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Tight-Binding Model for Transition Metal Electrons -1

by M. Peter, W. Klose1), G. Adam, P. Entel
Département de Physique de la Matière Condensée, Université de Genève

and Ewa Kudla2)
DD Division, CERN, Genève

(3. IX. 74)

Abstract. In a tight-binding model for the ^-electrons of transition metals (Pd and its alloys,
V, Nb) we calculate the shear-moduli, paramagnetic susceptibility, and electron-phonon coupling
matrix elements and show how these quantities are interrelated. The starting point is a band-structure

calculation which is performed up to second order in strain in the sheared crystals. The method
of calculation is chosen such that the points in the Brillouin zone do not change under shear condition
and thus do not contribute spurious terms to the band energies. A trace-method [9a], working
in the high temperature limit, circumvents any diagonalization in calculating £„(k, y). Our electron-
phonon coupling parameters enter directly the tight-binding form of the Eliashberg equations for
superconductors.

1. Introduction

The electronic band structure of transition metals and some of their compounds
are by now well within reach of numerical calculation.

Pettifor [1] introduced a procedure to make the matrix elements of the first-
principle H-NFE-TB Hamiltonian,

n_-r-
Has

IP,
(1)

Hdd

independent of the energy to be calculated. The index Y is used here for all those
electrons which are to be represented by a nearly free electron approximation, whereas 'd'
stands for those electrons described by a tight-binding approximation. The hybridization

does not extend beyond nearest neighbours in k-space, and the tight-binding overlap

integrals are limited-to nearest neighbours in r-space for face-centred cubic structures

(or first and second neighbours for body-centred cubic structures). Following
Pettifor, Posternak and Steinemann [2] calculated the band structure of Cu successfully

by retaining only the Hdd block in (1).
For elements in the middle of the transition period, like Nb, this approximation

might not be sufficient [3] : Whenever one is not interested in the resonance
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region of the spectrum, one might formally keep the Hdd block only by changing the
numerical parameters in a sense of a perturbation expansion (W. B. Waeber, private
communication). From Ref. [3a] we write

Hmr;\^E

{Hid - HdJHss - E)-1 Hsd} <pd Epd. (2)

Replacing in (2) Hss by the kinetic energy and E by the eigenvalue Ed of Hdd [3b] one
can perform a perturbation expansion up to first order and use this result to receive a
renormalized Hdd.

Starting from a quite different point of view and from another class of material,
Weger, Goldberg and Barak [4] showed for A15-structures like V3Ga that the tight-
binding coupled linear chain model (Weger-Labbé-Friedel model; cf. Ref. [4a]) is a
rather good approximation, and that for this structure covalency between the vanadium
3d and gallium bands, as well as admixture between 3d sub-bands, may be neglected as a
first approximation, changing the numerical parameter eventually by some 30%.

In this and a subsequent paper we primarily study the electronic energy of
transition metals as a function of shear deformation. This will not only provide a great deal
of information about the elastic constants but will also give details of other electronic
properties.

Good correlation between the temperature derivatives of the shear moduli and the
paramagnetic susceptibility was established experimentally by Belmahi et al. [5] in
polycrystalline Pd-alloys. Fischer et al. [6] extended this correlation throughout the
transition metal series. They proposed a model to explain this correlation, which started
from a nearly filled electron-band with d holes, and which included exchange
interactions.

Measurements by Walker et al. [7] at low temperatures, as well as by Weinmann
and Steinemann [3] at high temperatures, showed clearly from the behaviour of the
shear modulus G2 C44. (cf. equation (36)) in different Pd alloys that the d holes at the
Fermi surface are near the point L of the Brillouin zone.

By calculating the band energies of a sheared crystal one has to carefully take
account of differences between small and nearly equal quantities. Peter [9] suggested
specially adapted perturbation methods. To circumvent the difficulty of a shear-
dependent set of points k in the Brillouin zone, for which the diagonalizations leading
to the band energies have to be made, he introduced a covariantly transformed
reciprocal space, then independent of the shear-strain, so that the points k for the
energy calculation remain fixed.

Since according to Heine et al. [10] the effective atomic potentials giving the correct
band structure contain the same many-body corrections as the electron-phonon
interaction constants, the study of uniform shear strains thus serves as a means of finding
the numerical values of the electron-phonon matrix elements.

The correlation between shear-moduli, their respective temperature derivatives
and the paramagnetic susceptibility certainly parallels the change of energy in both
physical processes by conservation of volume.

In this part of our paper we shall derive explicitly the general features of our
approach and give some first numerical results. In a later part we shall give more ample
numerical results for various transition metal elements and compounds. To reduce the
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numerical effort and to allow low temperature calculations in transition metals with a
broad ^-band, one should use an interpolation procedure, a procedure not necessary for
the calculation of Pd and some of its alloys.

2. Tight-Binding Model

We shall consider only the physics of ^-electrons in a transition metal and use
2rf as the Hamiltonian instead of Hdd as given in (1). Let the equilibrium positions of the
lattice ions be R in simple (Bravais) lattices. The electrons are assumed to move in
spherical symmetric atomic potentials v(\r — R|) ; the atomic wave functions pjr — R)
(a 1,2,...,5)3) are degenerate at E0, and are chosen as Löwdin functions (cf.
Ref. [11]). The Bloch functions constructed with them are thus orthonormal

<k',a\k,by 8k,y8atb

<r|k, ay s pkiJr) : J= ]T e™pjr - R). (3)

R

In calculating the matrix elements of the Hamiltonian

jê=t+2v(\r-R\) (A)
R

with the Bloch functions (3) to obtain the matrix form (1), one keeps, according to
Slater and Koster [11], in the tight-binding limit, only one- and two-centre integrals
where the atomic potential is located on one of the two atoms on which the atomic
orbitals are located.

XaJR;lmn) (PJr-R'), jêpjv-R")). (5)

/, m, n axe the direction cosines of R R' — R" ; R | R |. In Table I we repeat explicitly
the reduction of the integrals (5) to three different ones given in Ref. [11].

d0(R) ddo

dJR)= dd-rr

dJR) dd8. (6)

The matrix elements of jft axe (cf. Ref. [1]) :

HaJk) (E0 + d) 8atb + 2 e**XaJR;Imn) (7)
R*0

3) We fix the index a arbitrarily to the d-symmetries as follows : a 1 for xy ; a 2 for zx ; a 3 for
yz; a 4 for x2 — y2; a 5 for 3z2 — r1.
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where :

5!! a2s-S
d -r-77—ylAtr A-, s\(2s - b)

dj=(koR)-5fJkoR,c7)-r (j 0,1,2)

f0 -160TT-1'2(IA-2I2+ÎIo)

fi 2A0n-1'2(I2-iIo)

f2 -120TT-1'2I0

00

/„= J* r,4+»exp{-r,2 + (k0RI2r,)2}dr, (« 0,2,4)
k0R/2at

kl 2mE/h2, (8a-g)

a and P are adjustable parameters.

2.1. Crystal with uniform shear; band structure

The spirit of our approach is to assume that the tightly bound ^-electrons follow,
undistortedly, all motions of the lattice atoms. If SR(y) characterizes the shear
deformation of the lattice (cf. equations (23), (24)), the Hamiltonian (4) and the Bloch
functions (3) will thus change to

jê'(y) T + Zv(\r-R-8R(y)\) (9)
R

<r|k,«,y> J=2/kR<Mr- R- SR(y)). (10)

R

In (10) we chose the reciprocal space in such a way that

k'(R+SR)=kR.

The band structure of the sheared crystal follows from a Hamiltonian matrix similar to
(7), but calculated with (9) and (10)

H'aJk, y) <k, a, y\â'(y) |k, b, y>, (11)

by applying a unitary transformation U'ljky) to (11),

I7'(k, y) H'(k, y) f/'(k, y)'1 (E'Jk, y) ¦ 8„m), (12)

« 1,2,..., 5: band index.
In the tight-binding model £^(k,y) are the correct eigenvalues ('bands') of 3nf'(y).

Since we consider only small shear-deformations we can develop E'Jjk,y) into a series
after y, the parameter which characterizes the deformation (cf. (26) and (29)) :

E'Jk, y) EJk) + y£«>(k) + iy2 £<?>(k). (13)
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EJk) is, of course, the band energy of the undistorted crystal found from (1) by

U(k) HD(k)"> =: A(k) (EJk)8nm). (14)

As a result, one can find E„n, En2) in (13) without performing unitary transformations
U'(k,y) for any y. One only needs to know U(k) for the equilibrium crystals, which
greatly simplifies the numerical calculations.

We introduce a matrix V(k, y) which is unitary up to second order in y :

V(k,y) l + yW(k)+iy2Z(k)
W+ -W; Z + Z+=2W2 (15)

and claim that

U'(k,y) V(k,y)-U(k). (16)

Developing H'(k,y) into a series up to terms in y2,

H'(k, y) H(k) + yB(k) + iy2 C(k). (17)

We find from (12), with (14) and (16),

(EJk,y) 8nm) (EJk)8nm) + y(B + WA - A W) + iy2{(C + 2(WB- BW)

+ (ZA - AZ) + 2(A W - WA) W)}, (18)

where

B=UBU1; C=UCU1. (19)

The non-diagonal elements of (18) have to be zero. From this condition we find

Wnm(k) -g=Ë („#m). (20)
EJk) - Em(k)

The diagonal part of W vanishes from (15).
Similarly one finds Z(k) but it does not contribute to the diagonal elements in (18).

These are :

EJk, y) EJk) + yBnJk) + iy2\CnJk) + 2 J]'-
\ m

3 I2¦'nm]
(21)

EJk)-Em(k)

Finally, we obtain, for En # Em,

EC»» BnJk)

Ei2» CnJk) + 2 V' Jf*"^2,. ¦ (22)
A-, £„(k)-£m(k)

As a result we found the perturbation expansion of EJk, y) by performing only matrix
multiplications, and not a diagonalization procedure for each separate y. Degeneracies
(En~ Em,n^m) require the usual special procedures. The corresponding
thermodynamic expressions (equation (80)) remain finite. The transformation matrix U(k)
is already known from the unsheared crystal.
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2.2. Crystal with uniform shear ; parameters

In order to derive B and C in (22) we go back to (19) and (7), where we have to
develop X'aJR';l'm'n') (all primed variables depend on y).

There are two fundamental shear deformations, which we specify by special forms
of the deformation tensor s :

^-(8Rt) (i=j)
dxt

i,j 1, 2, 3, in such a way that tr{«} 0.

Case one : tetragonal shear

elx -2e22 —2e33 yx

«12 «13 «23 0- (23)

Case two : trigonal shear

«11 «22 «33 0

«12 «13 «23 V2- (24)

1) Tetragonal shear. Since in the sheared lattice we have

R' R+SR=R+eR (25)

we find from (23)

Rj Rt(l + eu)

8R yi Px := yJRx ; AR2 : -A\R3) (26)

and from (26), by calculation,

R' R{1 + Yl-i(3l2 - 1) +iy\¦ %l2(l -12)}

j\; ^{1 - v: -i(3l2 -1)+ iy\-\(27P - 2112 + 2)}

V 1{1 + y, ¦ \(1 - I2) + iy2-i(9l* - 1112 + 2)

m' m{l-yx-\l2 + iy2¦ l(9P - bl2)

n' n{l-yx-\l2 + iy\-\(9P - bl2), (27a-e)

where we have used V, m', «' for the direction cosines l\ defined by

R\
l\ A (28)

(equivalently for the unprimed quantities).
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2) Trigonal shear. Starting again with (25), one finds from (24)

lR2 + R3

SR=g2R=y2[rx + R3 )-:y2P2 (29)

\Ri + R2l

and from that

R' R{1 + yJS2 - 1) + iyfS2(3 - S2)}

1 I {1 - yJS2 - 1) + iy\(3S* - IS2 + 2)}

*;-/, + y2S(l - SI,) + iy22S[S(3S2 -b)lt- 2(S2 - 1)] (30a-c)

where

S l + m + n Jili. (31)
i

2.3. Crystal with uniform shear; transfer integrals
To obtain finally the matrices B and C, as defined in (17), we observe that the two-

centre approximation (Table I) is valid for the deformed as well as for the undeformed
crystal. We can write

X'aJR';l'm'n') X'ab[R'(y);l'(Y),m'(y),n'(y)]

I dj[R'(y)]-gi[l'(y),m'(y),n'(y)]. (32)

Table I
Transfer integrals (5), (6) for cubic crystals (cf. [11])

2

aAXaJR;lmn)= J, dJR) ¦ gÇj» (Imn)
J-o

a, b JJJC-mn) gÇf»(lmn) g(Jb»(lmn)
11 3l2m2 l2 + m2-4l2m2 n2 + l2m2
12 3l2mn mn(\ - il2) mn(l2-\)
13 3lm2n ln(\ - 4m2) ln(m2-\)
14 \lm(l2-m2) 2lm(m2-l2) \lmlf2--m2)
15 V3lm[n2 - i(l2 + m2)] -2-j3lmn2 iV3lm(l+n2)

22 3l2n2 n2 + l2-in2P m2 + n2l2
23 3ln2m lm(l - 4n2) lm(n2 - 1)
24 \ln(l2-m2) ln\\ - 2(l2 - m2)] -nl[l - \(l2 - m2)]
25 ^/3ln[n2 - l(l2 + m2)] V3ln(l2 + m2 - n2) -\V3ln(l2 + m2)

33
34
35

3m?n2
^mn(l2 — m2)
V3mn[n2 — Jl2 + m2)]

m2 + n2 — im2 n2

—mn[l + 2(l2 -m2)]
s/3mn(l2 + m2 — n2)

P + m2 n2

mn[l + J(/2 — m2)]
—J V3mn (P + m2)

44
45

\(l2 - m2)2
iV3(l2 - m2) [n2 -i(P + rn2)]

l2 + m2- (P - m2)2
V3n2(m2-P)

n2 + i(P - m2)2
iV^(l +n2)(P-m2)

55 [n2 - i(l2 ¦+ m2)]2 3n2(P + m2) i(P + m2)2
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Now the Taylor series expansions of the factors dJR') andg{Jl'm'n') give, respectively,

dj[R'(y)] « df\R) + df\R) ¦ y + df»(R) - r-

where d)°»(R) dJR) is the radial factor given by equation (8a), while

dy»(R) — dj[R'(y)]
ay

and

d?(R) —2dj[R'(y)]

Similarly, we have

1=0

v=o

gL[l'(y), m'(y),n'(y)] g&0)(lmn) + gj,i'l)(lmn) y + g(ai'2\lmn) ¦

(32a)

(32b)

where

gï,t'0) (Imn) gijlmn)

are the terms shown in Table I, while

d
g(aA\lmn) —gi[l',m',n']

ay

d2

y-o

gai'2\lmn) —giJl',m',n'
dy2

Replacing in equation (32), we get

v„0

X'aJR';V m'n') XaJR;lmn) + yxab + — yab,

where Xab(R;mn) is just the zeroth-order matrix element occurring in (7), while

(33)

xab= I [df\R)gj,A\lmn)+dy\R)gal'°Jlmn)]
j=o

JU= I [df)(R)gai'2\lmn) +2dY\R)gÇbJ-1Jlmn) + df»(R)gj,i'0\lmn)].
j=o

By the help of (33), one has

BaJk) 2 eik*xab
R#0

CaJk) 2 e™yab.
R^O

(33a)

(43b)

(34)

(35)
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In the calculation of the quantities xab andyab, equations (33a-b) deserve further
consideration. The radial factors dy\(R) and df»(R) can be factorized, each into a shear-
independent and a shear-dependent part, as follows :

d[1\R) R

df\R) R-

ddJR)
dR

'

d2dJR)
dR2

d

dy

R'(y)
R

y»0

d_[R'(y)
dy R

v-o
+ R

ddJR)
dR

d2 R'(y)
d-\ R

The derivatives with respect to y are obvious from equations (27a) and (30a), respectively,

while the derivatives of dJR) are to be obtained from equation (8a). One has,
for example,

j-djR) rfJ(k0R,x)--(k0Ry
dR aK

+ rikoR)-5^zfjikoR,«

and a similar expression for the second-order derivative. In the case of Cu and Fe,
we known, from the paper by Pettifor [1], all the quantities E, T, x and R, and we can
therefore estimate both terms of this sum. We expected, a priori, to get small values for
the second term, as compared to the first. To our surprise this was not the case: the
contributions of the terms arising from the derivatives of f, to (d/dR)dJR) and
(d2/dR2)dJR) ranged between 20 and/500% (with preference for 100%) as compared
to those derived from the classical terpi (k0R)~5. Moreover, they showed a remarkable
stability over a wide range of values for the parameters E, x and R. Nevertheless, we
dropped them for two reasons. First, because we believe they are spurious terms,
introduced by the Gaussian cut-off procedure of Pettifor [1] (for the Lorentzian cut-off
procedure such spurious terms do not occur). Our conviction is supported by the
Grüneisen parameter data for the above metals. The second reason for dropping the
above terms is aesthetical : values for E and et are not given for metals other than Cu
and Fe, therefore we would be in the impossible position of having to give a unitary
description for all the transition series. However, this second reason is quite secondary
with respect to the first.

Concerning the calculation of the quantities'''(/«î«) and g^2'» (Imn), we observe
simply from Table I that if we put

lAl?Alt»y + l?^
we have at once

W-W + Wy + Wj.
where

If» If» If»
l\1» lf»ty» + l\1»lf»

i\f if» if» + 2iyny» + if» if\
Using these rules, we get g(Jb-0) (Imn) .g'j;1'(Imn) andgCJa'b2)(lmn) on a computer immediately
with the minimum number of operations and with minimum computing time.

*) If all factors were taken as their zeroth-order terms one would of course arrive at XaJR;
itself.
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3. Thermodynamics of Shear Deformations
The experimentally established correlation between the paramagnetic susceptibility

and the temperature derivation of the shear-moduli needs theoretical explanation.
We first summarize the thermodynamics of shear deformation.

The shear-moduli for tetragonal and trigonal shear in cubic crystals are given as

Gi=i(Cn-CiJ; G2 C44, (36)

where the Cxß axe the elastic constants of the material.
The free energy of the system F' (prime for the strained crystal) is related to the

elastic potential

F' F(0)+i f Cxßexeß. (37)
&,B 1

In (37) the Voigt notation of the indices is as usual for x= 1, 6, equivalent to
11; 22; 33; 23; 13; 12.

Inserting (23) or (24) into (37) and using the definitions (36), one finds for both
shear deformations that

F'(y,)=F(0) + iGiY2 (» 1,2) (38)

so that we may omit the index i for briefness. Equation (38) is a second-order derivation
for F'(y) and we thus find

G -A-^t\ ¦ (39)
l(d2F'
3\dy

In order to calculate dp/dy, we list the following three conditions :

1) As is already implicitly used in (37) one has the condition of equilibrium:

(dF'(y,n),1 Y l =0. (40)
dy' I ",V=Vo

2) Particle conservation

In a given substance the number of electrons « is independent of shear angle y :

dn

r- 0. (41)
dy

3) Symmetry conservation

Through (40) is defined the equilibrium shear angle y0(n) as a function of «.
y0 could vary with « or could remain constant over a finite domain of «, in particular
y0 could remain y0 0 (cubic symmetry). In this latter case we can write

d

dn

dF'(y,n)
dy' > n,y=yo

0. (42)
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From these three equations it follows that ([dp(n, y)]jdY) y_yo
0. In the case where

y measures the compression, y0 is expected to vary with n. Hence the expression for the
expression for the compression modulus includes a term in (dp/dy)y=yo.

We shall also include in our consideration of Bloch electrons of energies (21) an
exchange interaction between particles with equal spin. For the sake of simplicity
we place all electron quantum numbers into one index only :

(k,n;s) (l;s), (43)

where s is the spin variable +1. The single-particle energies are

E'i(J)=E',-ZJ(l,l')f'(l'). (AA)

r
The Fermi function/(/), is, as usual,

/(/) (45a)
exp[(E, - p)/kB T] + 1

or, in the sheared crystal,

f'(l) - (45b)JU exp[(E'i-p')/kBT] + l
where the chemical potential p also depends on y.

« 2l/(/)=2 2/'W (46)
i i

is the total number of electrons in the crystal.
The free energy of the electrons is given by Ref. [12] :

F' np' -2kBT-Z ln{l + exp[(p' - E',(J))/kB T]} + 2 J(l, I') f(l) f'(/') («)
i i,i'

or in equal form for the unstrained crystal. Defining a new Fermi energy by

*', /*' +2 7(W(/')- (48)
r

One can rewrite (47) as :

F' 2 2 {f'JE'i) z't - kBTln {1 + exp[(z', - Ej)/kB T]} - i 2J(l,l')f'JE't)f'JE'i)},
(49)

where the index at/,' indicates the explicit form of the new Fermi energy (48). Ej axe
the single-particle energies without exchange as given in (21).

We find from (49)

R'.

(50)

(51)

dF'

dy
2 2//(e;)

i

dE't

dy

G h 2 \fi(E,)(
'd2E\\

s W /o
+ rf)]'M
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Notice that from (40), (50) and (48) one also finds (dp'jdY)o 0. Indeed, from (42),

1[E) _2^V(Ek)(dEk
dEk \dy)0dtJ-\dYJo

From (41),

¦ 0.

dn V df(Ek

dy A-, dEk

Hence,

dEA ldz_

dYJo Wo
0.

vPt)(M_Q
£ dE [dyoj

From (48),

Summing over df(EJjdE we get

dp ^ df(EJ
3yo dEk -2 u, ViEk)

2J(k,k',
k ohk

VjEk)
dY /0

Now, 2Jik'>k) [ßf(Ek-)/dEk-] =g(k) is of cubic symmetry and the other factor,
(df(EJjdy)o, is of tetragonal (or trigonal) symmetry, hence (dpjdy)0 0.

a) J(t,l') — J — const.

In this simple case the exchange cannot have any influence on F', as can be seen
from (44) : the energy is renormalized by the additive constant of iJn. The shear-moduli
(51) then becomes:

ld2Ej\ dfttdE'J2^GA\HAÏAk (52)

b) J(U')=J-A(l-l');A(0) l
In this case /(/, /') describes a short-range exchange force in k-space. One finds an

explicit influence of the exchange force :

'df'JE'i)\ IdEA =ydfLi
[dy l ZdE,\dy

dfi (d_EA y dfi_ IdzA IdjA
.xSyj0 ZdZi'\dy)o\dyJ0

^ dfi (dE'i\2 ^dfi (dfj,(E'J\ IdE'i

dfAdE'A^i dft

'T'dEAdyjo ^\ dE',
J(l'D

dY /o\dvJo

dIl\ (df'iE')\
*rh'\ dr Jo

--AèBb^'a-Vn-dy \dY Jo
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Thus

?(T).(a-<^?»a-
The shear-moduli then come out as :

G-#-^<£'»-'f(¥)>*'#)]• (63)

As we observe, (52) and (53) are determined by (14), (13) and (22), since (dE'jdy)0
£(1>, (d2E'jdy2) EC2».

4. Paramagnetic Susceptibility

We start from the same free-energy expression as in (49), augmented by the spin
index s :

F=2 {lisais - kBTln[l + exp((zts -Et + spB-B))jkT] +i2 J(U')MvJ,
l.s I-

where pB is the Bohr magneton and B the magnetic induction. On taking derivatives
with respect to B we find :

dF
VrJ ~Pb Z Sfls
OH trS

(^)o-2^2t(1+^/o
Using particle conservation in the B-field, as well as (48) in the form

H-=*i*-imnfi;.
i-

One finally arrives for J at an expression

'---^UHlMU (55)

a) J(If) =/ const.

Since in a magnetic field the energy for spin up and down particles is different,
we expect - contrary to the shear strain - an influence of the exchange field on/. Since

s?*-M.-'-=?(fe).-'-=-4-(S).
_LM£_£U=7JL
2p2\ [dB2 J 2p\
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we find from (55)

-2p\ ^ dfi
X

^p dft A-, dEt2S- (56)

dE,
i

b) J(l,l')=jA(l-l');A(0) l
Applying a similar procedure as that leading to (56), we find for short-range

exchange in k-space

-2/4 v dfi,
X l-N(EF)-jZdEj

5. Electron-Phonon Coupling
We shall now show that the parameters B, introduced in (19), also appear in the

electron-phonon coupling Hamiltonian

•<i-ph 222 q-(M; 0 ck++q,„ck>m,- K(q) + a.HO). (58)
k q,I n,m

thus connecting also the effects depending on electron-phonon coupling, as for example
the superconducting transition temperature, on the potential parameters found by
shear experiments, band structures and the paramagnetic susceptibility.

In (58) we have used the usual notation of electron operators c£, ck in second quantization,

a(q) for the phonon operators, q for the phonon momentum exchanged in an
electron-phonon collision. / is the polarization index.

Phonons produce lattice deformations

SR=2Ç.(q)et(q)*'«i» (59)
q.t

which vary locally. We extend our previously introduced model to a situation where,
locally, the electron k-space is adjusted to the deformation to keep k-R const. In
(59) we have, as usual, the polarization vector et(q) and

h ^1'2

QM (*ï(q) + a,(-q)). (60)Yn ' [2NMcoJq)J
V tK ' V " V

When we insert (59) into the Hamiltonian (9) we find the electron-phonon coupling
matrix element by first-order perturbation theory starting from

H^Jk'.k) <k',a,R\jê'\k,b,Ry. (61)

Here we use the wave functions (10). We find :

H'ab(k',k) I 2 exp[»(k - k')R2] exp[»k(Ri - RJ] -£»(»1^2) (62)

»1»2

ï:jRltR2) (PJr),v(r) pjr - (Rx - R2) - (SR, - ÔR2)))

+ (PJt + (R, - R2) + (8R1 - 5R2)), v(r) pjr)). (63)
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We develop (62) into a series after (SRX — 8R2) up to first order and find

/;(R„ Ra) IÄ>(Ri - Ra) + ^i»(Ri - R2) • (SR, - 8R2). (64)

With (64) we can reduce (61) considerably. In the /(0) term one may perform the R2
summation since (Rt — R2) may be introduced as a new variable. In the /(1) term one can
use (59) and perform also one of the R summations. The result is given in (65) :

Hab(k',k) 8k,xHaJk) +22 Sk'.k+q^k"<?t(q) i*'**- l)e,(q)/r(R). (65)
q,< R

We can transform (65) with the unitary matrix U(k) given in (14). This transforms the
atomic states pa into band states and allows us to determine the electron-phonon
matrix element g„m(k,q;t) from (58) :

U(k') H'(k',k) U-^k) St,,k A(k) +22 8k.,k+9e"lRQJq) («"" - 1) ¦ x'(k',k;R),
(66)

thus

gnm(*,<l,t) 2 elt*QM (etq*- l)-x„'m(k',k;R). (67)
R

The matrix notation *'(k',k;R) used in (66) and (67) can be connected to previously
introduced quantities which, in fact, show the general utility of our approach.

We find from (65) and (66) :

x'(k',k;R) l/(k')((ef/<i>(R))) l/-'(k). (68)

Now, from (64), we see by inspection that

^'(R) (V* Ur + R), v(r) pjr)) - (PJr), v(r) \R pjr - R)).

Going back to (11) and (17) we find, as a result of the two-centre approximation,
that

Bab(k) 2e™P-P»(R), (69)
R

with P either taken from (26) or (29), corresponding to the shear mode applied.
Thus we see that both the electronic contributions to the elastic coefficients and the

electron-phonon coupling are determined by the quantities I$,(R).

6. Discussion

The shear moduli (51)-(53),

G=* Is Wt (£'i))2+/,{E,) E?] • (7o)
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or

G G(1> + G<2> + G<3)

Gw ÎIS^rB2,(k) (71a)
i ou,

G(2) i.IfJE,)Ci,(k) (71b)
i

\B,m\2
GC3» 1-2 2' /JE,) — (71c)£y l'Ei(k)-Em(k)

(S Stoner factor) may be compared to the changes in energy by a magnetic field

AE(k) =bx-pB-B-a + b2-j-A + cA2. (72)

G(1) in (71a) corresponds to the magnetic term propertional to bx. Both are diagonal
in k and / and we might call G(1) the 'Pauli term'. G<3) in (71c) is non-diagonal in / and
corresponds to the b2 term in (72), and is therefore possibly named the 'van-Vleck term'
(orbital paramagnetism).

The term (71b) corresponding to the quadratic term in the magnetic field acts like
the core diamagnetism.

This classification parallels the one given by A. H. Wilson for tightly bound
electrons.

Since under shear-deformation we also find (dp'/dy)0 0 (as mentioned with (50)
and generally proved quite earlier [13]), the effect of shear is simply a rearrangement of
electrons : some are shifted to higher, some to lower energies. Observing that the matrix
B(k) in (18) is equivalent to the 'deformation potential' of Bardeen and Shockley [14],
we might find a very simple expression in analogy with magnetic polarization and
susceptibility.

Let

<B(k)> fl
and let us only use the diagonal terms. Then (cf. also Refs. [6] and [8a]) the mechanical
'polarization' is

If j {f(E - By) -f(E + By)}N(E) dE

%?2DYN(F); N(T)=-[-^N(E)dE. (73)

The total energy stored in the shear deformation is

AF -iyB-^
and

l(d2AF\
G - —— =-AB2N(T)

3\ V /o
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or, with inclusion of the exchange factor of Stoner (71),

G -$B2SN(T). (74)

The spin susceptibility v 2p%N(T)S is thus directly equivalent to G, as was also used
extensively to describe some anomalous properties in A15 compounds (cf. Ref. [15]).

It would be very tempting to also compare (71a) with the electron-polarization
part which screens the bare phonon propagator which is given by

¦\\g(q)\2G0(k)G0(k + q)d*k,

where g(q) is given by (67) and G0(k) is the free electron propagator. But since g(q)
vanishes in the limit q -> 0, and as we mentioned in finding (70), g(q) is proportional,
not to B(q), hut to B(q)-q.

We should remark here that for a thorough calculation of the electron-phonon
matrix elements one should take into account numerical information about the phonon-
spectrum, as for example found by neutron-diffraction experiments [16].

Another point to be made concerns the validity and perturbation approach leading
to EJ,1' and Ef» in (22). Indeed, it is not hard to see that (22) corresponds exactly to a
second-order quantum-mechanical perturbation treatment of the Hamiltonian (9).
As already stated, the point in our formulation is from the view of numerical calculations

in the undeformed and deformed lattice. By relying on the same fix-points in the
Brillouin zone we are able to avoid uncertainties arising from only choosing different
k's, with y 0 or =£ 0.

For high temperatures one can even avoid any diagonalization procedure ([9a]) by a
trace method. This allows a reasonably simple numerical procedure with not too many
points in the Brillouin zone in cases like Nb, where the band-width is very large.

We start from (50) and make use of (22). For simplicity we neglect exchange effects.

BF'
— =22 tr{D'(k; y) [fl(k) + yC(k)]}, (75)
dy k

where

D'(k; y) {l+ exp[(H'(k;y) - p' l)jkB T]}'1. (76)

Since tr{...} is independent of the system of states, one can return directly to (17).
We use this procedure only for 10kBT > \p — Eextr\, where Eextr is the highest

(lowest) energy in the band (electron-hole symmetry). With (39) we find, from (75),

G f2tr
itdD'

— | B(k) + D(k)C(k) (77)

The C(k) in (77) is easily recognized. The differentiation of D' needs some care since
D' is a sum of non-commuting matrices A, B, C. Instead of making a series expansion
of D' we use

exp[(ff' - p! 1)1 kB T] lim 1 + - (ff' - p' 1)
L->co\ L

j \L/kBr

] S,C/kBT

l + -(H'-p'l)\ :KL"">T
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Up to first order in y we have

(K + YB)L"«>T KL"">T + YP,

where

P [... [[{K, B]+, K2]+, K%,... X(*T>'2]+. (78)

Further, taking the definition (76),

D' [l + KL"">T + yP]-1 [(1 + yPD) (1 + KL"">T)]-1

D[l + yPD]'1 s D - yDPD,

thus

D'-D -yDPD.

Equation (79) gives to first order the derivation of D' after y. We thus have, for (77),

G i 2 tr{D(k) C(k) - PDBD(k)}. (80)
k

The equivalence of (80) with (52) is seen from an explicit expression for P coming directly
from (78), now taken in the representation (12),

i
Pnm - ^ J exp[-XEJkBT]Bnmexp[-(l - X) EJkB T],

ß.
0

so that

tx{PDBD) 2-^Z^- (/(£")/(£-) • (<*P(-£./A. T) ~ ™Vi~EmßB T))
n.m 'n -"^m

2jAïÊ(f{E")~f{Em))-
-'n *"m

n,m

This expression remains finite if En -> Em. Quite similarly one expresses directly dG/dT
by

dG 2 TT-+- ~~ n, r.

It WT2 2tr{D(1 " D) AC - PD[{A ~ AD'B]+ D + [P'A]+ DBD}5) (81)

k

7. Superconductors

Expression (67) for the matrix element of interaction between electrons and
transversal phonons allows a discussion of the influence of transverse phonons on
superconductivity. Since transition metal superconductors are of the strong coupling type we
use directly the form of the theory given by Scalapino [16].

It might be worthwhile mentioning that (75) has been calculated for L 64, this means 6

commutators in (76) on a simple HP 35 calculator with sufficient accuracy.
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Since our interaction potentials are - when they lead to the correct band structure
of the metal - already renormalized [10], we find the electron self-energy as (we work in
units with h 1)

ît>h(k;icoJ -kBT2 l\gkkrj2
k'.n' t

¦ D (k - k', i(co„ - coj) t3 G(k', ico'J t3, o>„ kB T(2n + 1)-tt (82)

for electrons at the Fermi surface (we omitted the band index). Dt(q, icom) is the phonon
Green function (q k — k',com con — u>'J :

r 2Q
D, (q, icom) dQLJq, Q)

J (Mm)2 - (ß)2

Since the electron Green function G in (82) contains 2Ph. (82) is actually an integral
equation.

One can perform the n' summation and find, on analytical continuation, icon ->
co(lma> 0+):

+CO rn
dco'r dco' r

2Ph(k,CÜ)= \dQ 2 r3lmG(k',co' + i8)r3
k', t

-oo 0

•Lt(k-k',ß)|gkk,,|
f(-œ') + n(Q) f(co') + n(Q)

cn' + Q — ca œ'— Q — co
(83)

[f(w),n(Q) are the electron and phonon distributions respectively.] In the usual way,
one writes 2ph(k,fc>) as

2ph(k, co) (1 - Z(k, co)) col + P(k, co) tx. (84)

By combining (84) with Dyson's equation,

G-1(k,o>) Gö1(k,oJ)-2ph(k,cü„)

one gets the one-electron Green's function

ô{kœ)=«Zi*-C»n+*kT3+P(k,C0)Ti
co2Z2(k,co)-e2k-p2(k,co)

which, upon insertion into (83), leads to the well-known coupled integral equations for
the mass renormalization parameter Z(k, co) and the energy gap parameter

A(k, co)=P(k,co)IZ(k,co).

Contrary to the often discussed approximation for nearly free electrons, in our
tight-binding region we cannot simply solve for Z(k, co), but have to solve the
corresponding integral equation. This already indicates the strong influence of the tight-
binding properties on superconductivity in a strong coupling superconductor as
described here.
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Solutions of the coupled system of equations will also allow us to make a comparison
of the nearly free electron approximation of the electron-phonon interaction constant
entering Tc as given by McMillan [17] and Hopfield [18]. These authors observe that in

X-2&&. ,86)
M<jw2y

v ;

where/ is the electron-phonon matrix element, N(0)<jj2y is remarkably constant over
a whole series of superconductors, although 2V(0) itself varies considerably.

This behaviour could be explained if only part of the electrons in transition metals
were engaged in the superconducting phase transition and if, according to a rigid band
assumption, this part at the Fermi surface remained the same for certain families of
metals.

In such a case the shear moduli were easy to find from (51) and (74) as

G=p-G(k0)=-ipB2N(T)S.

p is the number of equivalent electron - or hole - 'pockets', contributing to G
and A. Since B2 corresponds to </2> we have X~ G. Generalizing, and observing
pN(T) ~N(0), we suggest for A,

<o G

A=>- (87)
t—1 '-rtotal

If there was only a small electron contribution to shear, we would expect an equally small
contribution to electron-phonon coupling. As Bongi [19] points out, in A15 phases there
may be a contribution from the compressibility also added to (82).

8. Numerical Results

The approach described in the preceding paragraphs has already yielded some
preliminary results which tend to show that numerical result swill be obtained in finite
computing time. The results reported here are obtained on a HP 9830A calculator with
an 8K R-W memory, and were checked on a fast program on a CII 10070 calculator.
The first task consists of fitting the tight-binding parameters.

In the case of Cu and Fe, the TB constants are derived from the parameters ß, P,
k0, and R, given by Hubbard and Dalton [20], with the use of our equations (8) and
ß=(k0jx)2.

For the case of Pd and Nb we had to adapt the existing band calculations : for Pd
we used the calculation of Mueller [23] and for Nb that of Mattheiss [24].

For the FCC elements, Cu and Pd, we used one shell of neighbours and for the BCC
elements two shells of neighbours. In this way we obtained the following parameters :

Element R (A.U.) dda dd-ir dd8

Cu 4.8302 -0.022831 0.012887 -0.002046
Fe 4.6813 -0.023947 0.008324 -0.000824
Fe 5.4055 -0.006716 0.001779 -0.000137
Pd a0/V2 -0.0494 0.0265 -0.0034
Nb «o/a/3 -0.0547 0.0662 -0.0406
Nb «o -0.0435 0.0319 0.0156

With these parameters we have obtained the band structures given in Figure la-d.
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By an analogous procedure, the phonon structure can be obtained by adjusting
the Born-von Karman parameters. In the case of Nb, these parameters for the first
eight shells are given by Nakagawa and Woods [22], from which the spectrum shown in
Figure 2 is deduced.

Finally, Figure 3a-d shows the susceptibility and the shear moduli Gx and G2
and their temperature derivatives for the four elements considered here. The temperature
selected is 600°K (900°K for Nb). The fact that the curves are approximately smooth
shows that at these temperatures the derivatives of the Fermi function extend a
sufficient energy domain to interpolate between the (approximately 90) points in the
irreducible Brillouin zone selected for calculation.
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Figure 3a
Paramagnetic bare susceptibility and electronic contribution to shear moduli for Cu, and their
temperature derivatives, in c.g.s. units (T 600°K).

Figure 3b
Paramagnetic bare susceptibility and electronic contribution to shear moduli for Pd, and their
temperature derivatives, in c.g.s. units (T — 600°K).
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For calculation at lower temperatures (in particular for the superconducting
properties, equation (83)), additional smoothing procedures are required. Either the natural
width of the electron and phonon propagators is chosen to be large, or more sophisticated
interpolation procedures, such as the ones given by Raubenheimer and Gilat [25],
are used.
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Figure 3c

Paramagnetic bare susceptibility and electronic contribution to shear moduli for Fe, and their
temperature derivatives, in c.g.s. units (T 600°K).

Figure 3d
Paramagnetic bare susceptibility and electronic contribution to shear moduli for Nb, and their
temperature derivatives, in c.g.s. units (T 900°K).
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Figure 3 shows that not only the bare paramagnetic susceptibility but also the
electronic contribution to the shear moduli are estimated by the procedures outlined
here in such a way as to give reasonable agreement with experiment (for elastic
constants, see Refs. [7] and [8]6). Thus we also dispose of a set of reasonable electron-
phonon coupling parameters with which we may estimate superconducting properties
from a gap equation, which is solved without averaging over energy shells, as has been
done by McMillan [17] and by Klein et al. [26]. That angular anisotropy plays a role in
superconductivity is now clear, both experimentally [27] and theoretically [28], [4].
In a forthcoming paper we will give results on the superconducting properties derived
from the band structure parameters presented in this section.

6) The convergency of our method is determined by the energy density of sampling points
compared with \jkB T. Hence it is best for Cu and worse forNb. More accurate results obtained
for combined s-d bands will be given in a forthcoming paper.
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