2d2 (21)
d J 3

-d,2

Now, inserting equation (20) and equation (21) in equation (18) and introducing the
Fourier transform of (Ijq2) e^e!cto, we finally get

™",i"°s: Z'lZTST1^- (23>

Where

CO

J(x) 2 \ dq tan-1 (x q) e~i°. (24)
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am is defined by equation (19). ßm is defined by

Vf eH d

A.= ;
1/3

2 | w | H h 2 i g pB a(H + Hj) s gnco

(25)

By making use of equation (16), equation (15) becomes an equation for the eigenvalue
sm of Sm(r, r'). This equation is solved in Appendix C. One finds

trs„,
Re^

-X

XsO + Xn (26)

J

where s%, is now defined with g(a H) H in am (or ßa). Re means that the real part
is to be taken.

The parameters X, Xm. Xeo, are defined as

A

XsO

Xm

2 71 TcO T

2

3 TC Too TsO

1

TC TcO Xs

'non-magnetic' scattering parameter,

generalized spin-orbit scattering parameter,

exchange scattering parameter.

(26b)

The different scattering times are defined in Appendix C. Inserting equation (26) in
equation (12) we finally get the equation for the phase transition s — n:

»m=? 2n + 1
XsO "T Xn

Re

X + Xst

(27)

This equation is valid for all mean free paths for the bulk case, the only restriction
being that spin-orbit scattering is infrequent in comparison with non-magnetic
scattering i. e. X > X$o.

The cases of a pure superconductor with magnetic impurities, e.g. La-Ce or La-Gd
should be analyzed with this formula rather than the dirty limit formula normally
used [11].

For the case of a thin film we have already assumed d < y I fo and I < d, thus
a dirty thin film. However, as shown by de Gennes and Tinkham [24] the result will
also be valid for d < I if we replace I Vf r by d ¦ (9/16).
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The equation [27] simplifies considerably in the dirty limit. As shown in Appendix
D we then get :

V * / n -oc
In - \2n + l\ ti> + Xm oi2(h + hj)

2 n + 1 \ A

1 J_ 1 I JL
h" + Asl

2 n + 1 H

.(28)

Here we have written: t TjTco and:
for Bulk samples:

v 1

¦ e t H 'reduced field' (29)
vpex

3 ti Tco

3
<*- ~ô 2~~

For thin films :

v 2,

Maki parameter1) (30)

edvp / x \ V2h=—-—i H 'reduced field' (31)
O \ I Tl 1 c0 I

3
A1/2 Maki parameter1) for thin films (32)

m Vf d

Equation (28) can now be written in terms of diagamma functions ip. In Appendix E
we have collected a few properties of that function, and we show that equation (28)

may be written :

-t-(4+^)*U+ + Xm +— (AsO — Xm) + iy
_

/ 1 i(XsO — Xm) \ I 1
+ \j—W~)"U

where

y L?(h + hj)2 - — (Xso - Xm)2)1'*
¦

i(Xs0 - X,„) i I l
W + Xm + T (ls0 - ^) - *' y \

(33)

2/

x) Do not confuse the Maki parameter a with the functions am and ßm defined in equations (19)
and (25).
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This result is analogous to the result of Fulde and Maki [11], if one neglects the effect
of the external field on the conduction electron spins. Bennemann et al. [18] give a
similar expression for the critical field. However these authors give a third term in
y2, which comes from the cross term between the non-magnetic and the exchange
potential. Such terms are indeed present in the one particle Greens function but drop
out in the caculation of the transition n — s.

The critical field calculated above is the one corresponding to a second order phase
transition. This is indeed the one in which we are interested, since at the compensation

point we have only an orbital effect on the conduction electrons, which in type II
superconductors always produces a second order phase transition. However, when we
are far from the compensation point it might be that the effect on the spins is strong
enough to produce a first order transition. This must be checked in each particular
case, but since it is not essential to the present investigation we will not consider it
here.

3. Discussion of the Critical Field

(a) A few simple cases

In absence of a magnetic field equation (33) gives

-i-'(i+£H(T)-«¦-£• ,34>

which is the well-known result of Abrikosov and Gorkov [2] for 1\ as a function of
concentration of magnetic impurities. If we define a universal pair breaking function
g(t) given by

-(tH(?+£)-'(*)¦ ,35a>

Equation (34) becomes

Q(tc) Xm ¦ (36)

It is useful to note that

%) =~ Q(t 0)=^ * 0.281, (35b)
ot ),_x tc2 2 yE

where C lnyg and C Eulers Constant. Thus all superconductivity is destroyed
when

Xm > Xmcrit ^ 0.281 (36b)
2yE

In absence of magnetic impurities and neglecting the Clogston limit (e.g. a 0) we
get from equation (33)

-4-»£ + £)-»(±). mt T \ 2 2t
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which may be written

Bulk samples: tijjß) o(t)

Thin films: h°c(t) ]/o~(f) (38)

If we now include magnetic impurities, but still keep a 0 we get (h h*(t))

Xm **'(*) Q(t)

or

Bulk samples: h*(t) h\(t) - Xm

Thin films : h*(t) h°c(t)
Xm

(39)

The equations (39) give thus the temperature and concentration dependence of the
orbital critical field H*(T, c) of a superconductor with magnetic impurities. This result
was first derived by Fulde and Maki [11]. Figure 3 shows the different cases discussed
here.

2 .4 .6 B 2 .4

PA1RBREAKING PARAMETER Am/ Am„„

iffij^^^
\j=0 >v Li^'^s^^N.

056^\ \ OB >. ^V >y

¦ ja ^^ \ \ 169 X. \ \ \
^vvA " 225 \ \ \ \ \V\.\\¦W\\\j, .6 .8 .2 .4 .6

REDUCED TEMPERATURE Te/Te0

Figure 3

Orbital critical field as a function of temperature

and of pairbreaking parameter Am

(~ concentration) for bulk samples and thin
films.

In the case of a # 0, Xso ^ 0 it is only possible to give a simple expression for h
if Xso §> x h (i-e- strong spin-orbit coupling). This will be discussed in the next section.
However we will here look at the case of a high field superconductor without magnetic
impurities. Putting Xm 0, hj 0 in equation (33) we get the WHH [17] result. In
Figure 4 we show the computer solution of this equation for Xso 1.0 and different a.
The effect of an increasing a is to push down the high Â-values. The effect of increasing
Xso for fixed a is to push these curves upwards again, and in the limit Aso -> oo we
find the curve for a 0. (When discussing h we have to keep in mind that h is mea-
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sured with respect to H*(T 0, c 0) [see equation (40)] and since a <~ H* (T 0,

c — 0) [equation (41)] (for Tco fixed) the real critical field does of course increase when
we increase a.)

h (=11 h)
4

X .1.0 ; * 0 h =0_ot=C

Figure 4
Critical field hCi (ji2/4) hC2) as a function
of temperature t T/Tco for different
values of the Maki parameter a assuming
U 1.

We now note that the case of a compensation we have (h + hj) 0 at a certain
temperature i.e. it corresponds to the case of a 0 for a certain temperature. Therefore

the maximum amount that can be gained in h by compensation is the difference
h(x 0, t 0) - h(x, t 0).

Finally, we note that from equation (38) and equation (1) it follows by using the
BCS relation between A and T that the definitions (29), (30), (31), (32) may be written :

1 HJc.T)c"x ' (40)Bulk: h
2 yE H*(c 0, T 0)

1/2 H*(p 0, T 0)

H,p0

Thin films : h -

Hc(c, T)

\/2y~E H*(c 0, T 0)

|/2iï?(c o, r o)

ff.po

(41)

(42)

(43)

where c is the concentration of magnetic impurities. Equation (41) is identical to
Maki's definition [12].

In Appendix F we have collected a few useful formulas written in ordinary units,
to permit comparison with experimental data.
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(b) Discussion of the compensation effect in the limit of strong spin-orbit scattering

We suppose now that x(h + hj) <^ 1/2 /U. Then we may write:

* in ^ 2«.2(h+hj)2\
y ** -rj\ (^o — xm) '

2
1 ('-au r.m,
\ AsO — A

and equation (33) becomes

« + Am +1 (l " +Am+-XsO-Xm /1\m —

The solution is

Bulk : hr Kit)
An

Q(*)

(44)

h>+lm + "f+hf=ç(t). (45)
«so — Am

Making use of equation (39) this may be written :

For bulk samples : A (<) h*(t) - — A (*) + A^) )2. (46)
AsO — Am

For thin films : h2 (t) hf (t) - - - *«(*) + MO )2 •

Aso — Am

Finally we now define a reduced field hrea which is defined as

Thin films : hrea ~ (47)
' Am

Making use of equations (38)-(39) we get from equation (42)

„.„¦„.v.,_
«• m±*@L.

AsO — Am 1 Am \

TU' «•! ,2 ,0«m a2 (*»W +M0)2 MtnThin films : h2ed A° (*) — — ±—.— -. (48)
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Note that our reduced field is essentially the quantity HCJH* discussed in the
introduction. Using equalions (29)-(32) we may write equations (48) in terms of ff :

Bulk : H„a --7^^ w4l H*Sc °'T^' <49a)
Am \ ac2[c, l
e(t))

^(^0'r)-2^F(Xo^lm)
Q(t)x(HC2(c,T)+Hj(c,T))2. »W (49b)

Thin films : H2red -^L _ -||^- H*2(c 0 ,T) (50a)
Am ff*2(c, 7

ff*2(c 0, r) "' ' '"

m vf d \ Xso — Xn

Q(t)
X (Hc(c, T) + Hj(c, T))2. W> (50b)

Here we have as in the previous section written c for the concentration of magnetic
impurities, ff* and ff* denotes as before the orbital critical field (i.e. by neglecting
the Clogston limit). Note the difference in definition of Hred for a bulk sample and
Hred for a thin film. Let us now suppose that we are at sufficiently low temperatures
so that the magnetic ions are aligned in the magnetic field at ff Hc% (i.e. <SZ> S).
It is then easy to see what happens to Hrea if ff/ points opposite to ff. Let us look at
Hrea as a function of concentration c. For c 0 we have Hred(T) < H*(T', c 0),
due to the second term. However at Hc | ff/ | the second term vanishes and we
have Hred H*(T, c 0). For higher c's Hred decreases again. Thus Hrea shows a
maximum which occurs precisely at the compensation point

HCi(c, T) H*(c, T) \Hj\=
° /0 I S

(51)
g f-B

On the other hand, if ff and ff/ has the same sign Hred will decrease monotonously.
Finally if there is no effect on the spin Hred will remain constant.

Therefore Hred is in fact the characteristic quantity to plot to demonstrate the
spin polarization effects on HCi. We note that ffred can be calculated from HCi
(measured) and Tc/Tco since Xm is determined by the latter quantity (equation (36)).

The above statements hold always for hred defined by equation (47), and it will
hold for Hred if the conversion factors between h and ff (equations (29), (31)) are
independent of concentration of magnetic impurities c. Now x will in general depend
on c, since it contains all the different scattering times due to all the impurities. Thus x
can only be supposed constant if the concentration of non-magnetic impurities,
dislocations and disorder, is much larger than the concentration of magnetic impurities (c).

This point however is not too difficult to check experimentally, since a compensation

effect, as we shall see, essentially changes the form of HCi(T), whereas a change
in t leaves the form unchanged and only change the value of HCz(T) by a constant
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factor. For a bulk sample for instance the initial slope will remain essentially constant
at low concentrations c if x does not change. If x changes, the slope will increase at
the rate (1/t) increases. Furthermore, the variation of x can be estimated by introducing

non-magnetic impurities isoelectronic with the magnetic impurities. In the case
of a thin film, the thickness d plays a similar role as t_1. Note finally that aso depends
also on the concentration c, both through the exchange scattering and the additional
spin-orbit scattering. There is also a slight temperature dependence due to the
temperature and field dependence of <S2>.

From equation (51) it is seen that the position of the maximum in Hred allows one
to determine /. Furthermore, as described above the maximum of Hred gives us
H*(T, c 0) (or H*(T, c 0) for a thin film) i.e. the critical field that the 'pure'
superconductor (i.e. without magnetic impurities) would have if we neglected the
Clogston limit. From equations (41), (43) we than may calculate the Maki-parameter,
and finally from the ratio HCi(T, c 0)jH*(T, c 0), we may determine Xso by using
equation (33) in the limit c 0, t 0 or more direct by using the computer results of
Hake [25] for A(0) as a function of a and /U- Note that this determination of /, a, Xso

is not restricted to the limit of strong spin-orbit scattering.
To conclude this section we will discuss the form of the solutions of equation (46)

i.e. the form of the curve critical field vs. Temperature. Since hj depends on h
(paramagnetic case) there exists the possibility of having more than one solution for h at
a given temperature t. To illustrate this point we have plotted in Figure 5 and Figure 6

the functions.

Bulk : Fi(h) 0)t)-Xm-
a2

(h + hj)2
XsO — Am

and

Thin films : Fj(h) / Q(t) - Xm - -. r- (h + hj)2
I/ AsO — Am

and assuming in both cases a 2, Xso — Xm 1, Xm 0.04, and hj(t 0)
— 2 h*(t 0)/3. Furthermore we have assumed that hj follows a Brillouin function:

hj hjo B. (-»4)
We assume in the following 5 5/2. The solution of equation (46) are given by the
intersections of Fi or F2 with the 45° line (Fi h, F2 h). The second maximum
in Fi and F2 occurs at the compensation point where (h + hj)2 0. However, in the
bulk case (Fig. 5) the maximum is much less pronounced than in the thin film case

(Fig. 6). This results in a single-valued function h(t) for the bulk case but for the
thin film the function h(t) becomes triple-valued below a certain temperature t.

To see what happens physically in this last case, we look at the behaviour of the
superconductor as we raise the external magnetic field. What happens is that hj raises
much faster than A and eventually (h + hj)2 becomes so large that the argument
under the square root in F2 vanishes. This means that the superconductivity is

destroyed by the exchange field, and corresponds to the lowest solution. If we in-
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crease the field more the exchange field will start to saturate and (A -f A/)2 will
decrease due to the compensation effect. The argument under the root in F2 becomes

again positive and at the second intersection with the 45 ° line in Figure 6 the system
becomes superconducting again. As A continues to grow we pass the compensation
point and (A + hj) sf aits to increase again. Finally at the third intersection the
superconductivity is destroyed by the effect of the external field on the conduction electron
spins.

F, f(t)-Xm- — (h.h
F.CM.h

» =2 »__-V 1 ft: 0.04

VO> f (plOl-Xj

(=0

U0.6

U0

Figure 5

Graphical solution ol hc •.--quation for the
critical field in the cas ¦ a bulk
superconductor with magnetic in\ 'irities in the
limit of strong spin orLit scab .''ii£.

F.(h) Vtil)-nm--&- (h.h,)2'
2 n-\ '

F(h),h a=2 *-X=100 X =C04

h,(°)=4<P(tl-M

1=0 6

Figure 6

Graphical solution of the equation for the
critical field in the case of a superconducting
thin film with magnetic impurities in the
limit of strong spin orbit scattering.
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This second domain corresponds to the domain of ultra-high field superconductivity

suggested by Jaccarino and Peter for a ferromagnet and by Schwartz and
Gruenberg for a superconductor with magnetic impurities in the limit ffv > ff*. We
find here that for a thin film this second domain may be realized even in the case

Hp m ff*(0, 0) whereas a bulk sample with the same parameters as the thin film does

only show one domain, which includes the compensation domain. For this domain to
split up in two domains one needs approximately a > 3 and Xso < 1

- The reason for
this difference between a thin film_and a bulk sample is the following : In the case of
a thin film the field h enters with the same power (n 2) in the paramagnetic term
as in the orbital term in tue equation for Hu. This produces a strong paramagnetic
effect. In the bulk case, on the contrary, the paramagnetic term enters with A2

whereas the orbital term enters with h. For not too high oc's this means that the
paramagnetic effect is relatively weak.

The result of the graphical solution in Figure 5 and Figure 6 is shown in Figure 7.

We note that for the bulk case the compensation effect will show itself in a more or
less pronounced upwards curvature. For the thin film this may be replaced by a jump
in the upper critical field from the uncompensated region to the compensated one.
This jump will occur at a temperature t', slightly above the compensation point
(h(t) + hj(t))2 2. (This can be easily seen from Figure 6. The jump will occur when
F2 just touches the 45° line. The compensation point corresponds to the temperature
where the maximum of F2 falls on the 45° line.) The temperature range for the
compensation domain will therefore depend on the hj chosen. For the most favourable
compensation case hj(t 0) hf(t 0) this domain will only occur at very low
temperatures.

h
¦i -—r 1 1 1—

Bulk, a 2

.20 >t- A 1

15
h(o) 0.16 -

.10

superconductor vv\ normal

-
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i i i

h
Thin films : oc 2

.4

>. \m 0.04

\\V rj(o)a 0.327

-

3

superconductor -

2

1

\\ s/
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-
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Figure 7

Critical field as a function of temperature as
determined from the graphical solutions in
Figures 5 and 6.
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The above discussion is only qualitative, since the equation (46) are not strictly
valid for the parameters chosen above.

Computer solutions of equation (33) show that the simplified equations (46)
overestimate the paramagnetic effect slightly if we are not in the strong spin-orbit
scattering limit (see chapter 3 d).

(c) Determination of the compensation point. Possibility if a real increase in HCi

In the foregoing section we have described how to detect the compensation effect,
and how this effect can be used to determine the parameters fc, a, aso- However, in
the original paper by Jaccarino and Peter it was also suggested that one might
actually increase the critical field by this effect. From equation (46) it is seen that if
a is large this may actually be the case. However it depends also on how much Tc has
been reduced before the compensation point is reached, i.e. the value of Xm on the
compensation point : Xmc ¦ To examine this point we make use of the explicit expression
for Xm given in Appendix F to rewrite Hj as

TT
2 ks Tco

Hj N(0)(S+l)fogpB '

We have here supposed thet f(q) is independent of q so that the / occuring in Xm is

equal to the /o occuring in ff/. From equations (39) and (51) we now get for the bulk
case and for T 0 :

Hî(c 0, T 0)_^ '-

(52)
2 l""'rit Tc"

'

ff*(c o,r o)
N(0) (S + l)fog pb

where Xmcnt is defined by equation (36 b). To get a real ff^-increase it is obvious that
we must have Xmc <§: Xmcnt, thus from (52) we must have :

°'57 Tc°
> H*(c 0, T 0) (53)

N(0)(S + l)fogpB

On the other hand we must have a large a, say a > 1. By making use of the definition
(41) of a we now get

1.14
> oc> 1 (54)

N(0) (S + 1) /o

This can only be fulfilled if

(S + 1) N(0) f0<l. (55)

Thus a real increase in the critical field can only occur if iV(0) /o is relatively
small, and it seems that the best chances to realize this increase in HCi is in high field
superconductors where the high critical field is due to disorder and impurities rather
than an anomalous high density of states.
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Note however that we have assumed that the / in Xm (Appendix F) and in ff/
are the same. If f(q) depends really on q the / in Xm may be much smaller than the
one in ff/ in which case we may relax the condition (53). Finally we note that if for
instance in the ß-W structures (A3 B) we may put the magnetic impurity on the
73-sites the effective density of states in equation (52) may be much smaller than the
density of states determined by electronic properties (x, y) since the superconducting
electrons are believed to be localized on the .4-sites.

(d) Computer solutions. A few typical examples

In most interesting cases the approximation a(A + A/) <^ Xsoj2 does not hold, and
the critical field cannot be calculated by the simple relations (46). However it follows
from equation (33) that Hrea defined by equations (49 a) and (50 a) will still show a
maximum at the compensation point, but the form of Hred(c) will not be given by the
relations (49b) and (50b). To show what the critical field curves HCe(T, c) will look like
in the case of the compensation effect we will now give a few examples based on
computer solutions of equation (33).

As a concrete example we take the system NbaAl. Hechler and Saur [26] found-
by fitting the experimental ffCo vs. T curve to the theoretical curve calculated from
equation (33) with Xm 0, hj 0, that <x 2.08, /U 1. The critical temperature is
18.0 ° K and the critical field extrapolated to zero temperature 252 kGauss. The density
of states has been given by Spitzli [27], who finds N(0) 1.7 states/eV. We now
assume that we may introduce magnetic impurities with a spin S 5/2 and with
an exchange constant / into Nb3Al. For the case where the sign of / is such that we
may compensate, the compensation point (Xmc) is given by the absolute value of /
by equation (52). Assuming / — 0.005 eV we get Xmc 0.035, for / - 0.015 eV
we get Xmc 0.085 and finally for / — 0.025 eV, Xmc 0.117. These three cases
are shown in Figures 8, 9, 10. For the first (two) cases there is a substantial increase in
the critical field. We note that the form of the critical field curves are strongly different

from the cases of non-magnetic systems. The uwpards curvature should be a
characteristic feature of a strong compensation effect. In these figures are also shown
the case where Hj has the same sign as ff. The part of the curves that shows a
dHCi,dT > 0 might not be real since it is possible that the transition might be first
order in this region. However, Crow et al. [28], observed in Las-zGdJn a behaviour
qualitatively similar to the curves given by the dotted lines, indicating a positive
exchange constant in that case. Crow et al. found that all the transitions measured
were second order. In Figure 11 is shown Tc(c), Tc(c)jTv Hc(jc, T 0)/ffCa(0, T 0),
Hred(c T 0)/ffCz(0, T 0) for two cases.

In the case of a thin film, a is defined with the orbital critical field of the thin
film (equation (43)). By using the Gennes-Tinkham [24] formula (see Appendix F)
one finds that a thin film of about 40 Â thick may have an a of about 3. Assuming
Aso 1 and Xmc 0.07 we get the results shown in Figure 12. To allow a comparison
with the bulk case for NbsAl we show in Figure 13 the case of a 2, Xso 1-04,
Xmc 0.057. As demonstrated in chapter 3b) there is a net difference between the
behaviour of a thin film and a bulk superconductor.
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Critical field as a function of temperature
for different pairbreaking parameters
assuming a negative exchange field and
a 2.08, Aso 1, Ktc 0.035. The dotted
lines correspond to a positive exchange
field.
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Figure 9

Critical field as a function of temperature for
different pairbreaking parameters, assuming
a negative exchange field and Xmc 0.085,
a 2.08, Xso 1. The dotted lines
correspond to a positive exchange field.
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Figure 10
Critical field as a function of temperature
for different pairbreaking parameters Xm

assuming a negative exchange field
Xmc 0.117, a 2.08, Xso 1.00. The dotted
lines correspond to a positive exchange
field.
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hCi, hreci and te as a function of Xm (~
concentration of magnetic impurities for
a 2.08, Aso 1, and the two cases
Xmc 0.035 and 0.117.
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Figure 12
Critical field as a function of temperature
for a thin film for different pairbreaking
parameters, assuming a negative exchange
field and a 3.0, As0 1.0, Xmc 0.07.
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Critical field as a function of temperature
for a thin film for different pairbreaking
parameters Xm, assuming a negative
exchange field and oc 2.0, A„o 1.04, Xmc

0.057.
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4. Description of the Pulsed Field Apparatus

(a) The principle of pulsed magnetic fields

To observe the effect described in the preceeding chapter we need substances
with a large Maki-parameter oc. In practice this means that we need high magnetic
fields, say 100 kGauss [29]. On the other hand, there exist superconductors with
critical fields above 400 kG [30] and the range of interesting field may reach 500 kG.
Since the highest static magnetic fields that can be obtained in our laboratory is about
60 kGauss we were forced to use pulsed magnetic fields.

The basic idea of the pulsed field method is to store a certain amount of energy in
an energy bank and then, during a short time transform this energy into magnetic
field energy, created by a current through a solenoid.

In his early work, Kapitza [31], [32] used batteries or an electromecanic generator
(the energy being stored in a heavy flywheel) as energy-banks. However as first noted
by Wall [33] it is most convenient to store the energy in a bank of condensors. To get
a rough estimate of the energies needed to give a certain field one may assume that
the magnetic field ff is constant over a volume V and zero outside this volume. If all
the electrostatic energy is transformed into magnetic energy we have

lcu2=^poH2-V, (56)

where C is the capacity of the condensors and U their voltage. Thus for a given
condenser bank, the maximum ff depends on the volume needed. In principle there is no
limit on Hmax if one can make the volume small enough. However there are practical
limits due to losses. There are two types of losses:

(1) Ohmic losses due to the resistance of the coil.
(2) Losses due to the distribution of the magnetic field in space. This becomes

especially important when one approaches the region of Megagauss. In this
region one has to use coils with very few turns, to avoid ohmic losses. However
then the self-induction of the coil becomes easily comparable with the self-induction

of the condenser bank and the connections, and one is not able to concentrate
the energy of the bank in the coil.

Detailed calculations, taking into account these effects have been given by
Champion [34].

Further complications are introduced by the forces acting on the windings of the
coil, tending to make the coil explode. In fact, an ordinary coil, wound with ordinary
commercial copper wire will generally explode when the field goes above 200 kGauss.
Thus coils operating above, say 150 kGauss, should be reinforced.

The above discussion shows that the main difficulty in the pulsed field technique
is the construction of the coils. Many different techniques have been described in the
literature [35]-[42]. One may conclude that for fields below 500 kG the best results
are obtained with ordinary reinforced many layer coils wound with copper wire [42].
However for fields above 500 kG one has to go to single layer helical type coils [36].

Note that one important condition imposed by the experiment in our case is that
the discharge should be as slow as possible to reproduce static conditions. This is
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especially important for measuring ffc„ since the typical 'relaxation time' connected
with flux line mouvements may be relatively long.

(b) Description of the discharge circuit

The circuit used to produce the pulsed fields is shown in Figure 14. C is the
condenser-bank, L is the high field coil. 7"i and I2 are tow ignitrons used as switches. D is
a high tension, high current diode. The discharge is started when /i is fired. I2 is fired
when the field is maximum (i.e. when C changes polarity). Thus if A is closed the
current in L will decrease slowly exponentially according to the value of LjR where R
is the resistance of the coil. This allows us to have a slow decrease of the magnetic
field. In this way we also avoid to charge the condenser-bank with inverse polarity.
In some cases, for instance by measuring magnetization curves, it is of interest to get
the full hysteresis curve. Opening A and closing B allows one to get a full cycle
discharge.

POWER SUPPLY

V= 2500 V.

(S L t ¦25- D

PRINCIPLE OF THE PULSED FIELD CIRCUIT

Figure 14

Principle of the discharge circuit for pulsed
magnetic fields.

The condenser-bank is composed of 150 40 uF metallic paper condensers mounted
in parallel. The maximum voltage is 2.5 kV. This gives a total capacity of 6 mF and a
maximum stored energy of 18.75 kjoule.

The coil construction is shown in Figure 15. The coils are wound with commercial
rectangular copper wire on a resocel body. The coils are then reinforced with a 5 to
10 mm thick layer of fiberglass and epoxy. The surface if this layer is machined so

that its diameter is 0.03 mm larger than the inner diameter of a 10 mm thick hollow
stainless steel cylinder. Heating the stainless steel cylinder to about 150 ° C and cooling

ES
?raid ite

copper

»^ 23

brass

plexiglass

,stainless steel

stainless steel

Figure 15
Pulsed field coil construction.
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the coil and fiberglass with liquid nitrogen allows one to push the coil into the stainless
steel cylinder. This procedure assures one that there is a good mechanical contact
between the copper windings and the stainless steel. It provides also a negative bias
stress to compensate the Maywell stress from the magnetic field.

To reduce the ohmic losses in the coil, it is cooled by liquid nitrogen. It is fixed
in a stainless steel nitrogen dewar to avoid that the coil moves during the pulse. The
Helium dewar in which the measurements are made is of glass and has a tail which is
introduced into the coil. The coil and the He-dewar are mounted on a lift, to make the
interchange of coils and dewars easy. This mounting is shown in Figure 16.

dewarLi helium

lecds

dewar
nitrogen

JJ

Figure 16

Mounting of the coil and the dewars for nitrogen and
helium.

The number of turns and the dimensions of the coil are essentially determined by
the maximum field wanted and the desire to have as slow discharge as possible. The
rise time of the field xc (i.e. the time it takes the field to reach its maximum value)
is approximately given by (nj2) \'L C thus a large number of turns gives a large xc.
However a large number of turns means large ohmic losses which reduces the maximum
field. Thus one has to choose a compromise between high field and slow pulse. The

parameters for a few coils are given in Table 1. For the present investigation we only
needed fields up to 80 kG. All measurements were thus made with coil No 10 where
we dropped the stainless steel reinforcements.

coil

¦

diameter
(mm) (m m) { m Henry)

risetlme
(m sec)

maxfield
[ kGauss)

reinforcements remarks

1 210 16 45 0.50 2.7 310 N Ihm layer of
/ fiberglass

Exploded al
300 kGauss

2 192 16 45 0.48 26 300 • araldite

5 445 18 60 2.5 60 300 fiberglass •
araldite

6 173 16 35 0.35 2.3 410 stainless steel extra turns

9 2845 22 100 600 3O.0 150 \ fiberglass \ at the end
/ lo increase

10 4980 20 100 300.0 55.0 110
\ .araldite homogeneity

PULSED FIELD COIL CHARACTERISTICS

Table 1

Pulsed field coil characteristics



358 0vstein H. Fischer H. P. A.

To increase the homogeneity of the field, some of the coils were wound with
additional turns at each end. The estimated homogeneity for coil No 9 is about 310-3 at
a distance of + 2 cm from the center along the axis of the coil. For No 10 this value
is IO"2 and for No 5 it is about 3 • IO-2.

(c) Magnetization measurements ^^
To determine the critical field HCt, we measured the magnetization curves of the

superconductors. This was done in the standard way [43] using two balanced pick-up
coils. One measures ff, and the other one, which contains the sample, measures 75.

The two signals are integrated and the difference of the integrated signals gives M.
M and ff are displayed on the Y and X axis, respectively, of a storage oscilloscope.
The principle of the circuit is shown in Figure 17. This method is particularly suited
for the pulsed field technique since it allows one to draw the whole magnetization
curve in a short time. This fact, that the measurement is performed during a very
short time, makes the errors due to drift in offset voltage and input current of the
amplifiers negligible.

C rluF

J R=100k

V ~ B S| 'V2-13M

PICK-UP

COILS

P=-I00k
—cz>-

C 1uF

9-~ V2-10M

R

• V2-M10

R

+ V2-10M Figure 17

Principle of the circuit for magnetiza-
PRiNciPLE of circuit for magnetization measurements tion measurements.

If we look at the integrator for B in Figure 17 and assume that the drift in offset
voltage and input current are Va and fa, respectively, we may write for the output
voltage as a function of time t

U(t)
RoC

B F | Vadt- Rc j Iddt\,

where B is the magnetic induction, F the total surface of the pick-up coil, Ro the
integration resistance and C the integration capacity.

The condition to have a good measure is that the second and the third term in
the parenthesis are small compared to B F. This can be achieved in two ways, by
making F very large i. e. by using a large number of turns in the pick-up coil and (or)
choosing the time t, during which the measurement is performed, very short. Since
the last term is proportional to Ro, the integration resistance should not be chosen too
large. A reasonable value is given by Va R Id. Apart of this influence of Ro, the
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only effect of R0 and C is to determine the amplitude of the final signal. R C has
therefore to be chosen such that U always is smaller than the saturation voltage of
the amplifiers (which in our case was ~ 10 V). Another practical detail important to
note is that if the pulse is very fast the voltage across the pick-up coil, B F, may
become very large (> 1000 V) and one has to be careful with the isolation of the leads.

In our case the time of one measurement is typically 10-2-10_1 sec. Therefore the
above conditions were easy to fulfill, and we could use a set of cheap amplifiers. The
amplifiers used were the type V2-10M, developed at the Institute for applied Physics,
University of Basle. Typical drift values were Vd 10 [xV, Id 100 pA. The pick-up
coils contained about 3000 turns, and Ro C was chosen to be 10"1 (Ro 100 k,
C 1 U.F). This gave U «a 3-5 Volt for B «a 100 kG.

A typical example of the magnetization curves obtained for a superconductor is
shown in Figure 18 a. The upper curve is displaced with a sensitivity which is 5 times
larger than the lower one. Hc% is taken as the point where the hysterisis disappears.
To increase the precision of Hu determined in that way, each measurement was
repeated several times and the mean value taken. An example of such a measurement
is shown in Figure 18b. (Mo.99SMn.oo5Ga4 at T 1.9°K.)

f=t*j

iliMîtM
DÈ«

5£

P"Sw*

Figure 18a
Magnetization curve for
Mo.98Nb.o2Ga4 at T 4.2°. In the
upper curve the magnetization
was amplified 5 times with
respect to the lower one.

Figure 18b
Magnetization curves for
Mo.995Mn.oo5Ga4 at T 1.9c K.
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5. Experimental Investigation of the Mo1_;cMa:Ga4 System
(M Nb, Ru, Mn, Fe, Co)

(a) Introductory remarks

To observe the effect described in chapters 1 to 3 the superconductor (without
magnetic impurities) has to fulfill two conditions. The Maki-parameter a should be
large, i.e. we should have a large ratio HCi(0)jTco and the spin-orbit parameter Xso

should be not too large, i.e. we should use light elements. Furthermore the superconductor

must accept magnetic impurities and the exchange interaction / must be

negative (in the case of the light rare earth ions where S points opposite to the total
angular momentum / should be positive).

To fulfil all these conditions we chose a system of which very little is known until
now, the Mo-Ga system. Two intermetallic phases have been found in this system,
MosGa with the A-15 structure and MoGa4 (assumed stochiometric composition) with
unknown structure. Both compounds were found by Matthias et al. [44], [45], [46].
They determined the superconducting transition temperatures to be 0.76 ° K for MosGa
and 9.8 ° K for MoGa4. We have reinvestigated the MoGa4 compound, including ternary
alloys of the type Moi-a:Ma;Ga4 where M Nb, Ru, Mn, Fe, Co. For the pure compound
(x 0) we found Tco — 8.0° and ffC2(0) 73.7 kGauss. Among the impurities, only
Mn showed a well-developed magnetic moment. Ru, Fe, Co, showed resonant state
type behaviour and Nb acted as an ordinary non-magnetic impurity.

Although only Mn is interesting in connection with the Jaccarino-Peter compensation

effect, we also discuss the cases of resonant non-magnetic states. These resonant
non-magnetic states produces a decrease in Tc with concentration of impurities, which
is similar, but weaker, to the one produced by magnetic impurities. The resonant state
may also produce an anomalous behaviour of ff not connected in an evident way
with the effect we are looking for. Since the condition / < 0 means a strong s-d

mixing, and since the s-d mixing produces the resonant states [47], [48] we must be
careful to distinguish between true magnetic moments and non-magnetic resonant
states. The samples with Mn-impurities show, as we shall see, an anomalous sharp drop
in Fc at a certain impurity concentration. In section 4c we suggest a mechanism, based
on spin correlations, to explain that behaviour.

(b) Preparation of the samples

The samples were prepared by melting the constituents in a AI2O3 crucibel under
a pressure of 2 atmospheres of Argon. The maximum temperature was 1300 °C.
Samples prepared at 1700 °C showed no essential difference from the ones prepared
at 1300 °C, apart from more important losses, probably due to evaporated Gallium.
The losses of the samples melted at 1300°C were about 0.5%. The furnace used was a
resistance furnace [49] which allowed a slow decrease of the temperature. The
superconducting phase was formed at about 730 °C, which was also determined to be the
melting point. Samples quenched from above that temperature did not contain the
superconducting phase.

The compound did not form a bulk sample, but failed into a fine powder at 730 °C.
This powder was pressed into pellets and annealed in sealed quarz tubes for 1 week at
700 °C and then quenched. The samples produced in this way showed reproducible
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values for Tc and Hv X-ray measurements made on powder samples and on small
single crystals [50] showed that the samples were single phase except for a small amount
(~ 5 at%) of MoßGa. This was confirmed by Tc measurements which showed a small
second transition at T 1.2 °K. The disagreement with "the value reported by
Matthias et al. is probably due to non-stochiometric composition of the A-15 compound.
The single crystals were isolated from powderous samples, which were prepared by
reacting Mo with Ga at 700°C for about one week in sealed quartz tubes. The structure
of MoGa4 has not yet been determined.

The samples used for Tc and ff,2 measurements were cylindrical with diameter
3.8 mm and length 10-12 mm.

(c) Susceptibility and critical temperature measurements

The critical temperature measurements were made using a standard AC Bridge
[51] to measure the initial susceptibility of the samples. The width of the transitions
were typically 0.2 °K except the ones with the highest Mn and Fe concentrations
where the width increased to about 0.5 °K.

The susceptibility was measured using the Faraday method in fields up to
17 kGauss [52]. MoGa4 without impurities, turned out to be diamagnetic ^=—4.7
X 10~8 emu/gram. To get a rough estimate for the density of states N(0) we assume
the orbital diamagnetism to be identical to the maximum one for the free atoms. We
find, using the values given by Selwood [53] Xtua — 13.9 • IO-8 emu/gram. Assuming
that xcndau 1/3 Xvara we find Xvara + 9.2 • 10~8 emu/gram. Using further that
Xvara 2 fi£ N(0) we get A7(0) 0.11 states/eV.

The critical temperature as a function of concentration x of impurities is shown
in Figure 19. Nb has no influence on Tc, Ru produces an initial decrease in Tc and
after that Tc stays constant. The effect of Co on Tc is stronger, but the tendency for
Tc to flatten out is still there. Fe impurities decreases Tc strictly linearly to very low
temperatures, and finally Mn gives the type of curve that one expects for a magnetic
impurity. This is consistent with the susceptibility measurements, which show a very
weak tendency of magnetism for Co, a small magnetic moment of 0.3 fiB per atom for
Fe and a well-developed magnetic moment for Mn.
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Tc as a function of x in
Moi-sM3:Ga4 where M
Co, Fe, Mn.
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We start with discussing the behaviour of Co and Fe. The susceptibility of these
impurities behaves like

C
Ximp x» + y - (57)

where xo is relatively large and C small. This is a typical behaviour of a non-magnetic
resonant state near the magnetic threshold [54]. For Fe we get %o 0.167 emu/gram
% Fe and for Co xo 0.042 emu/gram % Co.

The magnetic moment corresponding to C is 0.3 fisjatom for Fe. For Co it is too
small to allow an appropriate determination of the magnetic moment. Using the
Anderson formula for xo for the case of a resonant state at the fermi surface

*°-^=-tr (58)

we get from the above values

Fe ti A - U 0.05 eV

CotxA - U 0.20 eV (59)

A is the width of the resonant state and U is the Coulomb interaction among the
localized electrons.

The influence of a non-magnetic resonant bound state on superconductivity was
first investigated by Zuckermann [55]. His calculation was later generalized by Ratto
and Blandin [56] to include the Coulomb interaction U. Near the magnetic threshold
(ti A pk U) and for a resonant state at the Fermi surface, their formula for the initial
decrease in Tc with concentratino of impurities (C) may be written :

-I-g^ 5a?U
- (60)

Tco dc N(0) (ti A)2'
K '

where AT(0) is the density of states of the electron gas and is defined as

- In (^J^) - («)
\ TX kB 1 cO I

cod is the frequency and yE Eulers constant as defined in chapter 2. The coupling
parameter is typically 4 or larger for weak coupling superconductors and smaller than 4 for
strong coupling superconductors. The factor 5 comes from the orbital degeneracy
(2 I + 1). Of one knows a and A(0) (for instance from specific heat measurements)
equations (58) and (60) allow one to determine A and U. Unfortunately the specific
heat for MoGa4 is not known. Using the above estimated value of A(0) 0.11 states/
eV and assuming a 4 as a typical value we get from the measured initial slopes in
Figure 17.

Fe A 2.2 eV U 6.9 eV

Co A 8.4 eV U 26.5 eV

These values, especially the ones for Co, are probably much to high. This may indicate
that oc is smaller than 4 and that our system has a tendency to strong coupling
superconductivity.
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We note now that there is a good correlation between the measured values of xo
and the initial slopes of Te vs. concentration. We find to a good approximation

/dTc\
\ dc /Ft X°

(62)
/dTc\ xo

\ dc /Co

Such a relationship does not follow from equations (58) and (60). Actually there
is no anomaly in equation (60) at the magnetic transition point U ti A. Zuckermann
has carried the calculation one step further and included localized spin fluctuations.
He finds essentially that U has to be replaced by Us :

v u

-X
where Zi is a normalization factor which depends on UjA in such a way that Us never
diverges. (This means that we have a smooth transition from the non-magnetic to the
magnetic state). Introducing Us in equation (60) we get an expression for dTcjdc
which may account for the relation (62). Unfortunately we have not enough
experimental data to analyze the equations properly.

It is interesting to note that the tendancy to an upwards curvature in the Tc
vs. concentration curves found for Fe, Co and Ru has also been found in other systems
with nearly magnetic impurities [54], [58]. Bennemann [59] showed that interactions
among the impurities will wash out the localized spin fluctuations and this produce such
an effect. However it would not be surprising if this effect takes place also for non-
interacting impurities, since Rivier and Zuckermann [60], and Suhl and coworkers
[61], [62], [63] have shown that such impurities will become completely non-magnetic
at low enough temperature.

We now turn to the case of Mn. The susceptibility shows some anomalous features.
In Figure 20 is shown the susceptibility of Mo.9sMn.02Ga4 as a function of temperature.
At high temperature it shows a Curie-Weiss behaviour with a negative 0 of about
— 156°K. The slope corresponds to a moment of 4.81 fis. The susceptibility of the
other samples shows similar behaviour, however, at low concentrations the effective
moment raises to the anomalous high value of 7.5 /lib ¦ This is correlated with a decrease
in 0 to — 212 °K. The effective moment and the paramagnetic Curie temperature 0

is shown in Figure 21 as a function of concentration.
The behaviour of the superconducting transition temperature does not reflect

this variation of the moment. In fact, in the region (x 0, x 0.006) where the
moment varies strongly, the critical temperature decreases linearly with concentration.
An anomaly is seen however at higher concentrations, where Tc decreases very rapidly
to zero. This is contrary to what one might expect from the variation of the magnetic
moment.

This, at first sight anomalous, behaviour is probably due to correlations among
the impurities. In fact, the concentration dependence of /jeff and 6 show that there
are interactions between the impurities. We now give a simple quahtative argument
to show how even weak correlations between the ions may produce strong deviations
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from the AG behaviuor [2]. According to de Gennes and Friedel [64] the spin scattering
time may be written, in the case of correlations between the ions.

2gF

J__ tiN(0) / q dq f2(q) <S2(q)y (63)
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(/Mn)-1 as a function of temperature for
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Vol. 45, 1972 Properties of High Field Superconductors 365

where <S2(<7)> is defined as

<S2(<?)> /£ Jl exP [*' *(Rt - **1 (5< si) / • (64)

Since the Mn ions do not order ferromagnetically in the concentration range we are
interested in, we have assumed <SZ> 0 in equation (63). This equation follows also
from the work of Abrikosov and Gorkov [2] if one includes chain diagrams correlating
two different impurities but still keeps the other approximations. The explicit formula
(63) is only valid if the spins are not too strongly correlated (i.e. if (h qo)2j2 m > hjrs
where q0 is defined below).

The spin correlation function <[S2(q)y must satisfy a sum rule:

~£ <S2(<?)> Jf E <Sf> cS(S + l), (65)

where c is the concentration of magnetic impurities. From equations (64) and (65) it
now follows that for uncorrelated spins we have

<S*(q)y cS(S + 1). (66)

For ferromagnetically aligned spins in an ordered lattice we get

(S2(q)y cS(S+ 1) ô(q) (67)

In the intermediate range with spin correlations <S2(<?)> will be a function more or less

peaked at q 0. In the case of long-range correlations one may write [65]

f +?0
where qô1 gives the range of correlation. The constant A is determined from the sum
rule (65). What happens physically is the following: q in equation (63) is the change
in momentum in the intermediate state in one scattering process. Only those q's can
occur for which f(q), the Fourier transform of the potential, is non zero and they occur
with the weight J2(q).

However, if the impurities are correlated at a distance ~ Ijqo the largest change
in momentum possible in the intermediate state is roughly qo. Thus as the spins start
to order the small q's get more and more weight in the integral in equation (63). Now
if /(<?) const., 1/t is rather insensitive to the ordering process, since <[S2(q)y obeys
the sum rule (65). If, on the contrary, f(q) depends strongly on q it is evident that 1/t
will be very sensitive to the ordering process.

To get a more quantitative estimate for this effect we have to assume a form for
f2(q). If f(q) is a gaussian with half-width qJy f2(q) will also be a gaussian, but with
half-width qjj\2. To simplify the calculation we represent f2(q) by a step function.

P(q)

n q< qj
1/2

0 i> qj
1/2"
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The situation that arises if qj < 23'2 qF is illustrated in Figure 22. At very low
concentrations the spins will be uncorrelated and the initial slope of Tc versus concentration

will be small and determined by (see Fig. 22 a)

"JV

i) tiN(0)cS(S + 1)J\
4 qp

TiN(0)cS(S + l)fl~

q dq

2±_(aYY
G16\qFl

(69)

When the spins start to get correlated the correlation distance ro ~ l/?o must be at
least the mean distance between the magnetic impurities. Since we are concerned with
concentrations of the order IO"3 the mean distance between the Mn-ions is 30-40 Â.
This corresponds to a small q0 (i.e. q0 4, çf). The spin scattering time for this situation
is large and is given by (see Fig. 22 b)

(ï).
"Jl

o
ql

Jl (qj]/2 \tiN(0) -f^Alog (70)

From the sum rule (65) it follows approximately

A =~cS(S +l)ql,
where qB is a reciprocal lattice vector (the sum in (65) goes over the first Brillouin
zone).

(71)
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Illustration to the effect of spin correlations
on the spin scattering time.
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Introducing this into equation (70) we get

(Llr„meSis + l)Ji^(ï^)(^.
We note that this result is only weakly dependent on qj and qo- If we suppose
cJb an 2 qF q.j a* 10 170 we get

(—) ™ 0.88 ti N(0) c S (S + 1) Jl. (73)
\ Ts j corr

The ratio of 1/t« for the two cases give

- (-)
C \Xs luncorr nn I qj \2 (74)

1(-
C \ T,0 \ Tg / corr

%mrr *0.07 1±Y
JfI

If we now suppose that in the case of Moi-a:MnxGa4 the spins are correlated around
the critical concentration, we have to compare 74 with the spin scattering times
determined experimentally from the initial slope (equation (36)) and the one determined
from the critical concentration (equation (36)).

We find:

(rr.
\ C Xs J initial ~ ^ -

(--)\ C Xs J crit

From (74) we then get for Mn in MoGa4

^- *» 2.1. (75)
qv

This is a quite reasonable value for 3 d electrons, as in the case of Mn. According to
calculations by Watson, Freeman and Koide [66] this may even be a reasonable value
for rare earth impurities. It is therefore not surprising that one gets strong deviations
from the Abrikosov-Gorkov curve [2] when the spins start to correlate. If J(q) is a

more complicated function than assumed above, (1/ts) as a function of concentration

may show a more complicated behaviour. This effect might therefore offer an
alternative explanation to the peak effect observed in Tc versus concentration curve in
several cases [67]-[70]. The explanation given by Benneman [71] has recently been
criticized by Keller and Benda who showed that the Bennemann effect is too small
to account for the anomalies observed.

The idea to use the ^-dependence of <[S2(q)y to describe anomalous dependences
of Te on impurity concentration was first used by Toxen et al. [72]. However they did
not respect the sum rule 65 and they got therefore quite unrealistic results.
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We now return to our calculation for Moi_:cMn2:Ga4. As already noted as qo < qj,
Ijxs changes very little. On the other hand for qo > qj the spins are uncorrelated since

it corresponds to a case where the correlation distance is much smaller than the mean
distance between the ions. We therefore expect a sudden change in the spin scattering
amplitude at a certain concentration, where the spin correlations start to build up.

This is acually what is observed in the Moi-xMna;Ga4 system.
In the next section we will determine the mean exchange field /o J(q — 0).

From equation (69) we may then determine the density of states A(0) from the initial
slope of Tc vs. concentration. Using the experimental values of (dTclddniuai) 7.25 °K
at % Mn, /o — 0.3 eV and the result (75) we get 7V(0) 0.12 states(eV, a value in
good agreement with the value estimated from susceptibility measurements.

(d) Critical field measurements

The critical field of the samples was measured with the method described in
chapter 4. The magnetization curves were irreversible and allowed therefore a rela-
latively easy determination of Hv in Figure 18 is shown a typical example of a
magnetization curve in the system Moi-.a;MjGa4. The critical field was determined with a
relative accuracy of + 1.5 kGauss.

All measurements were made in a pulsed magnetic field using the coil with
55 msec, rise time. To check that the measured values corresponded to static values,
a few samples were measured in a static magnetic field below 50 kGauss. These
measurements gave results identical with the pulsed field measurements. However,
when decreasing the rise time to below 10 msec we observed a dependence of the
measured critical field on the rise time. The measured critical field tended to increase
as the rise time decreased.

In Figure 23 we show the critical field versus temperature for a few samples in the
system Moi_a:Mna;Ga4. The characteristic of these curves is the marked upwards
curvature occuring in a certain temperature interval for all samples with relatively
high impurity concentration.
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Figure 23
Critical field as a function of temperature in the sys
tern Moi-rcMnIGa4. The dotted lines indicate what we
would expect if there were no effects on the conduction
electron spins.
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This is actually what we predicted in chapter 3 for the case of a compensation of
the paramagnetic effect on ffCa. To demonstrate more clearly this effect we have also
plotted in Figure 23 the critical field that would result for the Mn doped samples if
there were no effect on the conduction electron spins, i.e. if:

HC2(c, T) Hcß, T) - ffJO, 0)
X,

(76)

where as before

h

Tl ks TcO Xs
0.281

For x 0.003 and x 0.006 the measured critical field lies clearly above the critical
field determined by equation (76). For x 0.008 the measured critical field approximately

corresponds to the field predicted by equation (76) and finally by x 0.01 it
lies clearly below. In Figure 24 we have plotted the critical temperature together with
the critical field, extrapolated to zero temperature, as well as ffr«j(0) defined by equation

(49 a). The extrapolation was done by fitting the experimental values between 1

and 2 ° K to a parabola. For the case of x 0.010 where HCa tends to become temperature

independent at low temperatures we used the value at T 0.92 °K. The highest
value of the zero temperature critical field (ffCa 76 kGauss) was found for x 0.005.
The critical field for the pure system was determined to 73.7 kGauss. The highest
measured critical field (for x 0.005) was only slightly higher than the one measured
for the pure system. The critical field for x 0.005 is shown separately in Figure 25.
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Critical field as a function of temperature for
MoGa4 and Mo.995-Mn.oosGa4.
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The reduced critical field Hrea shown in Figure 24 shows the expected maximum.
From the experimental points alone the maximum is determined to occur somewhere
between x 0.005 and x 0.006, however the strong asymmetry in Hred versus c

shows that the maximum occur near x 0.006. As described in chapter 3 b we may
now determine different parameters of the system. We get assuming S 5/2:

/o - 0.3 eV

ff*(0, 0) 86.0 kGauss

a 0.83 Xso 0.5

These values are slightly different Irom the values reported in a preliminary version
of this work [73]. The difference comes from the fact that we there analyzed the result
with an expression for Hrea that did not take into account the magnetic scattering and
that therefore neglected the strong asymmetry of Hred ¦

Using the values determined above, and assuming that the mean exchange field
varies proportionally to the magnetic moment determined from susceptibility measurements,

we have calculated the critical field from equation (33). The corresponding
value for Hred (T 0) is also shown in Figure 24, and is in reasonable agreement with
the experiments. One might argue here that there will be a reduction in the spin
scattering amplitude [71] when the spins are aligned. From the work of Keller and
Benda [19] it follows that this reduction is very weak. But even if it would be SjS + 1

as for the case of fixed aligned spins, it could not account for the anomalies observed.
The critical field calculated as a function of temperature, does only show

qualitative agreement with the measurements (Fig. 26). The reason for this may be seen

by looking at the pure system. In Figure 27 we have plotted the measured critical field
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together with the critical field calculated for three cases: a 0; oc 0.83, Xso 0;
a 0.83, Aso 0.5. All the theoretical curves lie below the experimental curve, which
is linear between Tco 8°K and T 2.5°K. This linearity cannot be reproduced
by the WHH formula (equation (33) for hj Xm 0) by any choice of the parameters

oc Xso ¦ From the work of Helfand and Werthamer [16] this is also found to be true

[Jw
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Figure 26
Calculated critical field hCz (jr2/4) hc%) for
a 0.83 Aso 0.5, corresponding to x 0,

x 0.003, x 0.006, x 0.008 and
x 0.01 in the system Moi_a;Mna;Ga4
assuming that hj follows a Brillouin function
without molecular field.
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in the pure limit. ^Thus we must conclude that the critical field curves cannot be
satisfactorily explained by the WHH weak coupling theory [17]. This is, however, not
the first time such deviations are observed. McConville and Serin [74] found that the
upper critical field of Nb deviates in the same way from the predictions of Helfand and
Werthamer [16]. (The critical field is linear in temperature between Tco 9.2 °K and
T 2.5 °K. The same result was found by Finnemore et al. [75] who also found that
Nb is an intermediate coupling superconductor. Farrell et al. [76] measured the
anisotropy in HCt on Nb monocrystals. They found that the anisotropy fits well a

theory by Hohenberg and Werthamer [77]. This anisotropy comes from non-local
corrections to the gap equation (12). Such corrections might perhaps also account for
the deviations from the Helfand-Werthamer theory. Another example of such deviations

is the La3ln compound. The results of Crow et al. [28] show that HH versus T is
linear between Tm 9.6 °K and T 2°K.

Although the work of Hohenberg and Werthamer may show the way how to
explain these deviations from the WHH theory, there exists up to now no theory that
reproduces these deviations. We are therefore obliged to discuss the results, concerning
the Moi-a;Mnj;Ga4 system, only qualitatively.

We note first two features :

(1) The upwards curvature in the samples with Mn occurs between 2 and 3°K. This
is also the temperature where Hc versus T for the pure sample starts to deviate
from a straight line.

(2) The initial slopes of the Hc versus T curves, determined from Tc and the ffCo

measurements at T 4.2° are all equal.

Now, since for all samples (except x 0.01) the critical field at 4.2° is high
enough to partly of fully align the impurity spins, we should in fact expect the above
defined slopes to vary strongly due to the mean exchange field. That this is not the
case suggests that the paramagnetic effect is quite weak in this region. This suggests
further that as long as the ffc> versus T curve is linear there is only very weak
paramagnetic effect in HCt and that when the latter one becomes important the HCs versus
T curve starts to deviate from a straight line. This assumption is consistent with the
fact that the anomalies produced by the magnetic impurities occur just in that region.
Note also that the HCt curve never passes higher than the extrapolated straight line of
the initial slope. The two samples nearest the compensation point (x 0.005,
x 0.006) just touch this line.

The only sample where there is a large discrepancy between the measured and
the calculated Hred(0) is the one with x 0.01.

The calculated curve in Figure 26 does not show an intermediate plateau. Actually,
the plateau in the calculated curve corresponds very well to the first plateau in the
measured curve. An analysis similar to the one presented in chapter 3b (Fig. 5, 6, 7)
shows that the calculated value (Fig. 26) corresponds to the lowest solution i.e. the
solution where the superconductivity is destroyed by the exchange field before the
external field can compensate it. But one finds also that the compensation domaine is

nearly realized. This explains why the calculated curve starts to bend upwards at the
lowest temperatures. A small change in the parameters may make the compensation
domain appear, and produce a curve similar to the measured one. These changes may
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be given by the modifications necessary to the theory to reproduce the ffCa versus T
curve for the pure sample. Note, however that the calculated curves assume that hj
follows a Brillouin curve without molecular field. This is certainly not correct a this
concentration. Correlations between the ions change certainly hj(T) and therefore h(T).

In the above discussion we have left out the possibility of a change in x with
impurity concentration. To check this point we measured Hc% in the system Moi_a:Nbj;Ga4
(Fig. 28). These measurements showed a linear increase in HC2(0) with x at a rate of
6 kGauss/% Nb. This effect is much smaller than the effects found with Mn. When we
calculated the experimental values of Hred(0, c) (Fig. 24) we did suppose that the
change in x for Mn is the same as for Nb, and the Hred plotted is for a constant x.
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Figure 28

Critical field as a function of temperature
for Moi_a;Nr>cGa4.
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The critical field curves for the impurities which show resonant state behaviour,
are much more difficult to interpret. The non-magnetic scatterings are probably
strong due to the resonant character of the localized state. This should show itself in
an increase in the initial slope at low concentration. On the other hand, since the ions
are slightly magnetic we also expect a polarisation of the conduction electrons and thus
a similar behaviour as in the case of Mn. Finally we are working with higher
concentrations which means that we might introduce changes in the energy spectra and the
density of states. In Figure 29 we show as an example the case of Fe. The variation of
the initial slope and the tendency to a compensation effect is clearly seen.
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(e) Kondo effect in Moi_a;Mna:Ga4

We have found in the preceding section that the exchange interaction between
the conduction electrons and the Mn-ions is antiferromagnetic (i.e. / < 0). In such
a case one expects a Kondo effect with a Kondo temperature Tk [80]

kBTK flriWM (77)

where D is the conduction electron band width. Assuming D to be a few electron volts
and using the above determined values of / and N(0) one gets TK < 1°K. However
the density of states in equation (77) should be the local density around the impurity
and this might be somewhat higher than the mean value of the density of states.
It is therefore difficult to predict anything from equation (77).

However the susceptibility shown in Figure 20 behaves as a typical Kondo
system. Scalapino [81] has calculated the susceptibility in the high temperature limit
(T > Tk). As shown by Heeger his expression might be written to a very good appioxi-
mation

fi'
X22"

T + 4.5 Tk
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where ft is the magnetic moment. From Figure 20 this yields TK 32 °K and

fi 5.3 fiB for x 0.02. At lower concentrations Tk and U increase to 47 °K and
8.3 fis. Preliminary measurements on EPR [78] show that there is a Kondo type
anomaly between 30 °K and 40 °K in the line-width. The g-shift, however, which from
the superconductivity and susceptibility measurements is determined to be — 0.03

(Ag J N(0) [79]), seems to be slightly positive. A more detailed investigation on
Moi-:!;Mna:Ga4 with respect to the Kondo effect is in preparation.

Müller-Hartmann and Zitterartz [83], [84], [85] have calculated the effect of
magnetic impurities on Tc in the Kondo case. They find that the initial slope of Te

versus concentration depends on the ratio TkJTco- The decrease of Tc is strongest for
TkJTco 1. In a recent letter [86] they have extended their calculations to finite
concentrations. For TKjTco > 1 they predict that Tc should decrease linearly with c

and then at about Tc 0.5 Tco begin to flatten out and finally approach Tc -> 0

asymptotically. This is due to the fact that the spin flip scattering decreases when

TKjT increases. However, in our case with TkITco iv A and experimental domain
8 ° > T > 1 ° the predicted effect is not very large and may easily be masked by the
correlation effect described above (chapter 5 c). We note also that the predictions of
Müller-Hartmann and Zitterartz for TKjTco > 1 are quite similar to the predictions
of Bennemann, for the case of resonant scattering and the predictions of Fulde and
Hoenig [87] for magnetic impurities in a singlet ground state. Thus one must be careful
when interpreting such experimental results.

Unfortunately the critical field of a superconductor with magnetic impurities
which show a Kondo effect has not yet been calculated. However, from the calculations

of Müller-Hartmann and Zitterartz one might expect that as T -> 0, HCs -*¦ HH
(c — 0, T — 0) since the spin flip scattering decreases to zero. At first sight this could
offer an alternative explanation for the anomalies in HCt versus T. However in that
case we should see a tendency of saturation in % between 2° and 3°K, which is not the
case (Fig. 20). Furthermore, the HCt curves for x 0.008 and x 0.01 should not
become horizontal at low temperatures, but continue to increase until Hc% HH
(c 0, T 0). Finally according to the theory of Müller-Hartmann and Zitterartz one
does not expect a great change in the spin flip scattering for 8 ° > T > 1 ° in the case

of TkJTco iv 4, and certainly not a sudden change as would be required to explain the
results in Figure 23. We therefore conclude that although the Kondo effect may exist
in our system, it changes very little the behaviour of the system in comparison to the
case without Kondo effect, and is not able to account for the anomalies observed in ff,.

6. On the Possibility to Observe the Jaccarino-Peter Effect in Dense
Ferromagnetic Systems

(a) Introduction

In the preceding chapters we have only discussed dilute systems. However, in the
original paper by Jaccarino and Peter, it was suggested that this compensation effect
could be seen in a dense ferromagnet, which in zero external field would be a normal
metal due to the mean exchange field. For this to be possible one has to admit that
the ferromagnet, without the mean exchange field would be superconducting. That
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this is possible is made highly probable through the paper by Baltensperger and Strässler,

where they demonstrated the possibility of a coexistence between superconductivity
and antiferromagnetism. Although the arguments used by them cannot be used

directly in the ferromagnetic case, it is clear that the essential condition is that all
electrons in a distance coo from the Fermi surface should see the same exchange field.
In that case it is possible to compensate the mean exchange field of all superconducting
electrons by one external field. Furthermore it has been shown by Klose et al. [98]
that the indirect electron-electron interaction via virtual spin waves for the
ferromagnetic case is weak as soon as one applies an external field to produce a gap in the
spin wave energy spectrum. In what follows we will assume that this is the case and
that the ferromagnet without a mean exchange field would be superconducting with
a critical temperature Tco ¦

From the previous chapters it is clear that the maximum field that can be
compensated is ff* (T 0), the orbital critical field. On the other hand, the mean
exchange fields may reach very high values in dense ferromagnets. Our discussion of the
compensation effect will therefore be a discussion of ff* in magnetic superconductors.
The calculation of Baltensperger and Strässler was done for a well-ordered system.
The periodicity of the magnetic lattice was used in an essential way when they
constructed the BCS-wave function. Now it is well known that the critical field of a pure
and well-ordered superconductor is rather low. The critical field can be increased in
two ways : (a) By introducing impurities and disorder in the bulk system in order to
decrease x, the electron life time, (b) By using a very thin film.

However, both these methods will generally introduce magnetic scatterings as
well as non-magnetic scatterings. This can be seen as follows: an ordered ferromagnetic

superconductor can for our purposes be described by the Hamiltonian [5] with
Va 0, ff 0, plus an interaction term, and where the magnetic ions occupy a regular
lattice. The interaction term is taken to be — £ (HM, Sj) where HM is the molecular
field acting on the spins. If we now remove one magnetic ion and replace it by a
nonmagnetic one, our new Hamiltonian may be written as the unperturbed Hamiltonian
plus a non-magnetic impurity, minus a magnetic one. Since the unperturbed Hamiltonian

describes our unperturbed superconductor with singlet pairing, we have the
same situation as for a non-magnetic superconductor with a magnetic impurity. The
same argument holds for the case of disorder in the lattice. For a thin film these
impurities are replaced by the surface of the thin film. When discussing ff* we have to
take into account these scatterings since they cannot be compensated as the mean
exchange field. We have therefore two competing mechanisms determining ff*.

Since we are interested in the case where the paramagnetic effect is compensated,
we shall in the following consider a hypothetical system where the mean exchange fields
is exactly compensated by the external field. We then discuss the critical field ff* of
this system. In cases where Hj, the exchange field, turns out to be smaller than ff*,
the compensation is possible, and our hypothetical system may discribe a real system
in a narrow range of magnetic field around ff — Hj.

(b) Bulk systems

It follows from the discussion above that our system is equivalent to a pure and
well-ordered superconductor with magnetic impurities. As shown in chapter 2 the
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critical field is given by equation (27). Since we are interested in the orbital critical
field, we put (ff • a) 0 in a.a and equation (17) reduces to

ln
/Tco

\ T £
2 Tl kB T

Vfm
2w

r/K,1/2

Vf
2ehH\i/2

2 I m I h -\
T

(78)

(79)

(80)

/(«) tan^1 (oc q) e- (81)

We have here restored ordinary units. In the dirty case one finds HCs ~ À and therefore
we defined in chapter 2 a reduced field h ~ HCJX so that h is independent of X. In the
pure limit, however, the proportionality between H0% and X does not hold. Following
Ref. [16] we now introduce a new reduced field, hv X hj3 or

2eh
c M 2^

Vf
¦ kB Tco

With this definition we may write equation 78 as

(w)n4- OO
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(82)

(83)

(84)

As stated above we suppose that X and Xm are created by the same impurities. If we
look at the behaviour of the system as a function of concentration of impurities we

may assume X dXmj2 where ô is a proportionality constant. Using the expression
for the different scattering times given in Appendix C we may write

ô
2 X Ts

Am T

A\Ut (iï
<s2>

(5 measures the strength of the non-magnetic scattering with respect to the magnetic
one, produced by the same ion.



378 Gystein H. Fischer H. P. A.

To calculate the maximum critical field H^max we have to calculate h as a function

of concentration (i. e. as a function of Xm) in the limit t -> 0 for different values of <5.

However since we are only interested in an estimate of H*max we will solve equation (83)

only approximately. As shown in Ref. [16], in the case of non-magnetic impurities the
reduced field hv defined by

hp
hP(t 0)

tdhp \
r*7.=i

is nearly independent of X. On the other hand it follows from a calculation by Gorkov
[88] that

(dhp~dTL 3X2

Tlz *(t+t)+*(t)
(85)

Using the values for hp given in Ref. [16] we may calculate hp(X) for non-magnetic
impurities (d -> oo) from equation (85) [89]. The result is shown in Figure 30. The
value for the pure limit has been given by Gorkov [90], hp(X 0) 1.04 (see also
Ref. [16]). The dirty limit approximation is given by the dashed line through the
origin.

35

///'//'////'///

10 15 20 25 30 35

Figure 30
Orbital critical field hp as a function

of the non-magnetic
scattering parameter X. The dotted
line through the origine shows the
dirty limit.

In the case of magnetic impurities it is physically clear that hp must decrease

approximately as Tc when Xm increases, if we keep X constant for a moment (in the
dirty limit we have seen that h decreases somewhat faster than Tc (see Fig. 3). We
therefore take into account the exchange scattering in an approximate way by using
equation (83) for Xm 0, but replacing Tco by Tc determined by equation (34). We
can now easily calculate the ratio of the critical field for a certain concentration of
impurities to the critical field for the pure sample (hr).
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We introduce the reduced concentration

r^J^Q,-^-. (86)
Xmcrlt 0.281

In terms of P we get from equation (82)

H*(D 1h^^ JMmHm)' (87)

where t(P) and X(P) are given by

X(P) 0AA0 à ¦ T. (89)

The only parameter in these equations is a. Its value can be estimated from experiments

on magnetic impurities in pure and ordered superconductors. Using equations
(26 b), (36 b) and assuming that the resistivity in the normal state can be written
q (mjn) e2 x we get

ô 2yEhne2 Qcru

ti kß Tco m

where Qcru is the normal state resistivity at the critical concentration (T 1) minus
the resistivity of the pure metal. With this formula one finds that ô is typically of the
order 100. For the system Thi-aGdz we find, using the resistivity measurements of
Peterson et al. [91] and the Tc measurements of Decker and Finnemore [92], ô 170.
A particularly favourable case is the one of Thi_xErx. Using the results of Andres and
Bûcher [93] and of Ref. [91] we find ô 1900.

In Figure 31 we plotted h for ô 100 and ô 1000. One finds:

hrmax 4.2 (Ô 100)

hrmax 37.0 (Ô 1000)

we now need to know ff*^ 0). With hp(X 0) 1.04 we get from
equation (82)

ff*(r=0)=0.22^-, (91)

where

% Vf
So 0.18

</>0

?0

kß Tco

h c
—— 2 • 10~7 Gauss • cm2
2e
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Figure 31

Amplification hr [Hc* (r)]/[H*„(F 0)] of the orbital
critical field produced by magnetic and non-magnetic
impurities in a pure superconductor. The first case
corresponds to the case of non-magnetic impurities in an
ordered ferromagnetic superconductor.

It is easily seen that for most superconductors where fo > 500 Â there is actually no
possibility to reach high enough values for H*max so that a compensation can be
possible (H*smax will then generally be lower than the Clogston limit, thus the real
ferromagnet should be superconducting in zero external field if ffj is small enough
to make a compensation possible). However, for substances with a large density of
states, |o will be small and ff* (X 0) will become large. The situation is different
from the one encountered in the case of a dilute system. There we concluded that N(0)
should not be too large in order to observe an increase in HH. The reason is that in that
case the two competing effects were the exchange scattering and the exchange field
whereas here the two competing mechanisms are the non-magnetic- and exchange-
scattering. Since both Xm and X are proportional to the density of states the latter one
drops in the ratio ô.

Using Hake's [25] estimations for fo we find as an example :

Nb3Sn ff*(r 0) 70 kGauss

F3Ga ff*(/' 0) 175 kGauss

To estimate the upper limit of the compensation effect, we calculated ff* as a

function of ô for a constant amount of discorder (i.e. for a constant X), assuming
H*(r — 0) 175 kGauss. Two cases are shown in Figure 32. The upper curve show
the case where ff* 2.5 MGauss in the nonmagnetic case (Hake's limit for UsGa).
In the lower curve we show a more reasonable case where ff* is 1 MGauss in the non-
magnetic case. Since t3 is typically of the order 100 we may therefore expect that it is

possible to reach ff* values of 600-800 kGauss for the ferromagnetic case. The
corresponding / values calculated from the condition Hj < ff * are also given in Figure 32.

It was assumed that only the B atoms in A0 B were magnetic.
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Orbital critical field for a ferromagnetic
superconductor as a function of ô xs\x
assuming t const, and 77*,(ts oo)

2.5 MGauss (Hake's limit) and
77<?2(ts oo) 1 MGauss.

The above estimates give an idea of what one can expect to reach with the
compensation effect. However to reach the limits discussed above one has to be able to
control the amount of disorder in the system, This is a very difficult problem even for
the non-magnetic superconductors and there is no reason to believe that it will be
easier in the magnetic case. Furthermore it has been shown that impurities in a
superconductor with a high density of states has a tendency to decrease Tc due to a broadening

of the peaks in the density of states [94]. This effect may of course reduce the
maximum value of ff*.

(c) Thin films

In a pure and ordered thin film the electrons scatter at the surface. Using a
similar picture that we used in the previous section, we may say that the electrons
scatter on the atoms that are missing. Since these atoms are supposed to be magnetic
the scattering amplitude will have a magnetic part. Following the arguments above

we replace our ferromagnetic thin film by a superconducting film between two layers
of a ferromagnetic oxide. As de Gennes [95] we now assume that the electrons are
scattered by the first atomic layer in the oxide, and that this is equivalent to a concentration

2 aojd of magnetic impurities, ao is the interatomic distance and d the thickness
of the film. To calculate the critical field as a function of thickness d we now use the
result of Tinkham and de Gennes [24] that for a thin film a long mean free path the
dirty limit result is still valid if we replace I by 16 djq.
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In

where

The critical field is therefore determined by
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For Tc 0 we then get the following equations for ffc
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(96)
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y is the specific heat coefficient. All parameters are measured in cgs units.
A typical case for ff* as a function of d is shown in Figure 33. ff c has a maximum

Hcm at a certain thickness dm ¦ From equations (96), (97) and (98) we find :
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Orbital critical field for a thin ferromagnetic
and superconducting film as a function of thickness.
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It is seen from this formula that to get a high ff * we should not take a substance with
a very high density of states. The best substances are those which show a high ratio
(Tcojy) (as for instance NbsAl). Assuming that the electronic properties of our
hypothetical system correspond to those of NbßSn we have plotted in Figure 34 H*m, Hj
and dm as a function of the exchange interaction /. The compensation is possible when
H*m > Hj. This is the case when dm is smaller than 34 Â and ffj smaller than 400
kGauss.

1
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Figure 34
Exchange field Hj, Maximum
orbital critical field Hcm and the
corresponding thickness dm as a
function of exchange interaction
J for S 5/2 and S 1/2.

It is of course a serious question if one still has the bulk electronic properties in
such thin films. Zeller and Giaever [96] studied the superdonductivity in small
particles with diameter down to 25 Â. They found that the critical field increased faster
than predicted by equation (96) with C2 0. Since we are actually only interested in
the critical field, this experiment may indicate that the thin films may be more
favourable for the compensation effect than estimated above.

7. Conclusion

We have studied the effect of magnetic ions on superconductivity, with emphasis
on the compensation effect suggested by Jaccarino and Peter.

In the main part of this work we have studied the influence of magnetic impurities
on the properties of high field superconductors, and how the compensation effect will
show up in the Hc vs. TVcurve. This compensation effect has two interesting aspects :

(1) It allows one to determine several of the important parameters of the system.
(2) It may in certain cases produce a net increase in the critical field. Experimentally
we were able to demonstrate the compensation effect in the system Moi_a:Mna:Ga4
where Mn behaved as a magnetic impurity. From the behaviour of the reduced critical
field Hred, defined in chapter 3, we could determine the orbital critical field H*(T 0)
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and the exchange constant J(q 0). The behaviour of HCs in the limit T 0 were
good agreement with the theory presented in chapter 2, and it allowed us to determine
the Maki parameter a and the spin-orbit parameter Xso ¦ However, the curves HH vs. T
did only agree qualitatively with the calculated curves. This correlated with the fact
that even for the sample without magnetic impurities the theory did not reproduce the
measured curve. This discrepancy which has also been observed in other systems, show
that it might be quite misleading to determine the parameters a, Xso, by fitting the
measured critical field curves to the WHH-formula. Especially the conclusions that
Xso oo for some systems [30] may be quite wrong. The above discussed compensation

effect may provide a good tool to check more directly the paramagnetic effect on
Hu in these substances and thus check the validity of the WHH-model.

In the last chapter we have studied the possibility to realize the compensation
effect in a dense ferromagnet. The compensation effect has been shown to be possible.
However it may be difficult to realize experimentally due to the many conditions that
must be fulfilled.

We therefore conclude that at the present time it seems most reasonable to
investigate superconductors with magnetic impurities. Since there is a great number of
interesting substances for such an investigation, one may hope to get much new
information of the high field properties of superconductors.
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Appendix A

Inversion of the Gorkov equations

To invert the Gorkov equations (7a) and (7b), we define:

D± (-*- (V ± ie A)2 + g ,UB(H + Hj)o+fÀ, (AI)
\ 2 m J

V(n, r2) =-- Va(n, n) + Vb(n, ra) (A2)
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We then write the Gorkov equations as

(icon + D-(ri))Gm(n,r') - I V(n,r2) Gm(r2, r') d3r2

+ A(n)h(ri,r') à(n-r')

(icon - b+(n))Ft,(n,r') + f V*(r%, n) Ft(r2, r') d3r2

+ A*(n)Gm(n,r') =0.

385

(A3)

(A4)

Multiplying (A3) from left by Gnm(r, n) and (A4) by G-nl(n, r) (Gnm(r, r') is the normal state
Green function defined by equation (A3) with A 0 and integrating by parts over
n we get

J' d3r2 (icon + D+(r2)) Gl(r, r2) - f Gl(r, n) V(n,r2) d3n

+ f Gm(r, n) A(n) FJ(n, r') d3n G"m(r, r')

Gm(n,r')

(A5)

[d3r2 (-
'

con + D-(r2) GMm(r2, r) - V(r2 n) Gnm(n r))« d3n

+ f G1'm(n,r) A(n) Ga(n,r') d3n 0

F+(r2,r')

(A6)

To transform equation (A7) we note that (see Ref. [20])

(i con + D+(r2)) Gl(r, r2) - f Gl(r, n) V(n,r2) d3n 6(r - r2) (A7)

To transform equation (A8) we use equation (A3) with A 0. We find

Gm(r, r') Gl(r, r') - I Gl (r, s) Â(s) F+(s, r<) d3s (A8)

h(r, r') f &4S, r) A*(s) Gm(s, r') d3s (A9)

To calculate Gm and F+ in terms of Gm and A we simply iterate equations (A8)
and (A9). To the lowest order in A we get

Gm(r, r) Gl(r, r')

h(r, r') I G\(s, r) A*(s) Gnm(s, r') d3s

This is the result used in chapter 2. (Note that G^ — GJ.

(A10)
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If one writes the equations analogous to equations (A8) and (A9) for G'Jr1, r) and

Fm(y, f') the four equations obtained may be written in matrix form

(AH)

where

(r, r) X,(r, r') + J <Snm(r, s) £ (s) <Sm(s, r') d3s

m \F+ GiJ " \0 G«JJ £> \A* 0)

and

GLaß(ri, r2) G-„,ßX(r2, n) a, ß spinindices

Thus the equations for Gm and F+ may be combined to an equation analogous
to the Dyson equation for the normal state Green function. This matrix form was first
introduced by Nambu [99] and by Gorkov and Rusinov [100].

In the WHH paper this matrix formalism is adopted. However, their normal state
Green function ^m is defined without the scattering potentials. From equations (A5)
and (A6) it is seen that in this case we have to add a potential dependent term in
equation (All) of the form

K(r, s) V(s, t) <Sjt, /) d3s d3t,

equation (All) then turns into equation (1) of WHH.

Appendix B

Transformation of the Gap equation

The sum over co in equation (11) diverges. This is the same divergence as found
in ordinary BCS-theory. If we neglect all interactions, A might be taken as constant
and using that the Fourier transform of Gm(r, s) is given by

Gm(P)
'

HP) +ico'
Equation (11) may be written

dil-^UI^J-^- (BD

If the integral is taken between — oo and + oo the sum over co diverges. One therefore

generally introduces the BCS cutoff: (cod Debye frequency).

"i>

' - m if l r-i:/ -r\h - m i i * (±£ü) m
-O)D
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The divergence in equation (11) in the more general case is of the same type as above.
It is therefore generally removed in the following way. We subtract from both sides
in equation (11) the term

\g\N(0)TZ( adfaA(r) (B3)
m J CO2 + f2

and get

-A^i-^Tmzj-srfp)
leI tw(0)S\iH(\ %~+']Je -\«<c".(s'')<*<»•>•»«) JW •

In the term to the right the divergence in the two terms just compensates each
other. In the term to the left we now introduce the BCS cutoff. Using equation (B2)
and carrying out the integral over f to the right, we may write

N(0)\g\ln^f°-^A(r)

N(0) \g\TZJd3s (^"j0* - YW(0) tr <G-JS' r) GI(S' r)>ii) A{S) '

with w ti T(2 n + 1) we get :

'"(£)W-Z\*(||^4| -^jö, t,<«•>,„G;,s,,)>„)„w
from which equation (12) follows immediately.

Appendix C

Calculation of the eigenvalue sm

It we introduce equation (16) in the integral equation (15) the latter one turns
into an equation for the eigenvalue sm of Sm(r, r'). We find:

S S° 4- S°

T(ô3(0))2 / éPr" [<ya(r, r") Sm Va(r", r)> + (Vb(r, r") Sm V„(r" r)>] (CI)

To Fourier transform the integral in equation (CI) we now introduce the Fourier
transforms of the potentials defined in equations (6 a) and (6 b)*

Va(r,r') E d3p d3q eW'+'M-W + W'-'') x 'UaX(p) +ua2(p,q) (j> X q a))

Vb(r,r') E d3pd3qeiM'+r',-2)-Rit + i''lir-r"i

X (ubi(p) + ub2(p, q) (p x q a) + -L J(p) (s ¦ a)) (C2)
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Introducing equation (C2) into equation (Cl) and averaging over the impurity
positions Ri and Rj we get :

So, Sn) -+- S,
o N(0)

T

na Uai sœ J- na u„2 dp dq (p X q ff) sm(p x q ff) + m u\i sm

~ ~ ~ ~ ~ 11.,.

(C3)+ nbu\ rf^ dq (p X q a) sm(p X ff) — — /2 (*, ff) s«,(s, ff)

Here we have assumed that the potentials U(p) are constants. We have also used the
relation :

WW^^/^' (C4)

where the integral f dp is over the directions of p :

J dp

As discussed in chapter 5 c the p dependence of the potentials may be important in
some cases. This is especially the case for the exchange interactions. Expressions for
the scattering times which include the p dependence are given in Appendix F and in
chapter 5 c ne and n0 are the number of non-magnetic and magnetic impurities respectively.

Since s° depends on ff, sm must also depend on ff. However, they only depend on
the component of ff parallel to the external field. We therefore decompose sm and s°

in two terms1) :

s„ £ + £(H ¦ ô)

s°m2 (H-a), (C5)°m °tul

where s* s2, s13, s£,2 are independent of spin.
To evaluate equation (C3) we must calculate the expressions

Li (p x qo) (ff ff) (p X q ff) dp dq

L2 <[(s ff) (ff cr) (s cr)> (C6)

Using the identity

(a tr) (b ff) a b) + i(a ¦ a x b), (C7)

i) />, and 77 are unit vectors in the direction of p, q, and H, respectively, a is the Pauli
matrix : a 2 a.
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we get

dqdp [2(p Xqa)(Hf>xq)\pXq\2](Ha)

A 2

389

Li

i\ dp dq [2(p X qH)2-\p X q\2](H a)

l2 <2(ff s) (s ff) - s2(H ff)> «sly - <s2xy - (S2yy) (ff a)

(C8)

(C9)

Introducing these results together with equation (C5) into equation (3C) we find:

Sai+Sl(Ho)=(S°ml+S0m2(Hcj))

r
N(0)

T

__%
N

N(0)
n«uli A-~nau2al +nbu2bl + — nbu2b2 —~ (i)' <S2> Si

na ««i - — na u2a2 + nb u\x

(0 <s,2> - (ß\y - <s*>) si ¦ (H ¦a)

We now introduce the life times

(CI)

xai

1

rbl

1

2 ti na N(0) u\

2 jr nb N(0) u2bl

rr-2TxnaN(0)u2a2
T«2 3

1
_

2

Tj2 3

- 2„|W4)V)

2 jt w6 A(0) m£2

-cN(0)f2(S2y. (Cll)

We also introduce the total life time x of the electrons, and xso, the generalized spin-
orbit scattering time:

1113 (Sf)
XS0 X-a2 Xb2 2XS \S y

111111- — + — + — + — + —
x xaX xa2 xbx xb2 xs

Equation (CIO) can now be written:

(C12)

Si + Si(H ¦ o) (S°ml + S°m2(H o))

x 1
2tiT

1 2

x X*

Si
2tiT

1 4 1

X 3 Ts0
(ff-t7)J, (C13)
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We separate the terms in (cr • ff)

m b<alV + 2nT\x rj/ + 2nT \x 3tJ'

*-M^(W))+£3Kt-£)-
To solve for s], and s2, in terms of s^x, s°

2 we introduce the abbreviations

2tt7\t 3tso/

4 2
(C15)

2 jr T \ 3 Tso ts

The equation (C14) now read

si slx(l+sl(Q+P))+sl2slQ,
si s°m2(l+si(Q+P))+s°aXslQ.

Solving the second equation for s2, and introducing this into the first equation yields

si SUl+si(Ç+P))+s°2Ç-1-±^|+^.

This may also be written :

!_ 1-&C 0 p
si sl1(l-sl,1Q)+(sl2)2Q V

If we now use the fact that s°
x

is real and that s°
2 is imaginary we may write :

JL-Zlte--^-* \_1-P. (C16)

Since trsm/2 sj, we do not need to know s2,. Introducing (C16) with the definitions
(C15) into the gap equation (12) and using the fact that sm is an eigenvalue of Sm(r, r')
we get the final equation (26).

Appendix D

The dirty limit

In chapter 2 we found

si A /(«J (DI)
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where A and am are defined by equations (19), (22), (23) and (25). In the dirty limit
we can assume ctm <^ 1. Using the asymptotic series for / given by Helfand and
Werthamer

a2n+lM|

/(«)=2;(-i)»1^1r + W
we get

/(<*)s*a-ytf+ •••• (D2)

If we write (ff ff) 1 in a«, we may write for sj, (equation (C16))

i-= /Re—i V-P. (D3)

7-0}S tO -

(for definitions of Q and P see Appendix C, equation (C15)).
From equations (DI) and (D2) we find

(D4)

(D5)

(D6)

(D7)

1

I5""to
^ A a.m K °4 )¦

now put

1

"to
-Q x + iy.

l T?.
1 \-i y2

Introducing equation (D4) into equation (D5) and using

_2nT 1

2 I co | H 1— 2 * ,MB(ff + ff/) s gnco

we find

3ts0/ 3^2 / 1\2(2|»l+7)" 4 ^(ff + ff/)2

1
/o m,in \ 27r:r 2/2b(H + Hj) S g U CO

y ~2txT(-2^b[h +h')ss»°>) - ^"7^7 ^TT^ •(D9)

(2|o>|+-i-j +4^/7+^)»
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The second term in x and in y is only important for small co. We therefore replace
2 co + 1/t by 1/t. We suppose furthermore that

— >2 flB(H + Hj)

Then we may write :

*=M2^+^)+^' (Dio>

y J2-(H+Hj). (Dil)
Tl 1

Introducing these results into equation (D3) we get (with co 2 ti T(n + 1/2))

ß%
(ff + ff/)2

1 ,„,.,¦ 2tiTx 1 (sr T)
—- 2« '

4 ' ' 3^2 «Tt, |o 2 2 sr Ft2 « + 1 + h r -3 st 7 tso 3 v42

Using the definition (26b), (29), (30), (31), (32) the above equation may be written:

I I

where v 1 for bulk samples and v 2 for thin films. Introducing this result into
the gap equation (12) yields the equation (28).

Appendix E

The -ip-function

The digamma function ip is defined as the logarithmic derivative of the Gamma-
function

y>(z)=-f-logr(Z). (El)

The most convenient form to represent ip(z) is in form of a series

»»-—^(ttt-ttt)- (E2>

This may also be written

^M^SiT^-T^T,)'
a form which is very often met in theory of superconductivity.
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From equation (E3) follows in particular:

HA^h^ysit^+ü-

393

2« +11 + X

Im WAr1)-^(T)) Imy/1"z £

2 n + 11 + x)2 + y2

y
(| 2 n + 1 | + x)2 + f

(E4)

,(E5)

where z x + i y.
For numerical calculations it is useful to note the functional relationship

ip(z + 1) ip(z) + - (E6)

Other formulas and relationships can be found in Ref. [97].
To transform equation (28) we multiply the second term at the right hand side

with (| 2 n + 1 | + Xsojt + h'jt).
We then get :

ln

where

dhs
2n + 1

V +¦ Xs,

t

2n + 1
V + \ (Xm + Xso) V

*-+ii+—-,—Hi)
,(E7)

/ 1 \i/2
y [*2(h + hj)2 - - (Xso - Xm)2}

Identifying

h" 4- — (Aso + Xm)
2 yx y =-- —t y t

we may write using equations (E4) and (E5)

i(Xso —: Xm)
ln

/ 1 \ / 1 i(Xso - Xm) \ I 1

\7)={-2+^y~)A-2

/ 1 i(XsO - Xm) \ 1

+ It - —47—j A-2

Ä" + Xm + y (AsO — Xm) + t y \

_ j
h" + Xm + ~r (XsO — Xm) — iy

.J_ _____
^
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The above derivation does not hold for y2 < 0. The equation (E8) is, however, still
correct. To show this we put y1 i y and write equation (E7) in the form

„.i_r(_L l^ + u+'+Àr \
U

t £> \ | 2 n + 1 | (\2n + l\+x-y')(\2n + l\+x +y')l '

this may also be written:

ln i ir (—1 L
t 2f^\\2n + l\ \2n + l\+x+y'

2 _fk \ 2 n + 1 2# + l +*"//
r-i AsO /
fs 4771]

1

2n +1\ + x — y' |2w + l|+*+y'
Using equation (E3) for real argument we get equation (E8) for y2 < 0.

Appendix F

A few useful formulas

(a) Superconductor without magnetic impurities
The critical field of the pure superconductor (A 0) (type II) can be written:

ff*(r 0) 0.22
1^0

t2 '
?0

where

h vf
!o 0.18-—4-

KB 7 cO

and cpo 2 ¦ 10~7 Gauss cm2.

In the dirty limit the orbital critical field may be written :

ff*(T 0) 3.06 • 10* g y Tc0

where g is the resistivity, y the coefficient of the electronic specific heat, and Tco the
transition temperature. (All units in c. g. s.)

The Maki-parameter ot may be written

oc 2.35 q y

or

- 2.58 • 10-5 (dHc,\
\ dT }i
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For a pure film

(<<'<K£rn
one finds

4 cpoH*(T 0)
ti*/3 (Ç0d)V2d

For a dirty film

d2 < I |o < dÇo

one finds

Äe*(r o)=——£-_cV ' sr3/2 (fo.)1/2«.

(b) Superconductor with noninteracting magnetic impurities
The initial decrease in Tc is given by

2.J?

*« ^T ^ " •? ^(°) S(5 + -A J «*? • 1 ¦ /*(?) - "C" ^(°) S(S + /2 '
rfc 8 ' 21

o

The critical concentration ccr« is

0.562 £« Tco
Ccrit

N(0) S(S + 1) J-2

_V(0) is the density of states at the Fermi surface per atom for one spin.
Xm is given by

a- ttV ^0) s(s + ^ f *? ¦ ¦ ™ --= ttt-n^ S{S + 1]J2-
+ Kb I co 2 qF J + Kb 1 co

o
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