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On Mixtures of Relativistic Fluids

by Kolumban Hutter
Laboratory of Hydraulics, Hydrology and Glaciology,

Federal Institute of Technology, Zürich

and Ingo Müller
Institut für Theoretische Physik, Universität Düsseldorf, Düsseldorf

(29. VII. 75)

Abstract. A relativistic thermodynamic theory is presented for chemically reacting simple
mixtures in which each constituent has its own temperature. The field equations for particle numbers,

velocities and temperatures are restricted by a general entropy principle and the principle of
special relativity. It is shown how absolute temperatures for each, constituent can be defined and
that heat fluxes and production densities of energy-momentum are related to the gradients of
temperatures and densities. The paper closes with a comparison of this theory with that of Eckart
for the case of a single fluid.

1. Introduction

Relativistic thermodynamics of chemically reacting mixtures is a field theory
whose objective is the determination of the fields of particle number, velocity and
temperature of each constituent. The field equations are the equations of balance of
particle numbers and of energy-momentum of the constituents supplemented by
constitutive relations for the stress-energy-momentum tensors, for the production
densities of energy-momentum and for the reaction rate densities.

Previous relativistic theories of thermodynamics of fluid mixtures use the idea of
a single temperature, common to all constituents (e.g. see [1]). Such theories are
formulated within the framework of linear irreversible thermodynamics and assume
the validity of the non-relativistic Gibbs equation and a particular form for the entropy
flux. When each constituent has a different temperature it is not clear how to extend
the ideas of linear irreversible thermodynamics and therefore we adopt a different
approach: We consider constitutive relations appropriate to a simple mixture of
inviscid fluids and find restrictions on these relations by the principle of special
relativity and a general entropy principle. According to this entropy principle, the

entropy-entropy flux vector is a constitutive quantity and the entropy production is

non-negative for every solution of the field equations. Such an entropy principle was
proposed by Müller [2 or 3] and has already been applied to non-relativistic simple
mixtures by Müller [4], and by Alts and Müller [5] to a single relativistic fluid.

For a subclass of simple mixtures, that is characterized by linear constitutive
relations, we show how absolute temperatures can be defined for every constituent and
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how these temperatures approach a common value as equilibrium is approached. We
prove that a Gibbs equation holds for every constituent and that the entropy flux and
the heat flux of each constituent are proportional to each other with the absolute
temperature as factor of proportionality. Furthermore, we derive that the heat flux
of a constituent is equal to a linear combination of the gradients of the absolute
temperature and of the density of that constituent; as a consequence, one must
conclude that in equilibrium in a gravitational field the temperature fields of the
constituents are not uniform. We also show that the interaction force between one
constituent and all others will in a linear theory depend linearly on the relative velocities

of the constituents and, in general, on their heat fluxes. Finally, it comes out that
the law of mass action in a relativistic theory contains explicitly the binding energies
of the constituents.

For a single inviscid fluid we compare our results with those of Eckart's theory of
a relativistic fluid. That theory was proposed in [6] and uses the ideas of linear
irreversible thermodynamics. With respect to the dependence of the heat flux on the
gradients of temperature and density, there is agreement between the two theories ;

however, in Eckart's theory the heat flux contains additional terms whose interpretation

seems to require further study.

2. Equations of Balance for a Mixture of Relativistic Fluids

a. Objective and notation

We consider mixtures of v fluid constituents and assume that each point in the
body is simultaneously occupied by molecules of all constituents. Quantities relating
to a constituent will carry a Greek index.

xA with A 1, 2, 3, 4 denotes the coordinates of an event in space-time, so that
xa (a 1,2, 3) are Cartesian coordinates of its spatial position and t xi/c is the
time of its occurrence. In general, capital Latin indices range over the four values
1, 2, 3, 4, while lower case Latin indices range over the three values 1,2, 3 ; summation
over recurring Latin indices is understood, and fiA denotes partial differentiation of
the field/with respect to xA.

Throughout this article the frame of reference will be a Lorentz-frame with a
metric tensor of the form

1

-1„AB _

1.

gAB and its inverse gAB axe used to raise and lower indices in the usual manner and we
define 8£ gABgBC-

The main objective of a thermodynamic theory of mixtures of fluids is the
determination of the following fields :

n(xA) number density of particles of constituent a in its rest frame,
or

Va(xA) velocity of constituent a, (2.1)
a
&(xA) empirical temperature of constituent a in its rest frame.
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a
It is often useful to replace the velocity Va by the three independent components of

a
the four-velocity UA :

a a

UA I
ya

;

°
I so that UAUA c2. (2.2)11 a a / a a \ ^ \ ' // ô ~ i â or

_
VaVa /, _ KaF"j

The calculation of the fields (2.1) requires the formulation of field equations and these

are commonly based upon the equation of balance of mechanics and thermodynamics
which we now proceed to discuss.

b. Equations of balance

a. Balance of numbers, momenta, energies, and moments of momenta. The equations

of balance of particle numbers, momentum and energy of the constituents read

inUA),A c, * l,2,...,v, (2.3)!

fAi=mA, « 1,2,..., v. (2.3)2

Here, c is the production density of particles of constituent a due to chemical reac-
a ations. TAB is the stress-energy-momentum tensor of constituent a and mA is the

production density of momentum and energy ofthat constituent. More specifically we have
a
Tab momentum flux of constituent a,
a
Tai c- momentum density of constituent a,
a (2-4)Tib l/c- energy flux of constituent a,
a

Tii energy density of constituent a,

ma momentum production of constituent a, ,- „
m* l/c energy production of constituent a.

The momentum production ma can also be interpreted as a force of constituent a
which is due to the interaction of that constituent with all others.

The balance of energy and momentum for the mixture as a whole may be written
as

S hB i m\ (2.6)
a=l a=l

whence follows
V

^ mA 0 (2.7)
Of l

as the expression of conservation of momentum and energy.
Not all v production densities c of particles are independent: Indeed, if there are
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n independent chemical reactions and Aa is the reaction rate density of the ath reaction,
we have

c" 2 y«Xa' a l-2,3,...,v, (2.8)
a l

where y£ is the stoichiometric coefficient of constituent a in reaction a. The stoichiometric

coefficients are restricted by the requirement that in every reaction the number
of nucléons and the number of electrons must be conserved. Therefore,

v v „
2 ZNyl 0 and 2 Z*-Yl 0 (2.9)

a l nr l
a a

must hold, where ZN and Ze are the number of nucléons and of electrons respectively
within the molecules of constituent ce. It follows from (2.8) that there are v — n
relations between the v densities c and that the n reaction rate densities Aa are the true
variables governing the chemical reactions.

Multiplication of (2.3)2 by xD leads to a tensor equation with free indices A and
D and its antisymmetric part reads after an easy calculation

(x7DTAW),B PADi + xiDmA\
or

The quantities xldTaH axe the components of moment of momentum of constituent a

and xumai axe the combined torques of the interaction force. We shall assume for
simplicity that in every Lorentz frame those torques are the only causes for the production

of moment of momentum and this assumption is tantamount to saying that the
stress-energy-momentum tensors of each constituent are symmetric:

hAm 0. (2.10)

ß. Balance of entropy. Various considerations of thermostatics and of statistical
mechanics suggest that the entropy of a constituent is an additive quantity just like
energy and momentum. In special relativity this observation can be expressed in
equations of balance of the form

S*A=i (2.11)

a a
where S is the density of entropy production of constituent a, while SA is the entropy-
entropy flux vector whose components have the following interpretation :

a
Sa entropy flux of constituent a,

(2.12)
•S* c- entropy density of constituent a.

The entropy balance for the mixture has the form

SfA S, (2.13)

a a
where SA and 2 are the sums of SA and S over all a. Later we shall postulate an
inequality for the entropy production density S of the mixture.

») Square brackets indicate antisymmetrization.
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3. Field Equations, Principle of Special Relativity, Entropy Principle

a. Constitutive equations

We recall that thermodynamics has the principal objective of calculating the
fields (2.1). Clearly the equations of balance (2.3) cannot by themselves serve as field
equations for that purpose, and in order to obtain field equations from (2.3) we must
supplement these equations by constitutive equations which relate the quantities

Xa,mA, TAB (3.1)

a a a

to the fields n, Va and & in a materially dependent manner. By (2.8) the reaction rate

densities Aa determine the production densities c of particles which occur in (2.3)i.
If in particular the constitutive equations are of the form

TAB =TAB(n-,ÜA'l',n,A-{r,Ay, (3.2),,

mA =mA(n;ÙA;&;n.A;&,A); ß 1, 2,..., v; (3.2)2

A" =ìa(n;UA;&;n,A;lA); ß 1, 2,..., v, (3.2)3

we call the material a simple mixture of inviscidfluids.
a

The entropy-entropy flux vectors SA in a simple mixture of inviscid fluids are
a

also assumed to be given by a constitutive equation of the same type as TAB :

SA SA(n;UA;&;n,A;&A). (3.2),

The class of materials characterized by equations of the type (3.2) is special in two
respects as follows:

(i) The stress-energy-momentum tensor and the entropy-entropy flux vector of
constituent a depend on the particle number, velocity and temperature of that
constituent only. It is with reference to this property that we speak of simple mixtures.
Interaction between the constituents of a simple mixture is thus effected only by the

production densities mA and by the reaction rate densities A" which may both depend
on all particle numbers, velocities and temperatures.

(ii) Velocity gradients are not included among the independent variables in (3.2)
and this implies that viscous effects are ignored.

In classical theories of simple mixtures density gradients would be absent from
the list of variables in (3.2) (e.g. see Ref. [7], p. 186). In a relativistic theory, however,
these variables play an important role which will become clear later.

When the constitutive equations (3.2)li2,3 are introduced into the equations of
balance (2.3), one obtains a set of field equations for the determination of the fields
a " "
n(xA), Va(xA), &(xA) and every solution of these equations is called a thermodynamic
process in a simple mixture of inviscid fluids.

If the constitutive functions in (3.2) were known, the problem of finding
thermodynamic processes subject to certain initial and boundary values would be entirely



680 K. Hutter and I. Müller H. P. A.

mathematical. However, for no material are these functions known and therefore
most thermodynamicists attempt to exploit general physical principles which impose
restrictions on the constitutive functions. The main principles of this type are the
principle ofspecial relativity and the entropy principle which we now proceed to discuss.

b. Transformation properties and the principle of special relativity

The transition from one Lorentz frame to another one is effected by the
transformation xA LBxB with

1A
i<3ac i 0\
KolTl

Ik- VcVb 1 1

c2 \V1 - V2/c2 "')
1 V

i
c VI - V2/c2

1 V
\ c VI - V2jc2 Vl - V2jc2

where 0% is an orthogonal matrix, Ve axe the components of the relative velocity of
the two frames, and V is the magnitude of that velocity.

a "
n and & are by definition scalars with respect to these Lorentz transformations

a a a a a

while UA are vectors. It is assumed that TAB, mA, SA, Xa and S are tensors, vectors and
scalars respectively so that we have

TAB LALBTCD; mA LAmc; SA LASC; Xa A"; I (3.3)

Clearly, with these transformation properties, the equations of balance (2.3) and (2.11)
retain their forms in every Lorentz frame.

However, the principle of special relativity requires that the field equations - and
not merely the equations of balance - retain their forms and therefore the constitutive

a a
functions TAB, mA and Xa must be the same ones in every Lorentz frame. We postulate

a
the same invariance for the constitutive functions SA of the entropy-entropy flux
vectors.

Thus the principle of special relativity combined with the transformation properties
(3.3)i_4 implies that the constitutive functions be isotropic tensorial, vectorial and

scalar functions with respect to the transformations Li, i.e. that the following conditions

hold

TCD(«; LAUC; &; LAn,c; LA&C) LcAL^lAB(n; UA;&; n,A; &A);

Sc( )=PCASA( );

aß e ß s â a e g ß s e

mc(n;LAUc; »; LAn,c; LA&,C) LcAmA(n; UA;&;n,A; &.A,

X°( X°(

(3.4)
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These conditions must be satisfied identically in the matrices Li and that requirement
leads to important restrictions on the constitutive functions. Such restrictions are best
expressed, in our opinion, in terms of the variables

n UAntA; n1A AABn_B;

and (3.5)
a a a a a a
# UA&A; d1A &AB&,B,

a a a

rather than in terms of n>A and &tA. In (3.5) AAB is a projection operator defined as

AAB gAB - \ UAUB so that AABUB 0. (3.6)

In terms of the new variables (3.5) the representations implied by (3.4) read, since
a
TAB was assumed symmetric

fAB -pgAB + 1 (nmc2 + m + p)ÙAUB + ^ (ÙAn1B + Ùan")
a
K a a a a a „ _, a„a ~ a a a a

+ -^(UW + UB&LA) - OnXAn1B -P(n1A&1B + n1B&1A) - Q&1A&1B;
C

(3-7)!

SA =nvUA + s2hLA + s3^1A; (3.7)a

mA 2 mxll* + 2 tt*"1* + 2 ^ (3-7>3

ß=i b=i ß=i

and the scalars mx, m2, m3 as well as the reaction rate densities Aa may depend on the
scalar variables

a ß a a aß
UAUA; UAn-k; UA&-\;

e
n;&;an;&; n^U^n^k'An^&i; (3.8)

a ß a s a ß

&1AUA;&lAnA;&1A&-[.

It must be noted that the first line and the first column in the matrix scheme of (3.8)
a a a a

do not give rise to variables, if a ß because UAUA c2, while UAnA 0 and
a a
UAd--\ 0. The scalar variables in (3.7)1>2 may depend on the scalar variables

a a a a

n;&;n;&; G &1A&Ì; H n±AnA; I s &1A&i; (3.9)

the coefficients p and nmc2 + n% in (73-7)i denote the pressure and the energy density
of constituent a in its rest frame and nm is the density of rest mass, fir) in (3.7)2 denotes
the entropy density of constituent a in its rest frame.

a
The energy flux cTib and the flux of entropy Sb of constituent a in its rest frame
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à 1
will be denoted by qb and 4>" respectively and, according to (3.7)1>2 these fluxes read

I" gbaA + "Aa); k gba(h&,a + kn.a); (3.10)

â »
for brevity in future arguments we call qa and </>a the heat flux and the non-convective
flux of entropy respectively of constituent a.

c. Entropy principle

We recall the equation of balance of entropy (2.17) and postulate that the entropy
production density 2 be non-negative for every thermodynamic process. Thus the
entropy inequality

S?A>0 (3.11)

must hold for every thermodynamic process, i.e. for all solutions of the field equations
that result from a combination of the constitutive equations (3.2) with the equations of
balance (2.3).

A general entropy principle of this type was proposed by Müller [2] in a non-
relativistic context and was used by Alts and Müller [5] in a relativistic theory of a
single inviscid fluid. This principle was also applied by Müller [4 and 8] for the
formulation of non-relativistic thermodynamic theories of mixtures.

We recall that we rely upon the entropy principle for the derivation of restrictive
conditions on the constitutive functions. Now, the key for the evaluation of the
inequality (3.11) is the statement that this inequality must hold for all thermodynamic

processes. In other words : the fields n(xA), &(xA) and Va(xA) for which (3.11) must hold
are constrained by the requirement that they be solutions of the field equations. Liu [9]
has shown how one can get rid of these constraints : He showed that the new inequality

' CD aa v
a

(&) „
SfA - 2 Ai(nUA\A - c] - J ^aIT.Î8 -mA]- 2 A[UBUBA] > 0 (3.12)

a=l a=l a=l

a a a
must hold for all analytic fields n(xA), Uc(xA), &(xA). The quantities

GO (u)
A, A„, A^

are called Lagrange multipliers by Liu and, according to his proof, may be functions
ofall variables in (3.2). Inspection of (3.12) shows how this inequality has been formed:
Each field equation has been multiplied by a Lagrange factor and subtracted from the
SAA in the original inequality (3.11). One feature of (3.12) deserves a remark: In (3.7)

a a a
the four-velocities UA take the role of the velocity variable but, since UAUA c2, only

a a a
three components of UA axe independent, so that the equation UAUfB 0 in addition

a a a
to the field equations serves as a constraint on the fields n(xA), Uc(xA), &(xA). The term
with the Lagrange multiplier in (3.12) takes care ofthat additional constraint.

We shall now turn to the evaluation of the inequality (3.12).
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4. Consequences of the Entropy Principle, Linear Constitutive Equations and

Equilibrium

a. General consequences of the entropy principle
a a

When the constitutive relations (3.2)1>4 for TAB and SA are introduced into the
inequality (3.12) and when all indicated differentiations are performed, what emerges
is an inequality whose left hand side is linear in the quantities

n.AB;»,AB;UEB. (4.1)

a a "
Since the inequality must hold for all analytic fields n, &, UA, it must in particular
hold for arbitrary values of the derivatives (4.1) in one event. Thus the terms with
these derivatives must not contribute to the inequality or else that relation could be
violated. This argument leads to the following conditions2)

a fas. a
ge(B tr) f)TA(-B
— aa —— 0; (4.2)!
r,a A „a "> v r1
°n,E) Mi.«

a /a\ a
8S{B w 8TA(B~ - aa %- 0; (4.2)2
8v,E) 8&Ei

8SB (r) 8TAB (")« iv) a-4- - A, At- - An8J - ABUE 0. (4.2),
8UE 8UE

There remains the inequality
a la\ a /a\ „a /a\ a

v r8SB (t)8Tab U-A „ A (8SB ^1>8TAB

8n dn « i I 8& 89

(")„ „

».B

An An)a (t) 1

+ 2 \Ac + AAmA f > °-
a l *- 1

(4.3)

Some of the relations (4.2) may be used to calculate the Lagrange multipliers. Thus,
e

multiplication of (4.2)3 by AEF results in a tensor equation whose trace implies

GO i I8SBW 1 (8SB w 8TAB\ %A =—(-5-- AA^5- AJ.
3n\8UE 8UE1

u
When this is put back into (4.2)3 and when that equation is multiplied by UB one gets

fB -L |(i|î -(ÄÙ*-U°t-1 ÔJ^\ kù°\ -
c {\8UE 8UE ' 3\8UE 8UE' J

Therefore equation (4.2)3 becomes
a fa\ a

(ace
tr) 8TAB\ « a a

Ar- - AA ££_)(8gAw - i A£A*F) 0. (4.4)
8UB 8UE/

2) Round indices indicate symmetrization.
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We proceed to study the equations (4.2)1>2 and (4.4): First of all, (4.2)! implies
tr) a a a a a

that AA depends on n, UA, &, niA,&rA only and is an isotropic function of these variables
so that it has a representation of the form

a a a a a a

NA AUA+ Anz\ + A&Ï, (4.5)

where A, A and A are scalar functions of the scalar variables (3.9). Next we introduce
2 3 v '

the representations (3.7)ij2 and (4.5) into the equations (4.2)i_2 and (4.4) and, since
a a a

these equations must be satisfied identically in UA, n>A, &,A, we obtain a great number
of conditions on the scalar functions in (3.7)12 and (4.5). The determination of these
conditions is long and tedious, even though it is straightforward and we just give the

a a a
results: The coefficients A. and A in (4.5) turn out to be related to A by the equations

a 'L'a tnadÂ u £ r + On + P&
A RnA, where R2
n - - - a a n aa a o\,aa a* nnny^ J- n* J- rt — 11 IrA

a a a
A R3A, where R3

hike2 + m+p- (l/c2)(rn + k&«)
(4.6)

k + Pn + Q&a
a a „ aa a o\,aà aj-,nmc2 + ne + p — (\jc2)(m + k&")

so that by now of all the Lagrange multipliers, that we introduced, only v are undeter-
a (r) a

mined, one for each constituent, namely A (ljc2)AAUA.

For the coefficients s2 and s3 in the representation of the entropy-entropy flux
vector we get

a a a a a

s2 A(r - R2(OH + PI) - R3(OI + PG)),
(4.7)

s3 A(k - R2(QI + PH) - R3(QG + PI)).

From these two equations and (3.10) we conclude that the non-convective flux of
entropy and the heat flux are not proportional in general, although they are in a linear
theory as we shall soon see.

Further, we have equations for the derivatives of s2, s3, ni] with respect to
à à a a a

n, &, G, H and /. These derivatives imply a great number of integrability conditions

which must be satisfied by the functions p, e, t, k, O, P and Q, but such conditions are
complicated and little suggestive; moreover, we shall not need them in the remainder
of this paper and therefore we delete them.

Indeed, from here on we shall restrict the attention to the consideration of
„a a ß

constitutive equations that are linear in ntA, &iA and velocity differences UA — UA.
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b. Linear constitutive equations andfurther evaluation of the entropy inequality

a a a e
When non-linear terms in the derivatives ntA, &>A and in UA — 17A are neglected,

a a a
the coefficients O, P and Q in (3.7)j must be set equal to zero, while the equations
(3.7)2>3 are formally unchanged. Thus we have

fAB -pgAB + \(nmc2 + m + p)ÙAUB + ~ (UAn1B + UBn1A)

+ 7L(UW + UB&1A);
c2

„. era-. a a a r,SA nr,UA + s2n±A + s3&1A;

aß J1,. -r-n aß ß

(4.8)

" A T "ß T,A ST "B «
I A V* "B SinA 2, mA + 2 w2« + 2 ™3

ß i
Moreover, in a linear theory we must require that

tt tt tt a a
et ^

p, c. -q are functions of n, &, and linear functions of n, d*

a a a a

(4.9)
t, k, s2, s3 are functions of n, &,

aß aß a a
m2, m3 are functions of n, &,

aß a a ^ à

mx, Xa are functions of n, & and linear functions of n, &

and UA(UA - UA).

Although from here on we shall only consider the linear constitutive relations
characterized by (4.8) and (4.9), we shall not recognize this in the notation so as not to
overburden the formulae with indices. Note that a dependence of the scalars in (4.9)

a a a a a a

on nLAn-\, nLAd^, &1A&-\ would give rise to non-linear terms and so would a dependence
on

a a a ß ß aß a ß ß

UAn\ (UA - UA)n-\ and UAiPA (UA - UA)&j.

a a a

Also, with O, P, Q all being zero, the equations (4.7) read

s2 A? and s3 Ai, (4.9)

a a a
whence follows that A can only depend on n and &. The equations (3.10) and (4.9)
combine to give a relation between the heat flux and the non-convective entropy flux,
viz.

r Äf°. (4.10)

H)(t)
We shall now proceed to evaluate the inequality (4.3). When A, A from (4.4) and

tt CC

(4.5) and SB, TAB and mA from (4.8) are inserted into (4.3), it is easily appreciated that
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the left hand side of that inequality reads

V

2« 7T \ a ^-* a / Of] ?#e\<*
rn w mn + lAû-K7,Y

+ 2
a,ff l

\8an an2

ladA « dp\ ?««1(Tä + *i*)*" + H i»uff

+

IA ö# 3 e>#/ 3 J/

¦^ " aß e ßa „ B -A "e ß ßa a ß

+ 2 [A^i + A^2ÌnLAUA + 2 tAwi + Am*WAVA
a,ß l a,ß l

^ aaß a ß » r « /„ £\1 »

2 AmxuAuA + 2 h +A wc + 'f + «) 2 ^Aa > °' (4U)
,ff l œ l L \ rt/J a l

ô,i4/> \ #±^

where for brevity we have defined

„„« r/« 3Â ?öp « 8A « 8p\ n U« a.aß'
B"» [k — + A-Z-+ Ï—S-+ A-£\hali + Am2 + Am3

IA 8h 3 8ft 8& 2 8»/ 3 2 J

and

ct 4 (?«^ + K*"X*«Ì + «#)
TT p -\

(4.12)!

(4.12)s
nmc"' + nc + p

It requires considerable study of (4.11) to see that further conclusions can most easily
be drawn from this inequality, when a change of variables is made: Indeed, we shall

a

now replace &1A by the quantity

q* rn1A + K^A, (4.13)

whose first three components, by (3.10), in the rest frame of constituent a are the heat
flux of that constituent. It is then easily confirmed that (4.11) assumes the following
form:

-.a a -,A> « \8r) « (81 M i ^ a /öS « 8S\iy n -i - ai— -— «+y » 4-A-pti Idn \8h n2)\ hi \d& 8&J

I 0 iBae

"¦B 1 \ißßa

A, ß /ßa rßa\ «../,„ V 1 ,laB î Ba s« Ar",
+ £ Alm2--m3\n1AUB + J> - (Ami + Am3)qAUA

a. 0 1 \ K / a,ß l K

+ 2 ÀmxÒAÒÀ + 2 fe - A(^2 + c° + |)1 2 yaaA° 5* 0, (4.14)
a,« l œ lL \ «/J a l



Vol. 48, 1975 On Mixtures of Relativistic Fluids

where Bae stands for

687

Ë»=-, IctdA «dp a8A a,8p\. 'la ««a.l
I*-;- + A-£- r—g - A 4 \hai + (Am2 - Am3) \.
A dh 3 dh 8& 2 d&l 3 2 1

Inspection of (4.14) shows that the left hand side of that inequality is linear in
n±A; on the other hand the inequality must hold for arbitrary values ofn1A and therefore

we have

J 8p a 8A <* 8p \ J ßa a ßa
+ A 4 - r — - A — \8ae + (Am2 - Am3)

3 8n 8& 2 fi&l 3 2

^ 1 |7aÖA « öp «ÖA ; 8p\li[\KVh + ^7n-Tvr^w
2« l ßa t ßa \ " B

A[m2--am3\AABUB 0.
ff=l V K '

&ABqB

This equation must hold for any qB and UB, whence we conclude

T aß 8A a 8A « dp « 8p
m2=-m3 and k —- - t — + A-?- - A— =0.

I dh 8& 3 dh 2 8&

Equation (4.15)i shows that the vector mA has the form

v aß

(4.15)

a v aß ß v mn fl
mA 2 miUA + 2 « 1A>

0 1

m3 a

a
1 K

(4.16)

so that, if all constituents are at rest, there is an interaction force ma due to the heat

fluxes of the constituents, unless all coefficients m3 axe zero. Equation (4.15)2 will be
evaluated later (see equation (5.2)2).

The residual entropy inequality reads

Ah* KAAAiii- AAS

L\ Ö# Ö#/ d J KK a,ff l K

+ 2 A%iUAUA + 2 [v - A (mc2 + e° + |)1 f tfA° > 0. (4.
or,ff l a l L V n/J a l

17)

The left hand side of this inequality is the entropy production and we shall now
proceed to draw conclusions from it for the equilibrium values of constitutive functions.

c. Equilibrium and equilibrium properties

Equilibrium is characterized as a process, in which the number densities, velocities
i "aand temperatures of all constituents are time-independent, so that n UAn<A 0,
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a a a
& UA&iA 0 and UAUBA 0, and in which the reaction rate densities Aa vanish

as well as the heat fluxes qb of all constituents.

Since q" is zero in equilibrium, (4.16) shows that mA\E J} i m1UA\E holds3)
and furthermore that the equations of balance of particle number, momentum and

energy of constituent a read in the rest frame of that constituent

V ,a\E 0;

(4.18)-P,o\e 2 ™Aa\E' where Ua 0;
ff l

o 2 %Me

The number balance (4.18)1 shows that only isochoric motions are possible in
equilibrium and the energy balance (4.18)3, written in an arbitrary Lorentz frame rather
than the rest frame of constituent a, reads

2 aß a B

miUAUA\E =0. (4.19)

By (2.11) we have 2«,/i i miÜAÜA 0 and therefore (4.19) are v — 1 equilibrium
conditions.

Inspection of the inequality (4.17) shows that its left hand side, the entropy
production S, assumes its minimum, namely zero, in equilibrium. S is a function of
a " « a « a a
n, &, Ua, n, &, n-\ and <7a4); alternatively, assuming that the Jacobians

aß tt ß

dXa

dh

8 2mxUAUA

dò»
(a, a 1,2,...,«) and

do not vanish, we may write

2 S (A.,--?..., n, (2 n1iôAôAy h, ô-, k I fc k)

S|f S(0,n«,a..., n, 0, &, Ùa, 0, 0, 0, 0).

Of necessity then, we must have the following conditions

0,

(a,y 1,2,..., v - 1)

öS

ÖJP

(4.20)

(4.21)

3) The index E denotes equilibrium and the hat denotes the rest frame of constituent a.

4) Note that ni, g4 and Ü* are not among the variables, because they can be determined from
the identities VjiLA 0, UAqA 0 and ÙAÙA c2.
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where XA stands for any one of the quantities Aa (a 1, 2,...,«), 2/5=i mxUAUA

(a 1.2.....V- 1), §«, JÎ, I (a l,2,...,v).
We exploit the derivatives with respect to qa first and obtain (note that #4t/4

a a

-qaUa)
ß

\ J^ a aß « aß / ß a TT \l- 2 (Anî1 + Anî3){ua- Ua %)
K ß l \ Ua/

0.

Excluding the possibility that the matrix of coefficients of this linear system is
singular, we thus conclude

(Va - H\e 0,

i.e. in equilibrium the velocities ofall constituents are equal. Because of this property,
(4.19) can be written as

2aB I Amx\E 0, (4.22)

and the momentum balance (4.18)2 reads

P.oU 0;

together with qa\E 0 this equation implies that 9 and n axe uniform in equilibrium,
but of course this holds only when there are no external forces acting on the constituent

a.
aß « ß

Since 2a.«=i ntil7AUA 0 holds, the next to the last term on the left hand side

of (4.17) can be written as 2à=ì(A - A)(2fl=i mjjAlJA) and (4.21) with XA
aß a &

(22=i mxUAUA) implies

A\e A|£. (4.23)

a a a tt

Thus all A's have the same equilibrium value. Since A is a function of n, 9, equation
« v v a

(4.23) shows that & is determined by &, n and n in equilibrium ; later we shall strengthen
v a

this statement by showing that & alone determines & in equilibrium.

The conditions that follow from (4.21) for XA h and XA & axe

drj
Vh M3H0-3 tt 8e

A\E—s
89

(4.24)

and these will be discussed in the next chapter.
Finally we can choose XA Aa in (4.21) and obtain, using (4.12)2

!(5-Ä(^+."+D)l rS o, (4.25)
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which is the law of mass action in a form appropriate for the simple mixtures of
relativistic fluid that we are considering here. We shall come back to this relation in
Section 5.C.

We shall now turn to an interpretation and elaboration of the results of this
chapter.

5. Absolute Temperatures, Heat Fluxes, Law of Mass Action, Diffusion and Temperature

Relaxation

a. Absolute temperatures and the Gibbs equation
« a «

a. The functions A(n, 9). The equations (4.24) are conditions on the functions

a « a a a a a à a
?i(n, 9, n, 9) and e(n, 9, n, 9) which - in a simple mixture - are specific entropy and
specific internal energy of constituent a, even if no other constituent is present. In the

a «

relations (4.24) we may therefore regard n and 9 as independent variables even in
equilibrium and write e.g.

St)

~8n

8v\ E 8i
or —

a «
8n 89

Ot-\E
a

89

where ri\E r)(h, 9, 0, 0) and e\E e(h, 9, 0, 0). Thus the relations (4.24) may be
combined to read

dt)\E A(h, 9) ^ S + pi
89 \8h

P\e dn (5.1)

We see that A is an integrating factor of the expression [de\E - (p\E/n2)dri] and there-
a

fore A must satisfy the following integrability condition for -n\E

të\E g In A
_ Ißt _ l\A 8 In A

_ -1 gp|£

89 8h \8n h2) 89 h2 89
(5.2)r

Similarly, we may consider equation (4.15)2 as an equation for constituent a alone
a «

which, in equilibrium, has independent variables n and 9:

a 8 In A a 8 In A
K T

aMk_ »dp\*-

d9 dh

a a n aa, a,nmc* + ne\E + p\E

(5.2),
dh 89

The equations (5.2) form a linear system from which the derivatives 8 In A/on and
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a a
8 In A/89 can be calculated :

1 /« 8p\E «gpU\Ä_
8hJ\8h

p\e\ « 1 8P\e
« a a n aa. a, \ _8 In A nmcr + ne\E + p\E \ d9 h2! h2 89

dh a (8e\E P\e\ « de\E
+ T——

\8h h2l 89

1 U 8p\E g öp|E\ 8e\E _
8n) 89

a 1 Öp|E

„
a a tt n aa, a, \ „«din A nmc2 + ne\E + p\E \ 89

a "
h2 89

89 _a (8e\E
_

p\E
+ T T\8h h2> 89
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(5.3)

The equations (5.3) embrace our knowledge about the functions A(n, 9) so far. In

the next subsection we shall show that 8A/8n must vanish and shall draw further
conclusions from that.

ß. Absolute temperatures. The concept of temperature is a basic and primitive
one in thermodynamics, both classically and relativistically; it gives a measure for

a
how hot a body is and - in the present case - 9 measures the hotness of a constituent.

Now, in thermostatics and in statistical mechanics, it is common to define an
absolute temperature T as the integrating denominator of the expression de —

a
(p/n2) dn. Accordingly we shall define the absolute temperature T of constituent a

as the integrating denominator of de\E — (p\E/h2) dn so that, by (5.1), we have

1

T^ir-nr- (5.4)
A(«, 9)

There are three good things to be said for considering the absolute temperature
a a

T 1/A as a possible measure of temperature of constituent a:

(i) In equilibrium, by (4.23), the absolute temperatures of all constituents are
equal.

(ii) Temperatures of bodies are measured by thermometers by virtue of the
assumption that the thermometric substance - when in contact with the body - has
the same temperature as the body. Therefore, a quantity deserves to be called a
temperature only if it is continuous across the wall of the thermometer and we shall now

a

show that A indeed has that property: We take it for granted that in the wall of a
thermometer there is neither production of energy nor of entropy; therefore, the
normal components of the heat flux and of the non-convective entropy flux are
continuous across the wall under rather general conditions which are easily satisfied
here.5) Now, let the substance within the thermometer be the single constituent ß and
let the body, whose temperature is to be measured, consist of the single constituent a.

5) See Ref. [10], p. 526 for a specification of such conditions.
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Then the above-mentioned continuity conditions for the heat flux and the flux of
entropy read

q»eb q»eb and lbeb }beb, (5.5)

where eb is the unit normal to the wall. According to (4.10) we have 4" A<f for both
the body and the thermometric substance and hence (5.5)ii2 imply

Â A, (5-6)

a
which shows that indeed the A's may be used as temperatures.

(iii) In statistical mechanics the temperature of a body is considered to be a
measure of the mean kinetic energy of its molecules. Now, all statistical relativistic
theories of gases show that indeed it is the integrating factor of (de — (pjn2) dn) that
determines the mean kinetic energy of the molecules and vice versa; e.g. see Jiittner
[11], or Synge [12] or the more far reaching papers by Chernikov [13].

a « a «

Thus it would appear that we have made out a good case for calling T 1/A(«, 9)
a

a temperature. How then do the empirical temperatures 9 fit into this? Obviously,
" " a

from (5.4) the 9's can be called temperatures only, if the A's are independent of«.
a a

Therefore we must have dA/dn 0, and the two equations (5.3) reduce to

(5.7)
a a 1

aT8p\E
dh

« tt a a
dT/d9 nmc

a a, a,
+ ne\E + p\E - T(dp\Ej8T")

and

d\nA
tt

d»

a
1 dT
a a
T d9 t

dp\Eld9°
«nrrstt, ,„a. tt.
n2(8e\E/8n) - p\e

(5.8)

But this is only a necessary condition for the #'s to be proper temperatures. We must
also require that 9 has the same value at both sides of a thermometer wall and this

y y
brings us back to the considerations under (ii) above: With A being independent of n
the equation (5.6) at the wall of a thermometer reads

a a ß ß

A(9) A(9)
a ß

and, since we must have 9 9 9

A(9) A(9).
a ci a

This has to hold for all 9. Hence, A or T is a universal function of 9, i.e. the same
function for all constituents:

A A(9) or T T(9). (5.9)

Note that df/d.9 in (5.7), (5.8) can thus be written dT/d9.
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a
We can calculate the function T(9) from (5.8) by integration to within a factor of

integration, if only the functions p\E and 8%\E/8n have been determined for a single
material. This is no different from non-relativistic thermodynamics and with a proper

a
choice of the factor of integration T(9) turns out to be a positive-valued, mono-

or a

tonically increasing function. Therefore, we may now choose T, instead of 9, as
variables in the constitutive relations. By (5.4), we can then write the equation (5.1) as

*-?9rf+ft-S)-B(*-M
and this is the well-known Gibbs equation of thermostatics, written down here for
constituent a.

a

Note that (4.23) and (5.9) imply that in equilibrium all 9's are equal as well as

all A's.

b. Heat fluxes

The general constitutive equation for the heat flux of constituent a reads, according

to (3.10)i

I" q"a(Att + Aa)-

We can now eliminate the coefficient r between this relation and (5.7) and obtain

l^^^lL ^a^—r.\ (,n)
dTjd9 \ hmc2 + m\E + p\E - T(df>\E/dT) J

Equation (5.11) shows that in relativistic thermodynamics the heat flux q" is not
a a

proportional to the gradient of temperature r„. Indeed, the density gradient ni0 also

contributes to the heat flux in a manner that is determined by the functionsp|E and e\E.

This result recovers a result that was obtained for a single fluid by Alts and
Müller [5] and it is akin - in a manner to be discussed in Chapter 6 - to a result in
Eckart's theory of relativistic thermodynamics (see Ref. [6]).

The equation (5.11) implies that if the temperature is uniform, the heat flux is not
zero unless the density is uniform. In other words, if a density gradient is kept up by a
gravitational field the temperature field is not uniform in equilibrium.

c. The law of mass action

With A 1/rand f T Tin equilibrium the equations (4.25) read

2 [mc2 + %\E - Tî\- + M yl 0, (a 1, 2,..., „). (5.12)
ar l \ n j
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This relation represents as many conditions for the particle densities n as there are
independent reactions. We shall now derive an alternative and more suggestive form
of (4.25) : The rest mass m of a molecule of constituent a can be decomposed into the
sum of the rest masses of all nucléons and all electrons and into the mass equivalent
of the binding energy of constituent a. Thus

m ZNmN + Zeme + -§¦ (5.13)

where m„ and me axe the rest masses of nucleous and electrons respectively.

Elimination of m between (5.13) and (5.12) gives, when due regard is given to (2.9),

2 EB + Tv\e + &
n

y£ 0, (a 1,2,...,«) (5.14)

and these relations represent the law of mass action in a simple mixture. Classically
one gets the same form of this law, except that the binding energy does not explicitly
appear there.

d. Temperature relaxation and stationary diffusion

The conditions (4.21) are not the only ones that must be satisfied, if the entropy
production on the left hand side of (4.17) is to have its minimum in equilibrium and in
this section we shall derive some additional ones. Let us write the entropy production
as

Y,(h;T;U°;h;T;hi;aqa); (5.15)

we know from before that S has a minimum in equilibrium, where «, T and qa vanish,
a tt a

when the «'s obey the law of mass action and when all T's and Ua,s axe equal. Necessary

conditions, which S must then satisfy, include

Ö2S

Ö2S
> 0 and

a ß

dTdT E

dql E

Ö2S

8l7nd
ß

E

positive semidefinite. (5.16)

There are other conditions which the second derivatives of S with respect to the
variables in (5.15) must satisfy, but they do not interest us here.

Insertion of S from (4.17) into (5.16)i gives

f8p\E
a

8T
«aa
Tm3

a a n aa, a.nmc2 + ne\E + p\E
a a r,
nmc

act, a, ui+ ne\E + p\E —
d9

TZ >0,dT
(5.17)
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a relation which, in the non-relativistic limit simply states that the heat conductivity
is non-negative.

The remaining conditions (5.16) read

v yg
8 2 mi

ff i
»

8T
+

8 2. mi
/s i

7

8T

\yô i
6y

i
||«Jl|B + Wil

negative semidefinite, and

negative semidefinite.
(5.18)

In order to demonstrate the significance of these relations, we consider two very special
processes.

a « "
First, we consider a process with uniform fields of«, 9 and 17A in which moreover

a tt a
« and 17A are time independent and all UA are equal. Under these circumstances all Aa

vanish and the only relevant equations are the energy equations which in the common
rest frame of the constituents read

Ô a a „ aa. n -^7 «ß
— (nmc2 + ne) — cr 2_ mi-8t

p i
Unless temperature differences are too large, we may set

aß
» v v 8 2 mi

2 aß V "* I V 0 1

y
8T

(T - T)

and therefore the energy equations read with (4.22) and when e is independent of n

aß

(T-T). (5.19)
r,a «

v 8 2, mia de dl sr- b in > -a Z-, y

8T 8t ¦»=»- 8T

When the specific heats 8e/8T are positive constants, the equations (5.19) describe a
relaxation of temperature differences, if only the matrix in (5.18)i is negative definite.

Next we consider time-independent diffusion : Let there be no heat fluxes and let
a a tt a

the densities and temperatures be time independent, so that l7An>A 0 and UA9yA 0;
the equations of balance of momenta then read

« V "" Tt-p.a. 2, mAtt
« 1

and, if the right hand sides are expanded around equilibrium up to linear terms in
Y V

differences of velocity Ua — I7a, we obtain with (4.22)

a -^r-* ay ' v

-P,a 2, ml\EÌUa - Ua)- (5.20)
y l
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We thus see that (5.18)2 implies that the relative velocities essentially point into a
direction opposite to the pressure gradients.

6. Comparison with Eckart's Theory for a Single Fluid

All results so far hold also for a single constituent and we get the appropriate
result by just dropping the Greek index on our quantities. For example, the Gibbs
relation (5.10) for a single fluid reads

dr,\E=^(de\E-^dn}. (6.1)

Eckart's theory of a relativistic fluid, proposed in [6], is based upon equation (6.1) and
the assumption that -n, e and p during a process are equal to t/|e, e\E and p\E. If this is
so, one may write (6.1) as an equation for the rate of change of -q:

'-£(*-£*) (6-2)

where r] UArjyA and é UAetA. Now, the conservation laws of particle numbers and
energy-momentum read

(nUA),A 0 and TAB,B 0 (6.3)

and TAB is decomposed according to

nmc2 + ne rTAIIB AB
1

—= UA17B + WAB + -nc2 c2
TAB J fJAJJB + WAB + A.(gAUB + qBjJA^

so that in the rest frame of the fluid riè is the energy density, wab is the negative stress
and qa, i.e. qa in the rest frame, is the heat flux. The conservation law of particle numbers

may be written as

h + nUAA 0 (6.4)

and the conservation laws of momentum and energy (6.3)2 upon multiplication by
ACA and UA, respectively become after a simple calculation, with Ùc UAUCiA,

(nm + 5) °A + <B i IVjfVc.B - qBUA.B - AAqcU"),B] (6.5)
c

né + q% - wABUA,B ^qAÙA. (6.6)
c

If y) and è axe eliminated between (6.2), (6.4) and (6.6) one gets

n-r) + {pj
b

-± qB (r,B - | t/B) + j; (wAB + pAAB)UA,B. (6.7)

In linear irreversible thermodynamics this equation is interpreted as the equation of
balance of entropy, whose right hand side is the production of entropy which is
postulated to be non-negative.
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That inequality is then satisfied by linear relations between the 'forces'
(TB - (T/c2)ÜB) and UA,B and the 'fluxes' qB and wAB + pAAB, viz

qB kABA (tiA- ^ ÛA where k > 0,

(6.8)
wab + pAAB 2h.(ABCUA,c + AACUBc) where p ^ 0.

The foregoing is a brief outline of Eckart's theory and we proceed to compare the
results of that theory with our results.

First, in restricting our attention to inviscid fluids, we have effectively set p 0
in (6.8)2 and any comparison therefore has to be made on the ground that in our
theory we have

wAB -pA"B. (6.9)

With regard to the heat flux we have to compare our equation (5.11) for a single fluid,
viz.

j_/f T(dp\E/dn) \
dT/d9 y •" nmc2 + ne\E + p\E - T(8p\EjdT) "•') l°'1U;

with Eckart's equation (6.8)j in the rest frame, viz.

qb=gba-{T.a-^2Ua\ (6.11)

a

Obviously therefore we must replace Va in (6.11). For that purpose we rely on the
first three components of (6.5) in the rest frame: If we use (6.9) and ignore the
nonlinear term q"U% we get from (6.5)

qb g»ttK

Ltj 1 U 1 8qa
qA Mm/i* + ne + p \p'a ^ c2 8t)

and elimination of (l/c2)Ua between this relation and (6.11) gives

_
(k/c2)T d£

nmc2 + ne + p dt

s»°~k(i Ti8p/dT) )(f T{8p/8n)
S \ nmc2 + ne + pj\ 'a nmc2 + ne + p - T(8p/8T) '"}'

(6.12)

Comparison of (6.10) of our theory and of (6.12) of Eckart's theory shows agreement
on the right hand sides, if only k and k axe related by

1

K
dT/d9

A T(dp/dT) \
K \ nmc2 + ne + pj'

note that k ^ 0 implies the inequality (5.17), if that inequality is written in a form
appropriate for a single constituent. The left hand sides of (6.10) and (6.12) are not in
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agreement, however. Indeed, if 7*>0 and n<a both vanish, (6.12) implies an exponential
growth of the heat flux which represents an awkward feature of Eckart's theory even
though, of course, inspection shows that the term in question is extremely small.

Kluitenberg [1] has extended Eckart's ideas to mixtures of relativistic fluids. But
that theory is formulated within the framework of linear irreversible thermodynamics
of mixtures and there is therefore no straightforward manner in which its results can be

compared with ours. A comparison of the corresponding non-relativistic theories may
be found in [8].
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