Zeitschrift: Helvetica Physica Acta

Band: 62 (1989)

Heft: 6-7

Artikel: Tunneling Study of High T_c YBa_2Cu_3O_7- ceramic

Autor: Suzuki, M. / Nishizaki, T. / Rinderer, L.

DOI: https://doi.org/10.5169/seals-116147

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Siehe Rechtliche Hinweise.

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. Voir Informations légales.

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. See Legal notice.

Download PDF: 15.05.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Tunneling Study of High T_C YBa₂Cu₃O₇₋₈ Ceramic

M. Suzuki, T. Nishizaki, and L. Rinderer

Institut de Physique Experimentale, Universite de Lausanne, CH-1015 Lausanne, Switzerland

[†]On leave from Saga University, Saga 840, Japan Faculty of Science and Engineering, Saga University, Saga 840, Japan

Abstract: The Pb-SiO-YBa₂Cu₃O₇₋₈ junctions were fabricated on the ceramic YBa₂Cu₃ 07-8 and the V-dI/dV characteristic was measured at temperatures ranging over from 4.4 to 94.1 K, and furthermore under several magnetic fields at 4.4 K. It was found that the temperature dependence of energy gap almost agrees with the one of the BCS theory, and the value of $2 \Delta_o/k_B T_C$ is 4.06. This suggests that the superconducting mechanism of high T_c YBa₂Cu₃O₇₋₈ is something like the BCS theory.

Since the high T_C ceramic superconductor, Ba-La-Cu-O system had been discovered by Bednorz and Muller (1) at 1986, many high Tc ceramic superconductors have been developed. These oxide superconductors have not only a high critical temperature but also extraordinary properties which are different from predictions of the BCS theory. Thereby, it is most exciting problem for a physisist to make clear a microscopic mechanism of the superconducting state. The mechanism intimately relates to the electronic states near the Fermi energy.

The tunneling spectroscopy is powerful probe in elucidating the mechanism, because it gives direct informations about the electronic states near the Fermi energy with high resolving power.

The tunnel junctions were fabricated by depositing SiO as a tunnel barrier and then Pb on YBa₂Cu₃O₇₋₈ ceramic with $T_c = 88.5$ K (the off-set temperature in a temperature dependence characteristic of resistance). The V-dI/dV characteristics were traced at temperatures ranging over from 4.4 to 94.1 K as shown in Fig. 1. The scale of vertical axis is for the characteristic at 4.4 K. The V-dI/dV characteristic at 4.4 K has a valley centered at zero-bias and two peaks at ± 5 mV. These structures weaken with increasing temperature and disappear at temperature higher than 6.8 K and under the magnetic field higher than 1.2 kOe. Thereby, these structures come from a superconducting state of Pb. The characteristic has two gentle curves ranging over from 10 mV (-10 mV) to 50 mV (-50 mV). These structures weaken with increasing temperature, and disappear higher than 80.5 K. Thereby, these structures come from the superconducting state of $YBa_2Cu_3O_{7-8}$. Each characteristic is normalized with the one at 94.1 K, which is in the normal state, and then an energy gap Δ at each temperature is obtained by using the Dynes' formula (2)

$$N_{S}(E)/N_{R}(0) = (E-i \Gamma) / \sqrt{(E-i \Gamma)^{2} - \Delta^{2}}$$
.

The temperature dependence of energy gap is shown in Fig. 2, where Δ_{0} =15.5 meV, T_{c} =88.5 K. Here, the value of energy gap at 4.4 K, 15.5 meV is assumed to be equal to a value at 0 K, Δ_{0} . A solid line is the characteristic obtained by the BCS theory, and an open circle is the present value. As seen in Fig. 2, the present value agrees with the characteristic of BCS theory. Using Δ_{0} =15.5 meV and T_{c} =88.5 K, we obtain $2\Delta_{0}/k_{B}T_{c}$ =4.06. The value, 4.06 is near 4.3 for the strong coupling superconductor Pb. Recently, Tachiki and Takahashi theoretically showed that the BCS theory modified with a charge fluctuation gives a high T_{c} and a weak isotope effect. Our results seem to support Tachikis' theory.

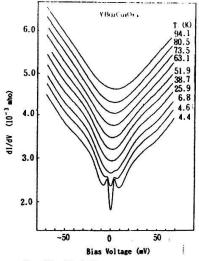


Fig. 1 V-dI/dV characteristics of Pb-SiO-YBa₂Cu₃O₇₋₈ junction at temperatures ranging over from 4.4 to 94.1 K.

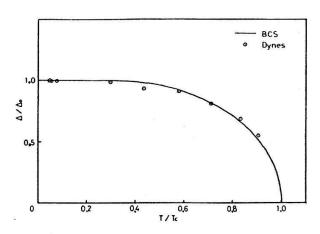


Fig. 2 Temperature dependence of energy gap for YBa₂Cu₃O₇₋₈. A solid line is the BCS characteristic, and a circle the experimental value.

References

- (1) J. G. Bednorz and K. A. Muller: Z. Phys. B 64, 189(1986).
- (2) R. C. Dynes, J. P. Garno, G. B. Hertel, and T. P. Orlando: Phys. Rev. Lett. 53, 2437(1984).
- (3) M. Tachiki and S. Takahashi: Phys. Rev. B 39, 294(1989).