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Relaxation of Local Perturbations in the Groundstate
of the Heisenberg Ferromagnet

by Ph. Martin
Laboratoire de Physique Théorique, Ecole Polytechnique Fédérale, Lausanne, Switzerland

(26. VI. 74)

Abstract. The relation between the relaxation of local perturbations in the groundstate of the
ferromagnet and the scattering of spin waves is studied, and it is shown that certain local perturbations

return to the groundstate as t ->- a>. The effects of the formation of boundstates of magnons
are discussed.

Introduction
The problem of the return to equilibrium of a local perturbation of an infinitely

extended quantum system has been formulated in the algebraic framework of statistical
mechanics in Refs. [1] and [2]. A property which plays a central role in this description
is the asymptotic abelianness of the kinematic observables under the time evolution.
This condition is known to be true for the free Fermi gas and the X-Y spin model
[1, 3, 4]. For these quasi-free systems this is a purely dynamical fact because it holds
in the norm of the algebra independently of their actual state. Its origin has to be
sought in the dispersive nature of the one-particle wave-packets.

As another illustration of the theory, we study in this note the relaxation of local
perturbations in the ground state of the Heisenberg Ferromagnet. For this more
complex model one should expect asymptotic abelianness properties only in the weak
sense with respect to a given state. Since almost nothing is known on the dynamics of
the ferromagnet in states which differ globally from the ground state, we have to limit
our investigation to this very special case. It is, nevertheless, useful to examine it in
some detail because it allows us to exhibit in a very precise way the mechanism
responsible for the relaxation. This mechanism is the scattering of spin waves. We may
think that the return to equilibrium in low temperature states can be attributed to the
same physical ground.

In the first section, we give an equivalent formulation for the relaxation of local
perturbations in the spin wave (or magnon) language. A local perturbation returns to
the ground state if and only if the quasi-particles associated with the perturbed state
leave asymptotically any finite space region. With the help of the time-dependent
scattering theory of magnons [5], we show in Section II that many of them have indeed
this behaviour. The effects of the formation of bound states of two magnons are also
discussed.

In Section III we consider some dynamical perturbations of the Heisenberg
evolution. We may conjecture weak asymptotic abelianness in the ground state with
the Heisenberg evolution, but this property is not likely to hold any more with the
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perturbed evolution. The perturbation might isolate a finite subsystem and thus
prevent dissipation, as has been noticed in Ref. [1].

A more physical reason for the lack of asymptotic abelianness is, in our case, the
existence of bound states of the quasi-particles in external fields or with magnetic
impurities.

I. Local Evanescence and Relaxation of Local Perturbations

We briefly recall the mathematical structure of the ground-state representation
of the ferromagnet [6]. Let si be the C*-algebra of a spin-J lattice Z" and

cu0 rijez" ® |f>./ be the infinite tensor product state in which all spins are in the
direction 3 at all lattice points.

The Hilbert space of the irreducible representation of se defined by w0 is the
incomplete tensor product AC J7Ijezv ® C2- with respect to JTIjez» <8> \X)s- We
shall still denote by si and a), a2, a3 the quasi-local algebra and the spin operators in
the representation associated with w0.

The group of automorphisms of rotations around the axis 3 is unitary implemented
in this representation. Its generator can be written as N= 2jez-> i(l ~ cr3), whose
spectrum is the set of all non-negative integers {n 0, 1, 2, .}. Accordingly, AC can
be decomposed in the direct sum 2n=o ® -^" which diagonalizes N. An orthonormal
basis in Jf" is given by the vectors ajlaj1. ctJo po,Ji,J2< ¦ ¦ -, jn e ^v having exactly
«-spin deviations, aj a] ± ia2, and p0 e AC0 is the unique vector in AC which is
invariant under the translations Z".

The time evolution automorphism t, of the quasi-local algebra is also implemented
in the representation by a unitary group V, with generator H. Since the Heisenberg
Hamiltonian is invariant under the rotations, V, commutes with N and is therefore
reduced by the subspaces ^f". We denote by VJH") the restriction of VJH) to At"".

Af1 is isomorphic with the Hilbert space of functions p(j) on Zv with
2iez-> \4»U)\2 < °°- The space Jf?1 of one spin deviation can be viewed as a one-particle
space (one magnon) whose free motion is given by V1. More precisely, in the momentum
representation, V\ is an operator of multiplication by the phase exp (—ie(n) t) where
e(rc) is the kinetic energy of the magnon. For a nearest-neighbour interaction in three
dimensions one has simply e(*r) =/(3 — cos«1 — cosk2 — cos«3), k (/c1,«2,«3). In the
general case we shall always assume that the spectrum of H1 is absolutely continuous1).

In a similar way one can consider Af" as a «-magnon space whose interacting
motion is governed by V". The configuration representation of AC" is given by the set
of square summable functions p(ji,j2,...,j„) on TJ" x Zv which are symmetric in all
their arguments and vanish whenever two of them are equal. This latter restriction
expresses the kinematical constraints due to the fact that we cannot have more than
one spin deviation at a lattice point.

We introduce the operator P" on ACn which projects on the lattice point I:

(P? 9") (h ¦ ¦ -h) xiih ¦ ¦ -in) 9-ih ¦ ¦ -j«) (i)
with

(0 if j.^l, K l...n)diji---in) I ;r1 otherwise

l) e(ic) and its derivatives are smooth functions such that the transformation d/<' (3e(K)/3/<')_1rfe
is possible almost everywhere.
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It is clear that (pn,P1pn) \\Plpn\\2 gives the probability of finding a magnon at the
lattice point I in the state p".

We say that a «-magnon state p" in ACn has the property of local evanescence as
t -*¦ -fro (t ->- —œ) under Vnt if the probability of finding a magnon in a finite region
goes to zero as t -> +oo U ->- -co), that is, if

s-iimPniV}pn 0
t ->+C0

(-co)

for all lattice points I e Zv. This property characterizes typically a scattering state of
a multiparticle system.

More generally, we say that a vector p 2^=0 © p" in AC has the property of
local evanescence if each component p" e 3>tn has the same property. This is equivalent
with

s-limP,Ft<£
-*+oo

(-oo)

for all I, where Pt is the direct sum of the Pf.
We establish now a relation between the relaxation of a local perturbation of the

ground state w0 and the local evanescence of magnon states in ACn. We call a local
perturbation of w0 any state on si normal with respect to w0. We consider more
specifically local perturbations wJA) (p,Ap), p e AC, which are vector states.

Proposition 1: Let œ# be a local perturbation of w0 (a vector state). Then

lim wJtJA)) coo(A) ior all A e si (2)
t -> + CO

if and only if p has the property of local evanescence as t —>¦ +oo. An analogous statement

is true for the limit t -> — oo.

Proof: It is sufficient to establish (2) for the local elements in si. Since the Pauli
matrices ct° 1, ct+, o~ and ct3 form a linearly independent set on £%(C2), each local Ae
m rTjeff ® âH(C2), OcZ", can be written in a unique way as a finite linear combination
of products r% YlJee OjU> with <x(j) 0, +, - or 3 and a {x(j),j e 0}. Therefore a
state on si is determined by the value that it takes on such products. In particular:

fl if x(j) =0 or 3 for all ;'efi>
10 otherwise

(3)

and we only need to verify (2) on these elements.
We first notice that erf is reduced by the subspaces ACn and is identical with

1 — 2P" on them. If p has the property of local evanescence, we obtain

s - lim Vf a3V,p p-2s- lim V* PtV,p p for all I.

More generally we conclude that

s - lim Vf r%Vtp p when <x(j) 0 or 3 for all jeO. (A)
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Secondly, in virtue of the identity

\\atP\\2=(P,aJatP) \\PtP\\2, peAC,

we get

s-limVfajV,p 0 ior aille Z\

If in a product T^, x(j) + for at least one; we have obviously also

s-limVtr%V,P 0. (5)

If x(j) # + for all j, but x(j) — for at least one j e <7), (r$)* is again a product for
which x(j) + for one;', and

s-limV*(r$)*Vtp 0. (6)

From (4), (5) and (6) we conclude that in all cases

lim wJtjr®) lim (p, v* r^v, p)

=iim(v*(rs)*vtp, p) w0(ri).

The converse is immediate. If the locally perturbed state w^ returns to w0, one must
have in particular

lim wJtJP,)) i(l - hmwjTJof))) 0

for all le Z" which is equivalent with s-lim P, V,p 0.
The argument can immediately be extended to a general local perturbation w of

w0. Such a state is of the form

w 2 A, wtl, Xi^O, 2 Ai 1 and lim w(tJA)) w0(A)
i i

if and only if each pt, i 1, 2,. has the property of local evanescence.
As a corollary of Proposition 1, we deduce that (si, t„ w0) is weakly asymptotically

abelian if and only if all vectors in 37C are locally evanescent.
In this case (4), (5) and (6) hold on all of AC. Then the commutators [V,AVt,B]

converge weakly to zero on AC and we have weak asymptotic abelianness :

limcuo(C[Tt(^),ß]Z))=0, A,B,C,Desi (7)

Conversely if (7) is true we choose A P„ D I, C B* in (7) and get

lim||P,F(B<£oll=0 for all ß e .asT.

The result follows from the fact that the set of vectors Bp0, B e si, is dense in AC.

II. Locally Evanescent Magnon States

d) Scattering states

We have mentioned that a «-magnon state p" is locally evanescent if it behaves
as a scattering state, that is if the probability of finding a magnon in a finite space
region vanishes as t -> +œ.
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There are many states of this type. To show this, we use a result of Hepp [5] on
the time-dependent scattering theory of magnons which was obtained on the basis of
Dyson's analysis [7] of the ferromagnet. Let us first describe this result.

We introduce the symmetrized «-particle space

J?»= TJ 0 <e2(Z").
sym

It can be viewed as an ideal «-magnon space with no kinematical constraints.
3hfn is then identified with a subspace of &n with the help of the projection

TnSFn JCn defined by :

in-nlns,- ¦ 's \ PUlJl ¦ ¦ An) w^n jx # j2 # #/„
(T*<fr)()nh---in) \l.

^0 otherwise

V projects out states with more than a single spin deviation at a given lattice
point.

&" is isomorphic to the symmetrized product of « one-magnon spaces and we can
define on it a free evolution operator of ideal independent magnons by U, J7" ® Vf.

An asymptotic condition holds for each « in the following sense [5]

s - lim (V?)*TnU? Q£ (8)
«->±co

and Q\ are isometric from 8Fn to AC" with

(Qn±)*Qn±=I, Ql(QD* Fl
F\ are projection operators on #Cn characterizing the states in Jf" which evolve
asymptotically as « independent ideal magnons.

We expect local evanescence for such states and this is the content of the next
proposition.

Proposition 2: The vectors p" belonging to the subspace F%3nf(F'LACn) have the
property of local evanescence as £ -> +oo (t -> —oo).

Proof: Since the proof holds for each fixed «-magnon space, we drop the index «
in the following. If p belongs to F+3%"1 pis of the form Q+gfor some jef and

lim \\PlVtp-PlTUtg\\ 0
«-»+00

because of the asymptotic condition (8). Therefore it suffices to show that

slimP,rî7(g 0.
t-»+co

It is clear from its definition (1) that P, can be written as the sum P, 2" =i xl °i
projections xl with

(Xf 9) Ul.h ¦ ¦ An) XiÜk) 9U1A2 ¦ ¦ An)

[0 JAI
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Xl commutes with T for k 1, 2, n and in a one-magnon space xï is the one-
dimensional projection on the lattice point /.

We have

\PiPu,g\\< 2 Wx1Tutg\\= i \\TXlutg\\< 2 hiu,g\\.
K--1 K =1 K =1

Now Xi U, converges strongly to zero on all of 77" <g> JA2(ZV), and hence on its totally
symmetric subspace J5"". It is sufficient to verify this on the dense subset generated by
the tensor product states

n®*i. gi^ AC1 7£2(Z*)
i -i
Hx? u, fl ® ^ll2 \\xï tl ® ^g.-ll2 Wx, v)gj2.

i-l i-l
This last quantity converges to zero as t -> +oo since the one-magnon evolution T7,1 has

an absolutely continuous spectrum and xi is a finite dimensional projection on AC1.

This implies

s-limP, TU,g 0
t ¦* CO

and concludes the proof.
We summarize what we obtain from the combination of Propositions 1 and 2 by

the following statement.
For any local perturbation w of w0 normal on 3$(F\AC),

lim co(tJA)) =w0(A), Aesi.
«"> +CO

An analogous statement holds for the limit t -> — oo.

We add three remarks :

i) One has to consider separately the limits t -> +<x> and t -> —oo. We cannot infer
without further information that a perturbation which relaxes as t -> +oo has
the same behaviour as t -> —œ.

ii) A vector p in F+A7 is in general not of the form Ap0 with some ^4 in si. It only
belongs to the closure in AC of the set L4c40, 4 e si}.

iii) The relaxation is coupled with the phenomena of wave dispersion as in the Fermi
gas and the X-Y model. The relaxation times are long and the decay is not
exponential. For a next-neighbour interaction, the third component of a reversed
spin at the lattice point I reaches its asymptotic value as

\il\V}\l)\2 ~ (7To(Jt))2* ~ ct-7 t^oo.
(27~o(x) is the Bessel function of order zero.)

b) Two-magnon boundstates

We have shown that there are many local perturbations of the groundstate w0
which return to w0. The question remains open to know whether it is true for all of
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them. All local perturbations performed at a single lattice point, namely perturbations
in Jf° © Jf\ have this property since the wave operators Q± leave the groundstate
and the one-magnon states invariant. But the existence of boundstates of two magnons
[8] implies F\AC2 # Jf2. A local perturbation which affects simultaneously two lattice
points may have a component in the subspace generated by the two-magnon bound-
states, that is in the orthogonal complement of F±AC2. Nevertheless we can also expect
such a state to be locally evanescent because of the propagation of the 'centre of mass'
of the two-magnon boundstate. This is most easily seen for the one-dimensional
Heisenberg chain with nearest-neighbour interaction.

Since the total momentum is a constant of the motion, it is convenient to use
'centre of mass' and relative coordinates R (jy +JJ/2, r =jx —j2 and to represent
Jf2 as the direct integral Jf AC2pdp which diagonalizes the total momentum
p Kx+K2.B is the first Brillouin zone. Each AC2 is isomorphic with the set of square
summable functions p(r) on Zv with p(r) p(—r) and p(0) 0. The evolution
V2 if V2tdp is also reduced by this direct integral decomposition and for each p it
can have one or several boundstates pp in AC\ satisfying

V2ptpp exp(-ie(p)t)p„, \\pp\\ l.
For the one-dimensional chain it is known [8] that there is exactly one boundstate for
each p with eigenvalue

e(p)=Ml-cosp). (9)

Proposition 3: The direct integral p Jf ppdp of the two-magnon boundstates
pp for the Heisenberg chain with nearest-neighbour interaction is locally evanescent
at t +00 and t —oo.

Proof: In this case Pf y,1 + %? an<i we have to verify that

lim \\x\V,P\\= lim ||y2V,p\\=0.
« -*±CO t ~>± CO

We have

!bd^<AII2 2 \(V,^)ii,j)\2- (io)
i>i

Written in terms of relative coordinates and total momentum (Vtp) (l,j) takes the form

(V,P) (l,j) j" dpexp (-ie(p) t) explip U±i\\ pjj - I).

For fixed j, the function p -> pp(j — /) is square integrable over B :

j\pp(j-i)\2dp^ 2 j\wpU-t)\2dp \ 2 \Hi-*)\2dp
B J>1 B B 1>1

JlliM2# IMI2- <")
B

Hence, with the form (9) of the energy, (Vtp) (l,j) converges to zero as t -* ±oo.
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Moreover, one has by Schwartz's inequality

\(V,P)(l,j)\2^B2j\PP(j-l)\2dp.
B

This shows with (11), that each term of the series (10) is majorized uniformly in t by
the term of a converging series. Hence j|v, Vtp\\2 converges to zero by the dominated
convergence theorem.

Proposition 3 indicates that the formation of boundstates of magnons does not
prevent, in principle, the return to equilibrium. In fact, if we know that the wave
operators Q2 are complete (i.e. if (JF^AC2)1- (F2Jj?2)x is identical with the subspace
generated by the boundstates), we can conclude that all local perturbations at two
lattice points will return to co0 at t +oo and t —œ. In order to treat perturbations
at three and more lattice points, we would have to control the multichannel scattering
theory, the formation of boundstates and the completeness of the wave operators in
a all «-magnon space.

We have seen that asymptotic abelianness in the groundstate is equivalent with
local evanescence of all magnon states. Although this property is plausible, one could
presumably not escape to deal with this complex problem if one wishes to prove it.

III. Local Dynamical Perturbations

It is also of interest to study the properties of local dynamical perturbations. A
local dynamical perturbation is introduced by adding to the Heisenberg Hamiltonian
an element of the quasi-local algebra. The resulting perturbed automorphism of si has
been precisely defined in Ref. [1]. It has been also noted that asymptotic abelianness
of si is not stable, in general, with respect to local dynamical perturbations. We show
that we find the same situation in the groundstate of the ferromagnet. Physically,
typical local dynamical perturbations are magnetic impurities or locally applied
magnetic fields. They allow the possibility of forming boundstates of magnons in the
external potential whose occurrence destroys asymptotic abelianness.

We illustrate this point with the simplest possible perturbation, which consists
of applying a magnetic field in the 3-direction at a single lattice point, say at j 0.
The perturbation is therefore the local element Act3, —2AP0 + XI. It is equivalent to
choose the element pP0 (p —2X), since a perturbation which is a multiple of the
identity does not modify the automorphism. The perturbed automorphism rf is
implemented in the representation defined by w0 with generator (see Ref. [1]) :

Hp H + pP0.

Hu still commutes with N and the dynamics can be treated separately in each «-magnon
space Jf". In AC1, H1 is simply the kinetic energy of the magnon perturbed by a local
potential which is the one-dimensional projection on the lattice point; 0. It is easy
to see (see Appendix) that H\ has exactly one boundstate pp, ^pj 1, for each p ^ 0
and is absolutely continuous on the orthogonal complement of pu.

We then have the

Proposition 4: Let co^ be a local perturbation of w0 with p e 3471, \\p\\ 1, then
iorp^O

lim cojTt(A)) \a\2wéJA) + (l-\a\2)w0(A), A e si (12)
t ^ + co

with a (pu,p).
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Proof: If we decompose p in

P (PP,P)PP + P (13)

with (pH, p) 0 we obtain

wJt^A)) a(pw, (Vj,t)*AVLp) + a*(p, (Vpt)* AV^PJ

+ (PJV1ut)*AV1tP) + \a\2co,ii(A).

As in Proposition 1, we only need to verify (12) on the products r%. We remark first
that on the T^, for which the number of indices ct(j) =+ and ct(j) =— are different,
all involved states vanish. The other types of products leave AC1 invariant. There are
two cases. If x(j) 0 or 3 for all;', r% is of the form I — R with R of finite rank on Jrf1
and w0(r%) 1. If there is a pair of indices (+, —) among the oc(j), r% is itself of finite
rank on AC1 and wJfTf) 0.

Since p is in the absolutely continuous subspace of H1, we use in (13) the fact that

lim \\AV1,p\\=0
t^+00

when A is a finite rank operator on AC1. From that and the above description of various
P%, we obtain the result of Proposition 4.

Proposition 4 shows that there are local perturbations of co0 which do not return
to w0 with the automorphism t? for p A 0. For instance, with an initial perturbation
in AC1 not orthogonal to <£„, the magnetization mjt) cojT,(a3)) does not relax to
its groundstate value 1, but to the stationary distribution 1 — 2|«|2|<^(;')|2 where

pjj) is the amplitude of the magnon boundstate at lattice point;'.
The treatment of local dynamical perturbations which are invariant under the

rotations around the 3 axis can always be reduced to a scattering problem of magnons
in external fields. When they are able to produce several boundstates, we have the
following situations. The evolution of a perturbation of co0 reaches a limit which can
be w0 or a different state as in Proposition 4. It can also have no limit because of the
possibility of oscillating interference terms between the various boundstates. Dynamical

perturbations of other types (applied fields in the 1 or 2 direction) lead to
mathematical problems of a different nature and they must be treated with the methods of
field theory.

APPENDIX

The Hamiltonian in the one-magnon space is

'l j 0
Hl «M + fJ-XoU), Xo(j) n(0 ;#0

It leads to the eigenvalue equation

e(i<) P(k) + p \ P(k) dK Epic).
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The eigenvalue E is given by the solution of

f{E)=\lA-T7dK -J E - c(k) p
B

f(E) is a monotonous function of E with range (—00, 0) for E < inf e(«:) and range (0, œ)
KeB

for E > sup e(/c). Therefore, there is exactly one solution E for each p ^ 02). Since the
KeB

perturbation is of rank one, the wave operators for (H^H1) exist and are complete [9].
This means that H\ is equivalent to H1 on its subspace of absolute continuity. In order
to conclude that this subspace coincides with the orthogonal complement of the
boundstate, we have to know that H\ has no singularly continuous spectrum. For a
rank-one perturbation, the spectral family of H1 can be computed explicitly and we
can check that it is indeed the case owing to the smoothness of the function e(«-). We
shall not give the details here.
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