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THE METAL INSULATOR TRANSITION IN DISORDERED ELECTRON SYSTEMS
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kb&tfiact: The. ieliconòiitent cunjiznt relaxation theory faon, the motion o£

^enmiorn -in a random potentiell -Li genefmlized by taking Into account Coulomb

interaction e^ecti. In pafvbLculctA the. Influeriez o& various local fielet
corrections, to the random phase approximation on the metal insulator tram-it-
-ion point axe examined. The conductivity and the itatic dielectAic constant
vteax the mobility edge evie calculated.

The Coulomb force acting between the particles in a charged Fermi

liquid or between the particles and a regular array of ions can yield a

metal insulator transition (MIT) if for example the particle density n is
varied /1/. If non-interacting fermions move in a random potential, provided
for example by a random array of scattering centres there can occur also a

phase transition from a state where the particle wave functions are extended

to one where they are localized. This disorder induced MIT was discussed

first by Anderson /2/. In this note we want to contemplate the questions of
the interplay of the two mentioned mechanisms driving the MIT. The answer to
this question would be of relevance to understand the conductivity in some

disordered electron systems like e.g. in doped semiconductors or in liquid
metals. To proceed we will generalize the selfconsistent current relaxation
theory (SCCR), proposed as an approximation approach towards the motions of
non-interacting particles in strongly disordered systems /3/, such, that the

Coulomb interaction is taken into account within the random phase approximation

(RPA) including local field corrections (LFC) /4/.
The model to be discussed is specified by the Hamiltonian

H H0 + HD + Hj. Here HQ is the free particle part H0 Y &r?atr ap

expressed as usual by creation and annihilation operators for fermion states
with momentum k and degeneracy index a running from 1 to 2 gv, gv is the

valley degeneracy. For the kinetic energy a parabolic band approximation
with mass m m^Tiig is used: e^ k2/2m. The interactions due to the electron
charge then reads: Hj -r£p*(3) V(q) p (<J) where V(q) 4ire2/q2eL. Here eL

denotes the lattice dielectric constant and p (q) abbreviates the electron
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density fluctuations for wave vector q. The disorder is specified by

HD E p*(q)U(q) with U(q) denoting the random potential Fourier transform.
_ 3
The average of the random potential we assume to be absorbed in the chemical

potential so that <U(q)> 0. The fluctuations are parametrised in the form

<|u(q) |2> n±(^--2)2Z2 (q)S(q) (1)
L "

So we imagine the disorder to be caused by scatterers of density n^, scatt-
erer structure factor S(q), and charge form factor Z(q). Z(q=0)=Z is the

impurity valency. The q-variation of Z(q) describes the deviation of the

electron impurity pseudopotential from a Coulomb law due to core screening,
exclusion principle and various polarization effects.

The generalized SCCR is based on two equations. One connects the

current relaxation kernel M(to) a causal function of frequency to, with the
Kubo relaxation function /5/ <j>(q,oj) for the density fluctuations of wave ve-

tor q /3/, which holds approximatively also for the interacting system

M (to) -~ Z q2<[u(q) |2><f>(q,to) - (2a)
3nm * '

The other expresses <f>(q,io) in terms of the electron compressibility g(q) and

a reference function <|>R(q,io) as

> <t>R(q,to+M(to))
<Mq#io) • (2b)

l+M(to) <j>R(q,to+M(lo) /g(q)

In the preceeding work /6/ the compressibility was approximated by the one

of the non-interacting Fermi gas g° (q) and for ij>R(q,to) the corresponding free
gas function _<|>c (q,to) was used. We now generalize by using as reference

susceptibility the RPA result with a local field correction G(q) /4/:

XR(q,co) • (2c)
1+V(q) (l-G(q)/gv)x°(q,u)

One then gets <()R(q,to) (xR(q,to)-g(q) )/to and g(q) =xR(q»°)- The preceeding

equations are a closed system to determine M (to) and hence the dynamical
conductivity in the standard form /7/.

CT(U)
• 2sl_i (3)

m to+M(to)

The electronic contribution to the polarizability is given as X(<o) io (to)/to

and thus the dielectric function reads e (to) =Sl+4ttx (to)
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The discussion of the MIT described by the selfconsistency equations

(2) can follow the preceeding work /3/ /6/. There are two relevant
length scales involved: one is given by the Fermi wavevector kp^n3»3 the other
one by the Thomas-Fermi screening vector qs« ^ppTe^- Here ppamkp is the Fermi

liquid density of states at the Fermi energy eF. The ratio Ç=2kF/qs measures

the effective potential range relative to the particle wavelength: 1/Ç2 is
proportional to the electron liquid parameter rs. The implicite equation for
the MIT reads A=l, where the dimensionless coupling parameter A, depending on

n^, and the other quantities like Z,gv specifying the model, is given by

Zn± 4Z 1 g°(q)
A dq q2 - (4)

n gvÇ2 qs o (p£,q2 + (l-G(q)/gv)g°(q))2

For A>1 the system is an insulator characterized by a finite static polaris-
ability x- For A<1 the system is a conductor with a non-vanishing dc conductivity

a If one approaches the MIT from the conductor side e.g. by decreasing
the electron density n to the critical one nc, the conductivity tends to zero

according to

0 gvaMqs ^Fa/^p. (5a)

Here aM e2/4irft. The numerical factor Fa depends on the path the system is
driven towards nc as well as on the approximation used for the LFC. For

uncompensated systems (Zni=n) and the RPA one gets F=0.22 or 0.16 for ÇC<<1

or for £C>>1. If the MIT is approached from the insulator side by increasing
n one finds a divergence given asymptotically as

X F 5b)
12tt x nc-n

For the specified model F 1.25 and 0.38 if EC<<1 and ÇC>>1. So the critical
exponents are the same as predicted originally for the model of non-interacting

particles /3/. The subtleties of the theory are hidden in nc and in the

scales for a and x- Most remarkable is the universality exhibited by the

result for x-

At the critical point the kernel M(to) diverges like |to| " /6/ and the

conductivity is nonanalytical in to:

¦¦VIJ* (5c)gvoM 9s 5 ' f0
with Fc 0.16 or 0.085 for £^«1 or for £„»1.
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In the following we restrict ourselves to the model Zn^=n,

Z(q)=Z, S(q)=l. The only parameter then is the electron or the impurity density.

The phase transition criterion A=l can be rewritten in the form

n^3 a* f, (6)

where a^=fie]\/me2 is an effective Bohr radius and f is a number of order 0.1.
Within the RPA one finds ,„ unr0.039 7.1 C^<<1

f =1 (7)
L0.22(Z/gv)2/3 £c»l

In Table 1 the f values for various Z and gv are reported for the RPA, and

for the LFC according to the view of Hubbard /8/, Gjj, Sham and Brosens et al.
/9/ Gsb, Utsumi and Ichimaru /10/ Gyj, and Ichimaru and Utsumi /11/ Gjjj.

(Z/gv) (4/1) (3/1) (2/1) (1/1) (1/2) (1/4) (1/6)

RPA 0.25 0.18 0..12 0.049 0.047 0.043 0.041

G=Gh 0.31 0.24 0..16 0.082 0.065 0.052 0.048

G=GSB 0.35 0.29 0..22 0.14 0.124 0.072 0.055

G=GÖJ 0.33 0.26 0..19 0.11 0.086 0.060 0.051

G=Gju 0.34 0.27 0..20 0.12 0.088 0.067 0.056

Table 1: f values entering the criterion (6), see text.

LFC increases the electron gas compressibility g(q) above the RPA value /4/
and according to equ. (4) this implies an increase of the dimensionless

coupling A. Hence the LFC increases the tendency to localization and therefore

the f values are too small if the RPA theory is used. Naturally, the
LFC are less important if the degeneracy factor gv for the electrons increases.

Hubbard's approximation seems to underestimate the LFC but the differences

of the f values obtained from the other quoted theories are not big
enough to be significant for our purposes.

The phase transition criterion given by equ. (6) with f=0.25 was

proposed originally by Mott /12/ /1/ for the correlation induced MIT. There is
indeed a great variaty of alloys whose data for the transition point support
the Mott criterion /13/. The result f«g^3 obtained in equ. (7) for -,C>>1

agrees also with earlier findings /14/. So, as far as the position of the

MIT point is concerned, our theory is in accord with previous discussions.
To emphasize the relevance of our result we compare in Table 2 critical
densities for rare gas alloys with experiments for Ar:Hg /15/, Ar:La /16/
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and Xn:Sn /17/. The LPÊ are taken from Ichimaru and Utsumi /11/. Notice, that
no fit parameter enters the evaluation of nc.

4

alloy
atomic

cHg,La,Sn
EL

Hg:Xe

0.80

1.25

La: Ar

0.31

1.45

Sn:Xe

0.31

1.85
exp. 22 -3

n /10"cmc 5.9 2.5 2.8
nc/1022cm-3 2.8 4.4 4.2

Table 2: Critical densities for the MIT according
to the present theory in comparison with experiment.

More relevant than the evaluation of the critical point within a

first principle theory is of course the discussion of measurable quantities
like a and x as functions of n/nc. Such work is in progress. In Fig. 1 we

demonstrate the influence of LFC on a and x-
OX K» r^n

500-500

G=GG=0
05-

n.K) cm

Fig. 1: Polarisability and conductivity as function of density.
The results show that the scale for x and a is the one observed in certain
semiconductors. The elementary formula of Mott and Jones for the conductivity

a'°', which is obtained as lowest order approximation for the present
theory if the RPA density correlation <|> (q,to) =<(iR(q,io) are substituted on the

r.h.s. of equ. (2a) /7/, is shown also by the dotted line for G(q)=0. The
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dotted line for Gjq represents the zero order result including local field
effects. In Fig. 2 the scaling laws for the polarisability and the conductivity

are shown for G=Gj0. The dashed line represents the exponents 1 and 1/2

according equation (5a) and (5b). Note that the scaling laws hold only until
|n-nci

n,-
<0.1.

woo

n, 1.2 1022 cm"3XO 22 -3n, =1.2-10"cm
G=GG=G

100

I

*& '0.01 001

Fig. 2: Scaling laws for polarisability and conductivity
The preceeding results we consider as encouraging indication, that

our theory provides an approximation scheme for the evaluation of the conductivity,

of current and density spectra and the like in strongly disordered
electron systems. In particular the theory is able to describe the metal

insulator transition be it driven by disorder or by Coulomb interactions. The

most interesting new physical feature in interacting electron systems as

opposed to non-interacting ones is the existence of plasmon excitations. The

present theory provides a frame to evaluate plasma damping in strongly disordered

two and three dimensional conductors. In particular anomalies are
obtained since the dynamical aspects of screening are taken into account.

Details will be published shortly.
Altshuler and Aronov /18/ have predicted interesting anomalies of

the conductivity due to the combined influence of disorder and Coulomb

interactions. MacMillan /19/ and Oppermann/20/ have used renormalization group

techniques to extend the original perturbation results /18/ into the regime

of strong disorder. The present theory does not incorporate the Altshuler-
Aronov anomalies and we do not understand the connection of our descriptions
of a mobility edge with the other work /19 /20/. Exchange correlations,which
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are taken into account in our work, imply the existence of a Coulomb gap in
the density of states /21/ /22/. A theory of the dielectric constant near the

MIT based on the Coulomb gap physics has not been worked out yet. In our work

the implications of interaction on the density of state are not considered.

Therefore the connection of the present approximations with the approximations

studied for the Coulomb gap remain unclear.
We want to mention that the critical exponents of the scaling law

depend somehow on the approximations. In a generalized hydrodynamic version

like that done for the non-interacting system /23/ the exponents 1/2, 1 and

1/3 in equations (5a,b,c) would change to 1,2,1/2 respectively. We

do not know which approximations describe the physical situation most

adequately.

This work was supported in part by a DFG grant.
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