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Expansion of Gaussian Functions in Hydrogen Eigenfunctions

by V.Dose1)

Physik-Institut der Universität Zürich

and C. Semini2)

Institut für Theoretische Physik der Universität Zürich and Ciba-Geigy Photochemie AG,
Fribourg

(4. IV. 74)

Abstract. Methods have been developed which allow the expansion of Gaussian functions
rJ Y™(&, ç))-exp(—txr2) in discrete and continuous eigenfunctions of the hydrogen atom. Different
approaches are presented for application in different regions of an tx-k and a-n plane respectively
where k is the electron momentum in a continuous state and n is the principal quantum number of
a discrete state. Detailed numerical results have been obtained for the special case l=j 0 and
exponent parameters a in the range IO-5 ^ a < IO2. An overall check of the accuracy of the results
is possible with the help of the closure relation which is in all cases satisfied to better than IO-5,
demonstrating the satisfactory reliability of the proposed methods.

I. Introduction

In 1950 Gaussian functions were proposed as basis functions for molecular structure

calculations by Boys [2], because all multicenter integrals may be evaluated

analytically. The type of function used is

WG A Yf(A, 9) exp (-acr2)

where ct is positive and j is equal to or greater than I. For j greater than l,j — I must
be even. Yf is the usual spherical harmonic.

A considerable amount of atomic and molecular structure calculations have been
carried out in the past using this computationally convenient set of functions. We shall
not attempt to review this work. It has not always been successful. The failure was

frequently attributed to the Gaussian factor in contrast to the exponential in hydrogen
eigenfunctions and Slater orbitals. Consequently there have been attempts to expand
exponentials and Slater orbitals in terms of Gaussians to combine the physical significance

of Slater orbitals and the computational convenience of Gaussians (Kiyosi
O-ohata et al. [7], Shavitt and Karplus [11], Hiroshi Taketa et al. [6]). The present
paper is concerned with the problem the other way round. To get an idea of the

Now at Physikalisches Institut der Universität Würzburg, Röntgenring 8, Germany.
Now at Landis 8c Gyr AG, Zug, Switzerland.
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physical meaning of a Gaussian function an expansion in hydrogen eigenfunctions
both discrete and continuous

00

A exp (-etr2) Y? f ajl.j, x) RnJr) Yf + f dkA (k, l,j, et) Ru(r) Y? (1.1)
»-i 0

is presented. Rnl is the radial part of a hydrogen eigenfunction for a discrete state with
principal quantum number n and orbital angular momentum /. RM is the corresponding
function for a continuous state with electron momentum k. Using the orthonormality
of the hydrogen functions we have for the expansion coefficients an and A

OO

ajl.j, a) J R„,(r) exp (-etr2) rJ+2 dr (1.2)
o

and
CO

A(k,l,j, et) J" Rhl(r) exp (-etr2) rJ+2dr. (1.3)
o

Rk, is given explicitly by (Landau and Lifschitz [9])

Rkl Ck, exp (-ikr) r< XFX J - + 1 + I; 21 + 2; 2ikr | (1.4)

Cu —
J2A)

(21m-i-WÙHT-
From (1.4) Rnl may be obtained by substituting k (in) l. In this case the normalizing
factor C„i is

Cm=-r, "MV-«2) • C1-«)
«2+< (2l+l)l\nV_y 'j

Occasionally we shall use the abbreviations a i/k + l+l and c 21 + 2 for the first
two arguments of the confluent hypergeometric function XFX in (1.4).

We were not able to carry out the integrations (1.2) and (1.3) analytically and
therefore used numerical methods. During the course of this work, it soon became

Table I
The four methods and their regions of convergence

Section Method Discrete states Continuous states

II Termwise integrations of Rummer's
series

III Termwise integration of Bessel function n -> oo

expansion

IV Asymptotic series in —-=

V Asymptotic series in a

n -> 1 k ^0
a —> co

n —> oo k ->0
a -*¦ co a -»¦ »
n -*¦ co A ->0
a -*¦ oo a -> co

n -*¦ 1 À —> co

a^O a^O
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obvious that there is no simple procedure which would apply to all possible combinations

(k, et) and (n, ct) respectively. In fact four different approaches have been needed
to cover all cases of interest. Table I characterizes these methods in short and gives
an indication of their respective regions of convergence.

In Sections II to V of this paper we shall outline the analysis for the different
methods. Section VI presents numerical results.

Numerical methods to compute some non-elementary functions arising in the
analysis are described in the Appendix.

II. Termwise Integration of Kummer's Series

We shall first be concerned with the evaluation of (1.3), that is, overlap with the
continuum. The modifications to be made in the case of (1.2) will be discussed
subsequently.

Since it is the confluent hypergeometric function in i?t( which prevents analytical
integration in (1.3) it is natural to expand

iFAl- + l+l;2l + 2;2ikr\= f Bmrm (UA)
\k J m=o

with coefficients Bm given by

ik(l +l+m) -1
B0 l, Bm+1 2B !¦..-¦' m 0,1,.... (II.2)

(m + 1) (21 + 2 + m)

Defining

CO

Im(x,ß) f exp (-ocr2 + ißr) rmdr m 0,1,... (II.3)
o

we obtain the series expansion for A

A(k,l,j,x)=Cu 2 BmI2+,+J+m(*,-k). (UA)
m-0

The functions Im(et,ß) satisfy the recurrence relation

8,m iß m — 1

U«,fi=-~+^-Im-i(«,ß)+——Im-J«,ß), m 1,2,... (ILS)
let let 2a

where Slm is the Kronecker delta. The function I0(oc,ß) needed to start the recurrence
is given by

I0(ocß)=- -exp{-ß2/AoJ + ^=exp{-ß2/Ax) f exp (t2) dt. (UA)
2 V et Va 0J

If ß is real, the integral appearing on the right-hand side of (II.6) is known as Dawson's

integral D(ß/2Vx). Tables of D(x) are available (Abramowitz and Stegun [1]).
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It may be noted that the individual terms in (II.4) are complex, while the sum is

real, because Rkl (1.4) is a real function. However, for numerical reasons it is
advantageous to retain the imaginary part of Im in (II.4). In practice the imaginary part of
the sum (IL4) is used as a criterion to truncate the series when it is sufficiently small.
On the other hand, if in spite of adding further terms the imaginary part of A does not
decrease further, the real part, that is the desired result, is unlikely to have converged.

To adjust the above formulae to the discrete case (1.2) we have to replace ß in
equation (II.3) by i/n. With the additional substitution

t= Vx\r+ 2nc

we obtain

m(ocA exp(l/Axn2) j exp (-t2)lt --^J
dt

„(m+l)/2

(II.7)

(II.8)

2 Jan

M ..r-mlexp(l/An2et)
IA a,- =|V7T —— imericmi t j. (m+l)/2 2nV\x)'

(II-»)

The last factor, imeric(z) is known as the repeated integral of the error function
(Abramowitz and Stegun [1]). We shall describe numerical procedures to compute
imexic(z) in the Appendix.

The accuracy of the expansion coefficients ajl,j,ct) is essentially limited by the

accuracy obtainable in the computation of imevic(z), since, in contrast to the
continuum case, only the first n — I terms in the sum (II.4) are different from zero. This,
of course, is due to the fact that the confluent hypergeometric function in (1.4) reduces

to a simple Laguerre polynomial for i/k —n.

III. Bessel Function Expansion

The regular Coulomb wave function is expanded in (essentially spherical) Bessel

functions (Abramowitz and Stegun [1])

oo j
(kr)' exp (-ikr) xFJa;b; 2ikr) (2l+l)U ^-77-JA-Jv+x/2(kr). (ULI)

The expansion coefficients bv are given by

21 + 3

bv -

"l+l — l+l
2v + 1

v(v + 1) -1(1 + 1)
2&v-i +

(v - 1) (v - 2) - 1(1 + 1)

2v-3
k2E (III.2)
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Substituting (III.l) into (1.3) and reversing the order of integration and summation
yields

2k Z k" J
A (k, l,j, a) CkJ2l + 1) /- > -H exp (-ar2) r3'™J,+ll2(kr) dr. (III.3)

The integral appearing under the sum is well known (Gradshteyn and Ryzhik [5]). We
obtain

A(k,l,j, x) (21+1)11 V^-Ckl (III.4)

v 3

r\- + -+\2 2 2/ v j 3 3 k2

,r, v2v+2av/2+"2+3/2.z> + 3/2)1 ^2 22'" 2~ïa~

For continuum states a numerically more convenient result may be obtained applying
Rummer's transformation

A(k, l,j, et) (21 + 1) CuVn-exp (-k2/Act)

^2++2 /„ j 3k2\Aih-i-v + ^A-)- (IIL5)^ 2V+2 ayn+m+m p,y + 3y2) ^2 2 2 4a

In this form, the confluent hypergeometric function may be computed without loss
of accuracy by direct summation of its series expansion.

IV. Asymptotic Series in a~1/2

The procedure of this section applies to overlap with discrete and continuous
states. It is based on an integral representation of the confluent hypergeometric
function (Landau and Lifschitz [9])

1 T(l-a)P(c) r
iFja;c;z) =-—-—— — rh exp (tz) H)-» (1 -*)«—>#.

27rt 1 (c — a) J
(IVA)

Since c 21 + 2 is an integer in the present problem the contour must enclose the
points t 0 and t 1 and is otherwise arbitrary. Again we shall treat overlap with
continuum first and indicate modifications for discrete states subsequently. Defining

1 ra-a)r(c)X —li (IV.2)
2-rri r(c - a)



312 V. Dose and C. Semini H. P. A.

and inserting (IV. 1) into (II.3) we obtain

A (k, l,j, et) Ck, j exp (-etr2) rl+->+1

o

X- j exp{-ik(l-2t)r}(-ty-1(l-ty-"-1dtdr. (IV.3)
c'

Expanding the exponential under the contour integral and interchanging integration
and summation yields a series S, which will be shown to be the asymptotic expansion
of A(k,l,j,ct) in terms of a~U2. Writing

M

S- 2 Fm (IV-4)
m=0

we have from (IV.3)

CkJ-ik)
Fn,=-

m\
exp (-xr2) r,+J+m+2 dr

x-j(i-2t)m(-ty-i(i-ty-"-1dt. (IV.5)
c'

While the integral over r is elementary, the contour integral is just an integral
representation of the hypergeometric function 2FJa,—m;c;2) (Landau and Lifschitz [9]).
The result is

(-i)m(k)m ll+j + m + 3\
Fm ALALckl0,-u+j+m+3)i2rl—L- \-2FJa,-m;c;2) m 0,l

^ " ' (IV.6)

Fortunately, since the second argument of 2FX is a negative integer, the hypergeometric

series terminates and 2F. (a,—m;c;2) can be evaluated exactly. For practical
purposes it is essential that the functions Fm can be calculated by recurrence. Using
the recurrence relation (Abramowitz and Stegun [1])

(c — b) 2FJa, b — l;c;z) + (2b — c — bz + az) ¦ 2F\(a,b; c;z)

+ b(z-l)-2Fja,b+l;c;z)=0 (IV.7)

an equivalent relation for the F,„'s may be derived. This is

C ll+j + m + 2\
\ 2 2Fm k2

^
2(m + l)(2l + 2 + m)\ [l+j + m + 3\A^ a

"" ~l ' '
(l+j + m + 2)

I' m+\ —
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The starting values are obtained directly from (IV.6)

l+j + 3
F0 — X-C+1+3V2 p

2 \ 2

^¦-^mHT

313

(IV.9)

(IV. 10)

We shall prove now that the series S calculated in the way outlined above is the
asymptotic expansion in a_1/2 of A (k, l,j, oc). To this end we shall prove that (Knopp [8])

(IV.ll)L= lim I A(k, I, j,et)- 2 Fm aM/2 0 M 0,1,
s/S-x m-0

li we put x r • V°c and define

ik V l-ik\m(l-2trxm
(IV.12)

we obtain, using (IV.3),

L lim
Ct,aM/2

V5-CO a(,+'+:w2

OO

J exp {-x2} x«+J+2)/2

x- j, R(-t)«-l(\ - ty-"-1 dtdx.

From Lagrange's formula (see for example Courant [3]) we have

R-
M+1 I ik

dxt+1exp\- — (l-2t)x(M + 1) Vx

(IV.13)

(IV. 14)

x-i
with

0 < £ < x.

Carrying out the differentiation and replacing the exponential by ê with |#| 1 we get

R
ik

^=(1-201 A
(M+1) I

Inserting (IV.15) in (IV.13) yields

(IV.15)

cu

i-ik(i - 2t))M+1-ê(-ty~1(i - ty-"-1 dtdx.X

0

vM+\

(M + 1)
(IV. 16)
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The expression under the lim is proportional to a-{l+i+'i)l2 and therefore L 0, q.e.d.
Numerically, asymptotic series are convenient, since the first neglected term is an

estimate for the achieved accuracy. The above formulae may be adapted for the
calculation of overlaps with discrete states replacing k by (in)"1 and Ckl by Cnl.

Convergence is rapid for large values of n. Moreover, the recurrence relation (IV.8) may
be used to obtain the general behaviour of the overlap integrals (1.2) for large n.

Inspection of (1.6), (IV.9), and (IV. 10) shows that the first two terms in the
expansion of ajl,j,x) depend on n through «~3/2 independent of /. From (IV.8) we
see that the third term is proportional to w~7/2. This fact may be used to estimate

Y=ï \ajl,j,x)\2 (IV.17)
n=0

from a finite number of terms, M.

M »
Y= 2 K(i,i,«)\2+ 2 K(i.j,«)\2 (iv.18)

"=0 n M+l

where the terms of the second sum have not been computed. To a good approximation
we may write, using the w~3 scaling law,

Y~ | \aJl,j,ct)\2+\aM(l,j,a)\2 y^j. (IV.19)
n-n *—i nö

V. Asymptotic Expansion in a

For a rigorous derivation of this expansion it is necessary to introduce a
convergence factor exp{—e-r} with e positive but arbitrarily small. With the help of this
factor we define

CO

Ä(e, k, l,j, a) Cu j exp {-etr2 - er - ikr}-r2+l+j xFJa;c;2ikr) dr. (V.l)
o

The limit e -> 0 may at this step of course be interchanged with the integration to yield

limÄ(e,k,l,j,x)=A(k,l,j,<x). (V.2)
e-,0

Expanding the Gaussian in (V.l) and interchanging summation and integration we
obtain

Ä(e,k,l,j,x)=f(-xyUJe) (V.3)
v=0

with

C
UJe)=~ \ r2+2"*^lexp(-er -ikr)-xFJa;c;2ikr)dr. (V.4)
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Interchanging summation and integration in the last step is not necessarily a valid
operation. Before turning to practical aspects, we shall therefore prove that the series
(V.3) is the asymptotic expansion of A(e,k,l,j,ct) in a that is

L lim{Ä(e,k,l,j,et)- | (_a)vr/v(e)jJ_ o N 0,1,.... (V.5)
«-0 v=0 J a

Denoting the expression in brackets by R it may be shown by an analysis similar to
that in Section IV

00

R (-x)N+1 — ¦ f r2N+i+l+Jexp{-er-ikr}-§xFJa;c;2ikr)dr. (V.6)

Here -d is between 0 and 1. Since R is proportional to xN+1 equation (V.5) is satisfied,
q.e.d.

As in Section IV, this semi-convergent series is suitable for the calculation of
A(k,l,j,x) as long as the smallest term is smaller than the desired accuracy.

For application of the above formulae, we are left with the evaluation of the
integral in (V.4). We define

CO

Gm limCki [ rmexp (-er - ikr) xFJa;c; 2ikr) dr. (V.7)
£->0 1

0

The integration may be carried out (Landau and Lifschitz [9]) and yields

Cu T(m +1) I 2ik \
Gm hm " ' -2Fi [a,m + l;c; -. (V.8)

*-o (e + ik)m+1 \ e + ik)

With the help of the recurrence relation (IV.7) we get the recurrence relation for the
functions Gm

m(m-2l-l)Gm_x + 2Gm + k2Gm+x=0 m =1,2,... (V.9)

and observing that 2FX (a,0;c;2) 1

2G0 + k2Gx=Ck,(2l+l). (V.10)

It remains to determine a starting value G0. To this end we note, that (Abramowitz and
Stegun [1])

2FJa,b;b;z) (l-z)-" (V.ll)

with the restriction that the term on the right-hand side has to be taken with the
smallest absolute value of its phase. This gives

G2(+1=Ctl(2/ + l)!lim
e-o (e2 + k2)l+1

•exp{—l|t„-+...2* -\ + 2mri\ n 0, ±1, ±2 (V.12)
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Since e > 0, the argument is smallest for n — 1 and we obtain after e -> 0

(21 + 1)
G21 + 1 Cu

k2l + 2 exp {-77/£}. (V.13)

Now, since the recurrence relation (V.9) is linear, we may determine G0 from two
different trial values G0 and Gl respectively. G0 and G2 will generate corresponding
values G|,+1 and G2I+1. From the linearity of (V.9) and (V.10) follows

G0 ßGo + yG2

G2i+i ßG\l+i + yG

l=ß + y.

2
21+1

(V.14)

As in the foregoing sections, these formulae may be adjusted to the case of discrete
states replacing k by (in)'1 and Ck, by Cnl. However, it turns out that, though the
method described in this section is powerful for calculation of overlap integrals for
continuous states, it is of rather limited value for discrete states.

VI. Numerical Results

The methods described in Sections II to V have been used on an IBM 360/50
computer (double precision, 15 significant decimal places) to evaluate overlap integrals
between hydrogen S-iunctions and Gaussian functions with l=j 0 and exponents et

in the range IO"5 ^ a ^ IO2.

I 1 17^ I ^ N. 'L H

I- vK >t>> 'I I ~N HI 1 I \/Ayrl,A/Jl

20 -

tog a

Figure 1

The hatched areas in this figure give the empirically determined regions, where the methods
described in the text converge when applied to computation of overlap integrals with discrete
states. Roman numbers in the plots refer to the section where the respective method is discussed.
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Figure 1 shows the regions of convergence of the four methods when applied to
overlap with discrete hydrogen eigenstates. Figure 2 is a similar plot for the hydrogen
continuum. A method is considered to have converged if the respective normalized
overlap integral is correct to six decimal places. A check on this accuracy is obtained
using two complementary methods in the region where they overlap. This region also
serves to establish convergence criteria. Breakdown of a method may occur for several

/

"log a

Figure 2
The hatched areas in this figure give the empirically determined regions, where the methods
described in the text converge when applied to computation of overlap integrals with continuous
states. Roman numbers in the plots refer to the section where the respective method is discussed.

reasons. Table II indicates the nature of the breakdown near the limit of convergence
and gives the number of terms in a series expansion used at this limit.

An overall check of the accuracy of a projection calculation is, of course, provided
by the closure relation. From (1.1) we obtain

1
1

N(x,jy 2kl2 + j \A(k,l,j,x)\2dk (VI.l)

Table II
Breakdown of the four methods

Discrete States Continuous States

Method
section Application limit

Max. number
of terms Application limit

Max. number
of terms

II rounding errors 20 rounding errors 25

III rounding errors 45 exponent overflow 75-100
IV rounding errors 60 rounding errors 120

V divergent character
of series

1-30 divergent character
of series

1-30
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where N(x,j) is given by

00

N2(x,j) j r2Jexp{-2xr2}r2dr
o

P(j + 3/2)

V. Dose and C. Semini H. P. A.

iV2(a,j)
2(2a) J+3/2

(VI.2)

(VI.3)

While the infinite sum in (VI.l) is evaluated with the help of (IV.19) choosing
M 8 -=- 40, the integral in (VI.l) was taken between 0 < k ^ 125. The upper limit
was again determined empirically.

Table III
Squared normalized overlap integrals for / j 0

Exponent parameter a

io-5 io-4 IO"3 io-2 io-1 1 10 100

n Discrete states

1

2

3

4
5

.000003 .000102

.000103 .003206

.000799 .022947

.003232 .083407

.009564 .188671
1.000005 1.000014

.003154

.085933

.379569

.438929

.092285

.999994

.081852

.770894

.127086

.012269

.003060

.998193

.746861

.090647

.022365

.008721

.004296

.881335

.647359

.051262

.013943

.005708

.002882

.726976

.079396

.009543

.002807

.001181

.000604

.094767

.004009

.000499

.000148

.000062

.000032

.004816

k Continuous states

1

3

5
7

9

N-i r« A2dk

.0 .0

.0 0

.0 .0

.0 .0

.0 .0
<10"9 2.10-7

.000006

.0

.0
0

.0
6.10-6

.000207

.000007
0
0
.0
001808

.054031

.000249

.000017

.000003

.0

.118668

.187788

.000173

.001045

.000127

.000026

.273026

.071640

.160810

.141164

.066044

.017162

.905240

.003977

.013040

.024564

.036770

.047393

.995183

Closure relation

1-S -5-10"6 -110-5 2-10-7 -M0-6 -3 10-6 -2 • IO"6 -7-10"6 8-10-7

Table III gives a sample of squared normalized overlap integrals of hydrogen
functions with Gaussians in the exponent range IO""5 ^ a ^ IO2. In all cases we were
able to obtain the closure relation to better than 1 • 10~5. From Table III it is apparent
that a Gaussian function may overlap considerably with continuous hydrogen functions
if the exponent parameter is not too small. An application of this fact will be given
in a subsequent paper.

Though detailed numerical results have, up to now, only been obtained for the
case j l 0, exploratory computations for /=^'=1,2 indicate a rather similar
convergence behaviour in these cases of non-vanishing angular momentum.
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APPENDIX

In this Appendix we describe the evaluation of the repeated integral of the error
function defined by

2 f (t — z)m
im erfc (z) ~ exp (-t2) dt. (A. 1)

V 77 J "A
z

By partial integration it may be shown that

z 1
im erfc (z) + — i™-1 erfc (z) im~2 erfc (z) 0. (A.2)

m 2m

If we define

2
i-1 erfc (z) — exp (-z2) (A.3)

Vtt

it may be shown that (A.2) holds for m 1, 2, Since

i°erfc(^)=erfc(2), (A.4)

imeric(z) could be calculated for arbitrary m in principle. However, in contrast to the
recurrence relations derived in the main text, which empirically turned out to be
stable, equation (A.2) is extremely unstable for upward recurrence. (A.2) is therefore
used in downward recurrence putting iMeric(z) =0, xiM~1eric(z) 1. With this
choice at-1 erfc (z) is evaluated and by comparison with (A.3) the factor a determined.
Since (A.2) is homogeneous all functions iKeric(z) with K sufficiently smaller than M
may be obtained by dividing the trial values by a. This technique, originally proposed
by Miller [10] for the evaluation of Bessel functions, was applied to the repeated
integral of the error functions by Gautschi [4]. From the work of Gautschi it is apparent
that the method will show poor convergence for z -> 0. In the present work we used
this procedure for z > 1.1 only. For 0 < z ^ 1.1 the same technique may be applied to
a four-term recurrence relation. Consider the identity

2 C (t-z)m 2 C(t- z)m
im erfc (*) -—. exp (-t2) dt-—=\ — exp (-t2) dt. (A.5)

Vtt J m]- Vtt J w'-
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The first integral on the right-hand side is

co m
2 r(t-z)m 1 V (-z)m~J (m + 1)

Vrr)
1 v (—* m +1\

exp H2) dt - 4= • > t--^ r| (A.6)
vÇ fijl(m-j)\o J=v

while the second one obeys the recurrence relation

Ym-2 - {2m(m - 1) Ym+X + A(m -l)-z-Ym+ (2z2 -m+1)- Ym_J
z

m 2,3 (A.7)

with

' Vtt)
(t - z)"-1

exp (—t2) dt
(m - 1)

o

V0 -^=exp(-*2). (A.8)
Vtt

Applying the above described downward recurrence procedure to (A.7) yields, together
with (A.6), imeric(z) for z ^ 1.1 with satisfactory accuracy.

Table IV
Starting values for recursive computation of im erfc (z)

Recurrence relation Starting index Af YM+l YM Vm-, Range

A2 2m+ — +10 0 IO"25 l.l<*<oo
z

A7 w + 30-^ + 6 IO"50 M-10-50 M2-10-5° 0<^^1.1

Starting indices M depend of course on m and z and were determined empirically.
Values given in Table IV will produce imerfc(2) for 0 < m < 11 to relative accuracy of
better than 10~5.
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