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The influence of coherent drift waves on the
magnetoacoustic resonance in cylindrical
plasmas

By H. A. Aebischer and Yu. S. Sayasov

Institute of Physics, University of Fribourg, 1700 Fribourg, Switzerland

(6. IV. 1988, revised 18. V. 1988)

Abstract. A theory describing the influence of radially and azimuthally varying coherent density
oscillations on the magnetoacoustic resonance (MAR) in cylindrical plasmas is developed. The
corresponding two-dimensional wave equation is solved numerically. In some cases an analytical
solution is also possible which allows to check the numerical methods and provides simple estimates of
the effect. The theory is applied to model and real plasmas in the case where the density oscillations
are due to coherent drift waves. It is shown that the coherent drift waves cannot account for the
strong damping of the MAR as observed in many experiments, but that it is the turbulent drift waves,
instead, which are responsible for this damping. The coherent drift waves can cause an appreciable
shift of the resonance frequency of the MAR, however.

1. Introduction

Magnetosonic waves in axially magnetized cylindrical plasmas can be excited
with the aid of r.f. oscillations in a coil which is wound around the plasma tube.
The waves propagate radially into the plasma and exhibit resonant character in
the radial direction with maximum amplitude of the magnetic field at the plasma
center, a phenomenon known as magnetoacoustic resonance (MAR).

The anomalously low wave amplitude near the corresponding resonance
frequency, which could not be explained by classical wave damping mechanisms
such as resistivity and viscosity, has been observed in a number of experiments
with radially inhomogeneous plasmas in the past (Krämer [1], Blackwell and
Cross [2], Schneider et al. [3], Hahnekamp and Stampa [4]).

Sayasov [5], Ritz et al. [6], Sayasov and Ritz [7], and Vaucher et al. [8]
succeeded in identifying the damping mechanism in such plasmas as being an
effect of turbulent low frequency density fluctuations, which they identified as

turbulent drift waves. Their theory explains quantitatively the observed strong
damping of the MAR.

Grosse and Krämer [9] experimented with a rather quiescent plasma and
observed only a weak damping of the MAR, which they tried to explain as an
effect of purely coherent drift waves. In their method to solve the resulting wave
equation they used a perturbation approach and disregarded relevant boundary
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conditions. Since the additional terms in the wave equation which account for the
effect of the drift wave are not small, the applicability of a perturbation approach
is rather doubtful.

In the present paper we develop a theory to describe the influence of
coherent drift waves on the magnetosonic wave in radially inhomogeneous
plasmas which is based on a rigorous solution of the two-dimensional wave
equation with the correct boundary conditions. We show that the alteration of the
MAR due to coherent drift waves cannot account for its strong damping as

observed in most experiments. We discuss numerical results obtained for a

homogeneous model plasma with linear radial density oscillation profile and
mode number m 1. As a test of the numerical procedure we also develop an
approximate analytical solution valid for this model and compare its results with
the ones obtained numerically. We also apply our theory to a real argon plasma
with m 1 which was described by Ritz et al. [6], and to a real helium plasma
with m 6 as described by Egger et al. [10].

2. Theory

2.1. Derivation of the two-dimensional wave equation

We consider an infinitely long cylindrical plasma (coordinates r, cp, z)
magnetized by a magnetic field B0 B0z with the r.f. magnetic field of the MAR
in the axial direction 2, in accordance with the way the MAR is usually excited in
the experiments, namely, by a concentric cylindrical coil (which we assume to be

infinitely long as well) surrounding the plasma cylinder. Assuming a time
dependence of the fields of the form exp(—itot), Maxwell's equations together
with the proper dielectric tensor yield the wave equation for harmonic fields. For
a cold plasma, we have (Skipping et al. [11])

rot B -ik'eÊ (1)

with the dielectric tensor ¥ being

£ ig 0\
£ | -ig £ 0 (2)

0 0 n/
where

oflT)g(r)
Q2(r) - tolto2«00-1+JT „2 .2 (3)

«ft-offTX (4)
Q v) - t»ceto

The tensor element n is not used because we only have to consider the
component Bz of the magnetic field and, as follows from (1), only the component
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Er and Ev of the electric field, to is the frequency of the magnetoacoustic wave,
toce is the electron and toci the ion cyclotron frequency. top is the plasma
frequency

^jj^m (5)

Q(r) is an abbreviation for the expression

Q(r) tocitoce - to[to + we(r)] (6)

where ve(r) is the total electron collision frequency and is given by the
well-known formulas

ve(r) vea(r) + vei(r) (1)

vea(r) 4.2-W1na\[fjy)oe (8)

vCT.(r) 2.9-10-6^^lnA(r)) (9)

where vea is the electron-neutral collision frequency, vei the Coulomb collision
frequency, na the density of neutral atoms, Te0(r) the electron temperature
distribution in eV, oe the collisional cross section for electrons, ne0(r) the
undisturbed electron density distribution, and ln A(r) the Coulomb logarithm.
Maxwell's equation for the electric field is

to -rot E i-B ikB (10)
c

Writing (1) and (10) in cylindrical coordinates, substituting the electric field
components Er and Ew computed from (1) into (10) and using the abbreviations

£2 _ 2 2 _ 2

e1 £—L; e^—^ (11)
£ lg

we find the exact two-dimensional wave equation

dr2 \r ex dr rei dtp/ dr r2 dtp2

1 sx 3e2 1 1 de{\ dBz i2+ {--2X--2-lT TT=-e,k2Bz (12)\r e2 dr r ex dtp/ dtp

The influence of the drift wave on the magnetosonic wave is contained in the
functions ex and e2 via the electron density ne which determines the plasma
frequency (5). The electron density ne is given as the superposition of the
undisturbed density ne0 with the oscillating perturbation nel of the coherent drift
wave. ne0 varies only radially whereas neX varies both radially and azimuthally.
Since drift wave frequencies are usually of the order of a few tens of kHz while
MAR frequencies are of the order of several MHz, we can treat the drift wave as



1016 H. A. Aebischer and Yu. S. Sayasov H. P. A.

constant in time. The azimuthal dependence of the drift wave is then of the form
cos (mtp), where m is the mode number of the drift wave mode considered.

For Q tocitoce we can assume \Q2\ « tolto2- It then follows from (3) that, if
we can neglect the constant 1, e ~ -toPcoCj/(to2toce). From (4) it follows that

g —to2l(totoce) (to/toci)£ and thus g2» e2. From (11) it follows that £,, e2~
tx)2~ne. In the following derivation it is easier to work with the exponential
representation of the cos-function. Thus the expressions for the Ej, j 1,2 can be

represented in the form

t/o'(r) l+-^(e'm* + e-,m*) (13)

where ej0 £; for h 0 and

h(r)
ne\(r)
ne0(r)

(14)

The approximations stated above have only been made in order to derive
expression (13) for the angular dependence of the ef. For the radial dependence
of the Ej0 we use the full expressions (11) and (3) to (9). The influence of the drift
wave is contained in the £y according to (13), so that we can use the undisturbed
electron density ne0(r) for ne(r) in (5).

We then substitute (13) into (12) and multiply the whole equation with the
term in brackets from (13). This eliminates all angularly dependent terms in the
denominators of (12). We assume that h «I. Since ex/e2 (to/toci)i»i we only
have to retain terms in h and dh/dr which also contain the factor ex/e2. With the
aid of the abbreviations

1 dE, 1 dE-,
Ks K2-

£xo dr e20 dr

we can write the wave equation in the final form

(15)

d2Bz

dr2

1

Ir r e™ 220 '

dB, i d2B, i e

dr
10

x jc2 1 + -(-?""* + e ") + -— iein"p + e-,m'p
2 dr

dtp2 r e20

') dtp
+ £10k2Bz 0 (16)

This equation is also valid for turbulent plasmas if the expression (3) for £(r)
(without angular dependence in top) is replaced by (23) given by Sayasov and Ritz
[7], which contains the radial profile of the turbulent density fluctuations. This
leads to new expressions for the £j0, and the angular dependence due to the
coherent oscillations is then accounted for in the e,- as in equation (13).

2.2. Method ofsolution

Since the angular dependence of Bz(r, tp) stems from the angular dependence

of the density perturbation neX of the coherent drift wave, it is natural to
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develop Bz in a Fourier series of harmonics of the mode number m of the drift
wave where the coefficients are complex functions of the radius r:

cc

Bz(r,tp)= 2 C^e*""" (17)
JU — 3C

Substitution of this Fourier series into the partial differential equation (16) and

equating the coefficients of exp (ifimtp) to naught for each p leads to an infinite
system of ordinary differential equations for the complex functions C^(r)- This
system can be written in a very concise form if we define the differential operators

d2 11 \d/ p2m2 .um£w ,7\ ..„.
L>=d72 + {x«>)dr+{-^ + lr-tK2 + £"k) (18)

D-- .fm£XQ
R*=l2~r~X,

_. r £2o L

lwe.o
2 r £20

d / dh
h — + u\ K2h + —

dr r\ dr

d I dh\
hdr + ß\K2h+Yrii

(19)

(20)

The resulting neat and compact form of the system of equations is then

EllCl.+Rtl-xCli-x + R^+xCl, + x 0, (21)

where

j« -°°, • -2, -1,0, 1,2, ...,oo
In order to be able to solve the system properly, we must establish the

correct boundary conditions for Bz(r, tp) and thus for the functions Cß(r)- With
the aid of Ohm's law, ; oE, where o is the conductivity, we can write
Maxwell's equation for the magnetic field B in the form

-. ito Ajt -.
rot B E + — oE (22)

c c

In the metal of the coil which excites the magnetosonic wave we have o » to.

Thus, equation (22) reduces to

-* 4jt -.
rotB=—j (23)

Now we introduce a rectangular current sheet, one of the edges of which
coincides with the axis of the cylindrical coil. The surface integral of (23) over the
surface of the current sheet yields the total current which flows perpendicularly
through the sheet. By Stokes' theorem we can replace the surface integral by a

line integral along the edge of the sheet. The contribution to this integral along
the edge which is parallel to the cylinder axis but lies far away from it is zero
because the magnetic field vanishes there. The contributions from the two edges
perpendicular to the cylinder axis exactly cancel because the magnitude of the
fields along them are identical but the direction of integration is reversed. The
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only contribution which does not vanish stems from the edge which coincides with
the cylinder axis. Now the current sheet can be oriented at any angle in the
azimuthal direction, and the edge of the sheet inside the coil can be brought into
any radial position as long as the edge remains within the coil and lies parallel to
the cylinder axis without affecting the correctness of the statements made above.
From this it follows that the magnetic field at the plasma radius r„, Bz(r0), must be

equal to the field _9coii produced by the coil (if the current in the coil is not
affected by the plasma) and is independent of the azimuthal angle cp. On the axis,
i.e. at r 0, the azimuthal component jv of the current density j must vanish in
order to assure the uniqueness of/ and B there. Since the cylinder is assumed to
be infinitely long, we have 3/3z 0, and the azimuthal component of (23)
reduces to -dBJdr (4jr/c)jtp, and it follows that dBz/dr 0 at r 0.

From the representation of Bz(r, tp) as a Fourier series (17) it then follows
that the following boundary conditions must hold for the functions Cß(r):
In the center at r 0:

AC*
—2 0; CM(0) 0 for all p except p 0 (24)

On the plasma radius at r r0:

C0(r0) BcolX; CXo) - 0 for all p except p 0 (25)

We are interested in the behaviour of the magnetic field Bz and the functions
C,. as a function of the radius and especially of the frequency in order to be able
to plot the resonance curves of the MAR. For this purpose, the magnetic field in
the center, Bz(0), is normalized to its value on the plasma radius Bz(r0), and this
ratio is computed and plotted as a function of the frequency. This is also the way
in which the MAR is usually measured in the experiments.

A computer program DRIMAR for solving the system of equations (21) with
the differential operators (18)-(20) and the boundary conditions (24) and (25) for
arbitrary radial profiles of the undisturbed electron density, of the density
oscillation of the drift wave, of the electron temperature, and for an arbitrary
drift wave mode number m has been worked out. The system can be solved for a

user of selectable number of frequencies with given start frequency and frequency
increment. With multiple runs of consecutively adapted start frequencies and
refined increments this allows the lowest resonance frequency to be found to the
desired accuracy remarkably quickly. The number of equations N considered in
the system (21) must be odd, of course, and it can be selected arbitrarily up to
N — 13. If e.g. a number of N 3 is selected, then we are looking for solutions
for the functions C-x, C0, and Cx, and RZ2 as well as R2 in the corresponding
equations of (21) must be put equal to zero since we cannot compute C_2 and C2

with the system restricted to 3 equations. DRIMAR is so designed as to assemble
the required equations in the system (21) automatically for a given number of
equations N. To specify N is all the user has to do. This allows convergence tests
to be performed very conveniently.
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A number of measured points of the radial distributions of the undisturbed
electron density, of the density oscillation of the drift wave, and of the electron

temperature are read into the program. Cubic spline functions are then used to
approximate the continuous distributions. This allows the required derivatives to
be performed very accurately by using the corresponding analytical expressions
for the splines. DRIMAR uses the subroutine CRAPRO written by Räuchle [12]
to solve the complex boundary value problem. It uses a five-point finite-difference
scheme. A well documented listing of the program DRIMAR is available from
one of the authors (H.A.A.).

2.3. Analytical solution for homogeneous plasmas with linear density oscillation
profile and m 1

For homogeneous plasmas with linear density oscillation profile and drift
wave number m 1 it is possible to find an analytical solution to the system of
equations (21) for N 3 equations, the results of which can be compared with the

corresponding numerical solution for N 3, thus providing a check for the
correctness of the numerical methods used. From the approximations made in the
derivation of equation (13) in subsection 2.1 it follows immediately that

£10 W
• /A.AK— ~i — »i (26)

In a homogeneous plasma £ and g are constants, and hence £|(l and £20 are also

constants. From (15) it then follows that

k, jc2 0 (27)

The profile of the density oscillations of the drift wave is assumed to be linear,
i.e.

h(r) ß- (28)
ro

The system of equations (21) for the functions C_,, C(l, and C, (C,,=0 for
M>l)is

L.,C{) + RZXC^+RX\=Q
L^xC-X+RXo 0 (29)

LxCx + RoC„ 0

We are only interested in the normalized resonance curve here, i.e.
|ßz(0)|/|ßz(ro)| as a function of frequency, which is identical to |Co(0)|/|C()(ro)j
due to the boundary conditions (24) and (25). This means that we can reduce the

system (29) to two equations by defining

C* C_,-C, (30)
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(31)

The new system of equations is then

L0C0 + R\C* 0

LaX\-a Z/\()t-.Q 0

with the differentia] operators

d2 Id
tl~dr2 +

rdr

2 2
r1 m .2

2 + ^IO^
r

à
R0 ma —

dr

/d
Rx mai — + -

\dr i

1)

with

1 to ß
a -

2 (»d r0

ju 0, 1 (32)

(33)

(34)

Now we try the assumption of the following particular solutions:

Co aJ0(xr)

C*=bJx(Xr)

(35)

(36)

JQ and Jx are the Bessel functions of the first kind of the order zero and one,
respectively. From (32) we see that L0J0(£wk2r) 0. But the parameter in the

argument of /0 in (36) is x- For JX)(xr) we have (L0 + x2 ~ £\ok2)Jo(xr) ~ 0- From
this it follows that L„J()(xr) (£i0A:2 - x2)Jo(xr)- Analogously for L,.

LoJoixr) (£u>fc2 - X2Vo(xr)

LxJx(xr) (BXok2-x2Vt(xr)

We further need RQJX)(xr) and RxJx(xr). With the aid of well-known relations
between JQ and Jx we find the following equations, the validity of which is

restricted to the case m 1 :

RoUxr) -ocXJx(xr) (38)

RJiixr) ocxUxr) (39)

Now we substitute the expressions (36) for C() and C* into the system (31) and

replace the operators on the Bessel functions with the expressions (37), (38), and
(39). Then we get the following system of algebraic equations for the constants a

and b:

(£xok2 - x2)a + axb 0

laxa + (£wk2 - x2)b *

The condition required for this system of equations to have a non-trivial solution

2aXa + (Ewk2-X2)b=0
(40)
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is that its determinant vanishes:

(ewk2-x2)2-2a2x2 0 (41)

This condition is fulfilled if

Xl'2=±vl+ \Y + £wk2 (42)

From the second equation in the system (40) we find the following relation
between the two possible values of a and b corresponding to the two possible
values of x-

h 2aXl,2 ,.~K2=- ,2_y2 «1,2 (43)

Here and in the following formulas we make use of the simplification

,f2 2
=T-i- (44)

£.ok2-x\,2 y/2a K '
The solutions C0 and C* now have the form

C0(r) axJ0(xxr) + a2J0(x2r) (45)

C*(r) y/2 [axJx(xxr) - a2Jx(x2r)] (46)

From the boundary condition C*(r0) 0 we then find

ax AJx(x2r0) (47)

a2 AJx(Xxr0) (48)

The value of the constant A follows from the boundary condition C0(r0) _9coil to
be

jt -i----! (49)
JiiXzroVoiXtfo) + hiXSoVoiXiro)

The final formula for BN \Bz(0)\/\Bz(ro)\ \Co(0)\/\Co(ro)\ is then

B
JiiX2ro)+Jt-(x.ro)

(50^
Ji(X2r0)Jo(Xtro) + Ji(Xiro)JoiX2r0)

The resonance frequency in the real approximation (which does not involve
damping) is given by the root of the denominator of (50):

Ji(X2r0)MXira) + /iU l'bVofe'b) 0 (51)

This defines a transcendental equation for the resonance frequency to to0 since

Xx and X2 depend on x by virtue of (35) and (42).
In the case of small ß it is possible to derive analytically explicit estimates for

\BN\ and the resonance frequency to{} when the Xia are allowed to be complex.
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Xi,2 can then be written in the form

a
Xi,2 V^F±^ (52)

With the aid of (26) given by Sayasov and Ritz [7], we have for Xo — (bwk2\l/2

ft-f(i+«-e (53)
IO I IOVa.

cA \ 2(0%,

where cA is the Alfvén velocity and toh (tocetoCj)12 is the lower hybrid frequency.
We have tove « to2h. Taylor expansion in a in the denominator of (50) then yields
the typical resonance formula

l-W->)l - (54)

yM*)XX).f* \ (On /

where w0 is the resonance frequency of the MAR when the density oscillations
are absent, i.e. for ß 0, defined by J0((o0rQ/cA) 0 where (o0r0/cA =y0~2.4, the
first root of JQ(x). The damping term y is given by

y ^4 (55)

too is the resonance frequency with the density oscillations present, i.e. for ß > 0,
and is given by

OJ0=ft>0
1 (Ooß\2 1

1 i8 V <we,- / ygj
(56)

3. Numerical results and discussion

We compute the effect of the coherent drift wave on the MAR in three
different plasmas:

1. A model plasma with linear density oscillation profile and m 1.

2. A real, turbulent argon plasma with m 1 which was described by Ritz et
al. [6].

3. A real helium plasma with m - 6 as described by Egger et al. [10].

We are mainly interested in the behaviour of BN |_ß2(0)|/|ß2(ro)| as a function of
frequency, i.e. the resonance curve of the MAR.

3.1. Model plasma with linear density oscillation profile and m 1

The undisturbed plasma (helium) is assumed to be homogeneous and to have
the following parameters: B{) 1000 Gauss, r0 5 cm, nei) 1.0 • 1012 cm'3, nu



Vol. 61, 1988 Influence of coherent drift waves on MAR in cylindrical plasmas 1023
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Figure 1

Resonance curves of the MAR for a model plasma with linear density oscillation profile and m 1 for
different maximum levels ß of the density oscillation in percent of the undisturbed electron density.
The dashed curve shows the approximate solution for ß 30% where only N 3 equations are
considered in the system (21).

1.6- 1014cm 3, Te 3eV, 7^ 0.5eV. For the electron cross section we use the
value oe -1 ¦ 10~16cm2 for helium given by Laborie et al. [13].

3.1.1. Numerical solution. Figure 1 shows the resonance curves of the
MAR, i.e. BN as a function of frequency for four different values of the maximum
relative density oscillation ß h(r{)) neX(r0)/neX)(r(l) in percent. The curve for
ß 0% shows the MAR when drift waves are absent. When there is a drift wave
present then the resonance frequency is shifted towards lower frequencies and the
MAR undergoes additional damping. These effects are the more pronounced the
stronger the density oscillation of the drift wave, as can be seen in the figure from
the resonance curves for ß 10%, 20%, and 30%.

The curves shown are computed with N 13. The solutions \Cf,(r)\ are found
to converge continuously, i.e. \CßX(r)\ < \Cß2(r)\ if |ju,| > |ju2| and px ¦ p2>0, for
all values of r within the plasma cylinder. The stronger the density oscillation of
the drift wave, the larger the number N of equations which is required in order to
solve the system (21) to any given accuracy, of course. For ß 30% density
oscillation the resonance frequency is found to be f{) (4.84 ±0.02) MHz, and
&NÌfo) — 22.852 ±0.001. If only N= 11 equations are used the result is
indistinguishable from the one obtained with N 13 down to the accuracies specified
above. All this proves that our system of equations (21) on which our numerical
calculations are based mathematically behaves very well and that we can be
confident in the correctness of our results.

The dashed curve in Fig. 1 is obtained for ß 30% with the system reduced
to N 3 equations. The numerical results are then f{) (5.08 ±0.02) MHz and
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BN(fo) 29.317 ±0.001. This agrees to within 5% and 30% of the exact values.
For smaller values of ß the agreement is even better, of course.

3.1.2. Analytical solution. The analytical solution for ß 30% based on the
system (31) in which £10 is replaced by its real part yields a resonance frequency
of /o (5.16 ±0.01) MHz which agrees to within 7% with the exact value. The
same value is obtained with the program DRIMAR when it is modified for a

purely real-valued calculation. This provides a further confirmation of the
correctness of the numerical methods we use.

The explicit analytical estimate for __>0 in the case ß 0% is toQ 2.4 cA/rQ

which yields a value /0 8.34 MHz instead of/0 8.08 MHz as the exact value
obtained numerically (see Fig. 1). Thus the error is only 3%. For ß lQ%
formula (56) yields /0 7.47 MHz instead of/0 7.36 MHz, the error being only
1.5%. The formula (54) gives \Bn(ü)'0)\ cj9 instead of 61 or 46% too much.
Thus, the explicit formulas (54) and (56) for BN and to0 are useful approximations
for values of ß < 10% for this plasma.

3.2. Real turbulent argon plasma with m 1

It is interesting to see whether the consideration of coherent drift waves, in
addition to turbulent ones, in the argon plasma described by Ritz et al. [6] leads
to any significant changes in the theoretical predictions of the MAR, e.g. to a

frequency shift as seen in Fig. 1 for the case of a linear density oscillation profile.
Here we have taken into account the actually measured radial profiles of the
undisturbed electron density, of the coherent (maximum 20%) and the turbulent
(maximum 10%) density fluctuations, and of the electron temperature. For E(r)
we use the formula (23) given by Sayasov and Ritz [7] for an anisotropy of the
turbulent fluctuations 7 30 [6]. The main plasma parameters are B0

2000 Gauss, r0 4.6 cm, neQ 1.5 • 1012cm"3, fe 2.5 eV, Tt 0.3 eV, and na
8.13- 1012cm~3. In contrast to the model plasma with linear density oscillation
profile described in subsection 3.1, in a real plasma the density fluctuations are
concentrated in a narrow region near the plasma boundary where the plasma
density displays its steepest descent. For this reason, we overestimate the effect of
the coherent density oscillations in our model calculations based on a linear
density oscillation profile.

The experimental results are /0 4.0 MHz, BN(f0) 2.0 [6]. With the
classical dielectric tensor without fluctuations and coherent oscillations we find
/o 4.8 MHz and BN(f0) 33. With the coherent oscillations alone we get
/o 5.4 MHz, BN(f0) 30. The coherent oscillations lead to a very weak damping
only. With the turbulent fluctuations alone we get /0 3.6 MHz, BN(f0) 3.1.
Turbulent fluctuations and coherent oscillations together result in/0 3.6 MHz,
ß_v(/o) 2.8. The main damping effect on the MAR clearly stems from the
turbulent fluctuations, whereas the additional alteration due to the coherent
oscillations is marginal. They also don't cause any significant frequency shift or
amplitude reduction in this case.
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3.3. Real helium plasma with m 6

Since our numerical solution allows us to investigate the effect of coherent
drift waves on the MAR for arbitrary mode numbers m, in contrast to the
analytical solution which is restricted to the case m 1, it is interesting to apply
our theory to a plasma in which m is greater than one. Such a helium plasma with
m 6 was described by Egger et al. [10]. The plasma parameters are B0

770Gauss, r0 4cm, ne0 2.3 • 1012cm~3, fe 3.5eV, 7] 0.6eV, and na
1.6 • 1014cm~3. The density oscillations are concentrated in a narrow region
around r 3.2 cm where they peak to 18.8% of the undisturbed density ne0 [14].

While the system (21) reduced to N 3 equations exhibits additional
damping of the MAR of a factor 2, the full solution with N 13 equations reveals
that the drift wave does not exert the slightest influence on the MAR et al. It is

not surprising that the influence of the drift wave diminishes with larger m since
the azimuthal disturbance in density which it introduces gets somewhat averaged
out. The effect of every crest in the azimuthal density ripple is partly
compensated by a trough. The higher m, the better this compensatory effect can
work. This example shows that it may be dangerous to rely on the system of
equations (21) reduced to N 3 equations. It may result in wrong conclusions
being drawn concerning the damping of the MAR.

4. Conclusions

In contrast to the oversimplified theoretical treatment of the influence of the
coherent drift waves on the magnetoacoustic resonance (MAR) based on a

perturbation approach with relevant boundary conditions disregarded, as given by
Grosse and Krämer [9], we have presented a theory based on a rigorous solution
of the corresponding two-dimensional wave equation with the correct boundary
conditions. Since the terms describing the effect of drift waves in the wave
equation for the magnetoacoustic wave (16) are multiplied by the very large ratio
eio/£2o. viz. equation (26), the perturbation approach is not applicable in this
case.

For a homogeneous model plasma with linear density oscillation profile and

m 1 an analytical solution has been derived which has proven to be useful in
order to check the correctness of the numerical methods which are used to apply
our theory to real plasmas. The computer program DRIMAR which has been
developed for this purpose allows the simultaneous consideration of turbulent
fluctuations and coherent oscillations of the electron density.

In the case of the model plasma with linear density oscillation profile (in
which our calculations overestimate the effect of the density oscillations since in a

real plasma these are concentrated in a rather narrow region near the plasma
boundary) the results have shown that the coherent drift waves can cause an
appreciable shift of the resonant frequency but only a limited reduction in the
magnetic field amplitude (by a factor <4) even for maximum oscillation levels as

high as ß 30%.
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Our numerical calculations applied to real plasmas for m 1 and m 6 have
shown that the claim held in previous papers on MAR ([6], [7], and [8]) that it is
the turbulent density fluctuations which are mainly responsible for the observed
strong damping of the MAR (by factors of 10-20) is correct. In these papers,
coherent density oscillations were not considered. In the present paper we have
taken into account both types of drift waves simultaneously where applicable, and
thus we have been able to proof this long-held claim directly. The results have
shown that the influence of the coherent drift waves on the MAR is very small in
real plasmas and that it is smaller for larger drift wave mode numbers m.
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