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Axiomatic description of irreversible and
reversible evolution of a physical system

By W. Daniel1

Département de Physique Théorique CH-1211 Genève 4, Switzerland

(2. X. 1988, revised 16. V. 1988)

Abstract. In the framework of Piron-Aerts theory the notion of a general evolution of a physical
system is studied. Axiomatic characterizations of a general irreversible deterministic evolution and of
a reversible evolution are given. Related mathematical structures are studied and appropriate
mathematical categories within which the theory can be formulated either as a property-lattice
description or as a state-space description are exhibited. Also, within this framework, a natural
construction has been found which enables the axiomatic characterization of the set of trajectories of
the given entity.

0. Introduction

In the Piron-Aerts theory a physical system, i.e. a part of reality on which
one can act and describe the results of these actions without any appeal to the
'rest of the universe' is described (and defined) by a set of its properties. Each

property is defined by some experimental project with a certain well-defined
result, which is called 'yes'. When for the given physical system one can claim
with certainty, that in the case that the experiment defining some property were
performed, the result 'yes' would be obtained, or equivalently, that all the other
possible results of this experiment denoted by 'no' would be impossible, then this
property is called actual. It is precisely an "element of reality" as it was defined in
the famous EPR paper [1].

The set of all actual properties which the system has at a given moment of
time is a state of the system. Starting from the notion of question one can develop
a mathematical model for such a description which after imposing some axioms,
can be specified, such that the Hilbert space formalism of quantum mechanics or
the formalism of classical mechanics can be recovered. However, some time ago
it has been proved by Aerts [2], that two of the axioms, responsible for the
Hilbert space structure, are not satisfied in a physically relevant situation, namely
in the case of the system which consists of two separated quantum entities. It
turns out that - roughly speaking - there is not a Hilbert space description for

') Permanent address: Institute of Physics, Nicholas Copernicus University, ul. Grudziadzka 5/7
PL-87-100 Torun, Poland.
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such system. It seems therefore natural to look for the description of a dynamical
evolution of a system at the most basic level, where no such particular axioms
have to be taken into account at the beginning. So, we shall start with a general
theory, which includes as particular cases classical and quantum mechanics, and
which is able to describe the system consisting of two separated entities. Let us
mention here that, owing to such a theory, we have one and the same
interpretational framework for classical and for quantum mechanics: entirely
realistic, non-probabilistic and non-statistical.

We shall not confine ourselves at the beginning to any particular kind of the
evolution: deterministic, irreversible or reversible. What they are, has to be
defined - possibly in terms of the primitive notions of the theory. We shall begin
with the following simple observation: as time passes the set of actual properties
(i.e. state) changes. Certain properties cease to be actual. Others, which have not
been actual, become actual. It is now the aim of the theory to describe these
changes in such a way, that one can make predictions concerning the properties
which the system may have in future.

1. The description of a physical system

We shall give here a brief survey of the Piron-Aerts formalism. For more
detailed exposition, justification and proofs, the reader is referred to [2], [3].

As we have said, a physical system is described by a set of its properties.
Since every property is defined by an experimental project, it is natural to begin
with the set Q of experimental projects. Thus, every cr e Q is a project of an
experiment which may be performed on the physical system under consideration.
Moreover, among possible results of this experiment, there is a uniquely specified
one which is considered to be positive, and which is denoted by "yes". All the
other results are denoted by "no". For the sake of shortness the elements of Q
will be also called questions. We shall assume that the set Q of questions is closed
with respect to the following operations denoted by ~ and l~l respectively.

If or is a question, then by a~ we denote the same experimental project but
for which the results "yes" and "no" have been interchanged. a~ is called an
inverse question. Let {or, | i e J}, J — any index set, be a family of questions. By
the product of a family of questions {a-,} we mean the question denoted by n,ar,
and defined in the following way: choose in any way, random or not, one from
the experimental projects {or,}, perform the corresponding experiment, and
attach to l~l ,ar, the result obtained.

It may happen, that for a question ar e Q in the given situation for the
physical system under consideration, it is certain, that if this experiment were
performed, then the result "yes" would be obtained. Or, equivalently, in other
words, the result "no" is certainly impossible. In such case we say that the
question ar is true.

We shall assume that there is always a trivial question / in Q, which consists
in doing anything (or nothing) with the system and attaching to it always the
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result "yes". Clearly, / is the question which is always true and /~ is the question
which is never true.

We say, that a question a is stronger than ß if whenever or is true, also ß is

true. We shall denote this by a< ß. This is quasi-ordering relation on Q and as
such enables to define the equivalence relation "~" on Q in an obvious way:

a~ß<$a<ß and ß<a
From a physical point of view, equivalent experimental projects can be practically
identified. The equivalence class a [a] containing a question a is called the

property defined by a question (experimental project) a eQ.
Let J£ Q/~ be the set of all equivalence classes in Q, i.e. the set of

properties of a physical system. A property a e if is said to be actual if any (and
hence every) question ar e a is true. A property a € if is said to be stronger than a

property b e if if for any or e a, ß eb, a<ß. We denote this by a < b. With the
relation "<" if is a partially ordered set and, moreover, one can prove that it is a

complete lattice, where the greatest lower bound /\, a, for any family is a

property defined by the question n ,ar„ where ar, € a,-. That is

/\ai [niai]
i

The maximal and the minimal elements in this lattice are respectively

l-[7], 0 [/~],
The lattice if is called the property lattice of a physical system.

A state £ of a system is the set of all actual properties of it, i.e. e {a e if|
a-actual}. As one can show, states can be uniquely represented by certain
elements from the property lattice if, namely every state 5 is uniquely defined by
a property p e if, such that p /\asSa- This property p is called a state-property.
For the sake of simplicity in what follows we shall always identify states with state
properties. So, if a system is in a state represented by a state — property/? e if (or
shortly: in a state p), the fact that a property a € if is actual is expressed by the
relation: p <a.

Let 2 c if be the set of state-properties. Then every property a € if can be
written as:

«= V p

The mapping p. : if—> P(2) defined by

H(a) {peJl\p<a}
is called a Cartan mapping. With this mapping every property lattice can be

represented by some family of subsets of the state space of a system. Its is easy to
check that p. is injective, ju(0) 0, p(l) 2, (u(/\, a,) f\ /*(«.•)¦

Definition 1. Two states p, q el, are said to be orthogonal and we shall
denote this by p 1 q if there exists a question y e Q, such that y is true whenever
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the system is in a state p and y~ is true whenever the system is in a state q;
shortly:

p ±q€>3yeQ:p<y and q < y~

This relation induce the relation 1 on the property lattice L in the following
way:

a 1 c O [(p < a, q < b, p, q e 2) => p 1 q)]

The relation 1 on if enjoys the following features

alb^>b la
a<b,c<d, b ±d<=>a ±c
a±b€>a Ab=0 (1)

alOVaeif
One observes, that if a ± b then p(a) C\ p(b) 0.

Let p e if be a property and let us suppose that p is an atom of the lattice if.
Then p must be a state property. Indeed, since p¥^0, there is a state — property
q e 2 in which p is actual, i.e. q <p holds and since p is an atom, q =p. The
converse is imposed by the following axiom.

Axiom 1. State-properties are just atoms of the property lattice.

Consequently, the image of a state — property under the Cartan mapping is

always a singleton, i.e. for pel., p,p {p} e P(2). In what follows we shall
denote the singletons {/>} simply by p.

Let for M<=2, M± {peH \p ±q VqeM}. if(2, 1 )^{Mc2 | MXX M}
is a complete orthocomplemented lattice with the partial ordering of set inclusion,
set intersection as lattice meet and with orthocomplementation defined by

if(2, 1)9M^M-Leif(2, ±).
If we, furthermore, assume that p±x =p then this lattice is also atomistic.

In general, a property lattice if can not be identified with the corresponding
if(2, ± It is the case when for each property there is the opposite property
and, on the other hand, every property is the opposite of some property. This is
the contents of the following axiom:

Axiom 2. (i) For every state p e 2 there exists a question ß e Q which is true
iff the system is in a state q, such that q lp.

(ii) If p' [ß], where ß is postulated by (i), then the mapping if 3«i-»
l\n(a)P' — a' is surjective.

If Axiom 2 is satisfied, then the property lattice is an orthocomplemented
lattice, obviously pa' (ria)± and in a consequence the image of if under the
Cartan mapping is the lattice if(2, 1 This means that a property lattice is

represented by the set of all biorthogonal subsets of the set of states of a system.
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Corollary 1. // axiom 1 is satisfied then the mathematical structure of the set if
of properties of a physical system is that of a complete, atomistic lattice with an
orthogonality relation satisfying the conditions (1); state-properties are atoms of
this lattice. If, in addition, axiom 2 is satisfied, then if is an orthocomplemented
lattice and for any a, b e if a l6o«<fc'.

Two other axioms must be imposed on a property lattice of a physical system
in order to obtain the Hilbert-space model of quantum mechanics. These are:

Axiom 3 (Weak modularity). If a, & e if, and a < b, then b (a' a b) v a

Axiom 4 (Covering law). If p e if is an atom, a € if and a a p 0 then aw p
covers p.

We recall here that these two axioms cannot be satisfied by a property
lattice, which describes a system consisting of two separated quantum entities.
This fact justifies the terminology which has been adopted. By a physical entity
we shall mean a physical system for which axioms 3 and 4 are satisfied.

To end this brief survey of the Piron-Aerts axiomatics, let us mention the
following remarkable feature which it enjoys. Suppose that an abstract complete,
orthocomplemented atomistic lattice is given. Let us interpret atoms of this lattice
as possible states of a physical system and let for each such state an experimental
project can be admitted, such that it gives with certainty the result "yes" when
the system is in the considered state and the result "no" when the system is in a

state orthogonal to it. One proves, cf. [3], that the property lattice constructed
from this set of experimental projects coincides with the initial lattice. This shows
the consistency of the formalism.

2. The description of an evolution of a physical system

Let us consider now the description of a physical system when time is taken
into account. It is natural to suppose that at any moment the system under
consideration is described by a property lattice if, Q,/~. That is, if, is a set of
properties which a system may have at the moment t. Every property is now
defined by some experimental project (question) ar, e Q„ which-being labelled by
Ms an experiment which may be (or not) performed at the moment t. The
decision to perform or not given experiment a, is to be taken by a physicist not
later than at the moment t. The state of the system at the moment t is the
collection e, cz<£, of all actual properties from the property lattice if,. Let 2,
denote the set of all possible states of the system at the moment t, identified with
respective state-properties in the lattice if,. Thus, at every moment t the system is
in a certain pt e 2,. Due to the system itself, and due to the influence of the
surrounding, the set of the actual properties changes, that is the system passes
from p, e 2, at the moment t to ps e 2S at the moment s > t. To describe the
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evolution of a system means to make at the moment t predictions concerning the
properties which the system may have at the moment s>t. Obviously, it is

possible only if the external conditions which influenced the system between the
moment t and s are specified. This includes also the case of so called "isolated"
physical system.

Definition 2. We say that a dynamical evolution of en entity is given, if for
every t e R a family of mappings cp, s : f£s —* if„ s > t, is defined such that for any
as e ifä, whenever cptsas is actual at the moment t, as will be actual at the moment
s, i.e.

cpT)et {as e if | cptsas e e,} c es

where £„ es denote sets of actual properties at the moments t and s respectively.

The following theorem enables the interpretation of the mapping cpts in
terms of experimental projects.

Theorem 1. To define a family of mappings cpts it is equivalent to say that for
any s^t and any as e ifs there exists a question in Q, which we shall denote by
cp,tSas, asease 5ES and which is defined by the project of the following experiment:
let the system evolve in the given conditions between the moments t and s and then

perform the question aseas; the result of this experiment is the result of as
obtained at the moment s.

Proof. Let a family of mappings cpts;!£s^* f£t be given. Let us consider any
as e f£s. Let ß, e cptsas. Then, if ß, is true, cptsas is actual, as will be actual at time
s, and consequently cptsas (as it is defined in the theorem) is true. On the other
hand, if cptsas is true, then by definition of this question, when one decide at the
moment t to perform the corresponding experiment, one is certain that he will
obtain answer "yes" for the question as e as at time s. But this means that cptsas is
actual at the moment t, i.e. ß, e cptsas is true. Thus ß, ~ cptsas. Let us suppose
now that for any as e ifs, there is ß, e Q, such that ß, ~ cptsas. We can therefore
define cpts : i£ —» if, by: as>-*[<pt_sas] where [q^ar,] is an equivalence class of
questions from Q, defined by cplsas, and as e as. This mapping is well-defined,
since if as ~ ys then cptsas ~ cptsys. Indeed, whenever cptsas is true, the result
"yes" of an eventual measurement of as at the moment s is already certain at the
moment t and hence, by the assumption also the result "yes" of an eventual
measurement of ys is certain. Thus, whenever cptscxs is true at s, ys will be true at
s, what means that whenever cplsas is true, cptsys is true, i.e. cptsas < cptsys. In the
same way we prove the converse. Manifestly, if cpcsas is actual, then as will be
actual at the moment s.

Theorem 2. The mappings cpts, t^s, enjoy the following features:

(O <p<,*(A aY A ftWs

(fi) <p,A i,
(iii) as 1 bs => <pt,A -L <Pi,sbs

(iv) cptXcpt.tS cpls, where t £ t' £s.
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Proof, (i) Whenever <pM(AiflO iS actual, a's for every i will be actual at the
moment s, what means that whenever <p,,s(A«a0 is actual, cptsa'sVi is actual, i.e.
A <Pt.sa's is actual. When A« <Pr,X is actual, then Vitptsa's is actual, i.e. V/a^ will
be actual and consequently /\, c^ will be actual at s. Thus, whenever /\, cptsa's is

actual, A. a's wiU be actual at s, what means that when /\< <P<,sas is actual,
<Pt,s(/\ias) is actual.

(ii) Obviously, cplsls whenever tested gives the answer "yes", so cptsls 1,.

(iii) By definition as 1 bs if for any ps, qseH such that ps <as, qs <bs, there
exists ys e Qs such that ps < ys and qs < y~. Let p„ q, e 2, and p, < cplsas and

q, < cptsbs. Whenever the system is in the state p, at the moment t, it will be at the
moment s in such a state ps, that as will be actual, i.e. in such a state that ps<as.
The same is for qt: when it is the state of the system at the moment t, the state qs
at the moment s will be such that qs < bs. But for such pair of states there exists

by the assumption a question ys such that ps < ys and qs < y~. Hence we see that
for any pair of states p„ q, such that p, < cptsas, qt < cptsbs there is a question
yseQs, such that whenever the system is in the state p, at the moment t, ys will
be true at time s, and whenever the system is in the state q, at t, y~ will be true.
But this implies that in the first case always cptsys is true at t, and in the second
case cptsy~ is true. Since obviously cplsy~ (cptsys)~ it follows that p, 1 q„ where
it is the question cptsys making them orthogonal.

(iv) If as e ifj, then cp,.sas is defined by a question cpt. sas, i.e. the project of
an experiment in which system evolves during s — t' seconds from the moment t '.

According to the same definition, the question cptls(cprsas) is a project of an
experiment in which the system evolves from time t till t', and then cpt,sas is

performed. Obviously, this is just the question defining cptsas.

The set of properties cpfje, is the subset of all properties which the system
will have actual at the moment s. Properties in cp^e, are precisely those
properties which can be predicted from actual properties (state of the system) at
the moment t. In general, not every property which will be actual for the system,
can be predicted in advance. This is the case of deterministic evolution.

Definition 3. The evolution of a system given by a family of mappings cpts is
called deterministic if for every t, s eR, t<s, and for any state e,

where et is the state of the system at the moment s.

Theorem 3. // the evolution of a system is deterministic, then mappings cpls

are infective.

Proof. Since we already know from the Theorem 2 that as < bs => cptsas <
<Pr,A. we have only to show that the converse holds. Let cptjSas < cptsbs and

suppose that as is actual at the moment s. According to the definition 3, cptsas was
actual at t, consequently cp,sbs was actual and bs is actual.

Lemma 1. Let the deterministic evolution of a physical system be given. If,
for some a, e if, and some s0 > t, a,$ cptSo!£Sl), where cptsJßSf) cziß, is the image of
ifJo, then for every s>s0, at$ cpt>s££s.
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Proof. Let us suppose that a, £ q>ttSJ£Sa and that there exists s1>s0 such that
a, cpISlaSl for some o^eifs,. According to the preceding theorem we have

9V. flVo^o.*.» ie- a<= <Pt,so(<Pso.siasi) what contradicts the assumption.

Theorem 4. If s <s', then cpt^£r?s, cz cptsJ£s.

Proof. From the preceding lemma we have s <s'=$>{at\at$ cpts£s} c
{a, | a, £ cptS'5£S'} from what the conclusion follows.

In view of the above theorem, it is reasonable to adopt the following
assumption:

Assumption 1. The description of a deterministic evolution of a physical
system is irredundant, i.e. all the mappings cpts, t, s eR, t<s are surjective.

Corollary 2. Under all the above assumptions, the deterministic evolution of a

physical system is given by a family of mappings cpts : f£s —» if„ t, s e R, t < s which
has the properties (i) -=- (iv) of Theorem 2. Moreover,

(i) cplsas is actual at the moment t if as will be actual at the moment s.

(ii) cpts are bijective
(iii) Ifp, e 2, is a state (atom) in if, then there exists a state (atom) in 2S c !£s

such that cpll{at e if, | p, < a,} {bs e ifs | ps < bs}.

3. The mathematical framework

In order to get a mathematical structure which will enable us to handle with
the model of evolution which has been formulated in the proceeding section, it is
useful to study appropriate mathematical structures from a categorial point of
view. As we shall see in the section 4, this shall give us immediately a dual
description of an evolution in terms of morphisms of state spaces and the
description of a dynamical system in terms of its trajectory space.

Let ATA denote a category which objects are complete, atomistic lattices with
orthogonality relation 1 satisfying the following conditions. If a, fe e if e ObK^
and 2 is the set of atoms in if then:

alb^>b la
alû^fl=0 (2)

[(p<a, q<b,p, qe-Z)^p±q]&a±b
Morphisms in this category are defined to be mappings (p:if2^ifi, ifi,

%2eObKA, suchthat:

(O <p(A a2) - A ^2- <P12=ll

(ii) a2 ± fe2 =** Wi -L <pb2 (3)
(iii) for any atom px e S£x there exists an atom

p2e^2 such that cp~1SPi SP2
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where Sp {a e if | p < a}.

We shall be also considering another category, denoted by K^ and defined as
follows. Objects of JCS are sets with a distinguished family of subsets and an
irreflexive, symmetric relation defined on it. That is, an object of Kx is a set 2
with the relation ± which is symmetric and irreflexive and with a family of
subsets if(2) such that:

(i)0,2,{p}eif(2)
(ii) (M, e if(2)Vi) => D M, e if(2) (4)

i

wherep el. and {Af,} is any indexed family.
Morphisms in Ks are mappings r:2t—»22, (21; 2j e ObKY) such that:

(i) M e if(20 => T~XM e if(2j)
(ii) Tp1±Tql^>p1±q1 (5)

Let us define the following mapping F:KA^>KX. For £t?eObKA, Fif 2,
where 2 is the set of atoms of if; if <p:i%—»ifx is a morphism of KA, ift,
i^e ObKA, then according to (3) (iii) we can define:

F(p:2!^22 as (Fcp)p1=p2 (6)

Theorem 5. F is a contravariant functor from KA to K?. Moreover, this functor
is

(1) full, i.e. for any if1( J^eObK^ and any morphism T-.F^-^F^ there
exists morphism tp-.X}-^* f£x in K-% such that Fcp T.

(2) representative, i.e. for any 2 € ObKA there exists if e ObKA such that F!£
and 2 are isomorphic.

(3) faithfull, i.e. F.Mor (if,, 5£^Mor (Fif1; FifO is 1 - 1, where Mor
denotes the set of morphisms between the two given objects of respective
category.

Remark. Here and after by isomorphism of objects of respective category we
mean a morphism which is bijective and which inverse is also a morphism in this
category.

Before giving the proof of the theorem we shall prove following lemma.

Lemma 2. Let !£x, Z£2eObKA, pxe!£x be an atom, b2e!£i and let
cp : i^—» if, be a morphism. Then

Pi < cpb2<$p2 (Fcp)pi < b2.

Proof. Let px < cpb2. Then b2 e cp~1SPì and

(Fcp)px= A a2<a2
a2:Jpl<^<Pa2
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and in particular (Fcp)p1<b2. Conversely, let (Fcp)p1<b2. Then

<K(^<P)/>i)= A cpa2<cpb2
°2:/M<'<Pö2

and in a consequence px < cpb2.

Proof of Theorem 5. Let 2 c if e ObKA be the set of atoms in if. Then we
can define

if(2) {M cz 2 | M fia, a e if},
where p.a {p eH\p<a). The family of subsets if(2) satisfies the conditions
(6). Also, the orthogonality relation 1 on 2 inherited from if is symmetric and
irreflexive. Thus, Fif is an object of K^. If M e if(22), i.e. M pa2, a2 e i^,
then from the Lemma 2, we obtain (Fcp)~1M (Fcp)~1ria2 p,cpa2, i.e.
(Fcp)-^ eif(2j). Finally, if (Fcp)pl 1 (Fcp)q1, then from the Lemma 2 px<
cp((Fcp)pl), q1<cp((Fcp)q1), and by (3)(ii) and (2) it follows that pxLqx. We
have proved, that Fcp is a morphism of Kx. By a straightforward manipulation
one can check that Fis indeed a contravariant functor, i.e. if v:if3—»if2ç,:if2-»
if3 are morphisms, then FvFcp F(cpv).

Proof of assertion 1. Let T' : Fifj —» Fif2 be a morphism of K?. It is easy to
check, that the mapping:

if,9a2>-> V Px cpa2eXx (7)
r-1iua2

is a morphism in KA. Indeed, (7) is equivalent to

p(cpa2) T~x\ia2 (8)

since by (5) (i) T~1pa1 e if(22). From (8) one can immediately see that cp

preserves a 1, 1. Since (8) reads:

p1<cpa2oTp1<a2
for px e 2j, a2 e J%, we see that also (3) (iii) is satisfied, i.e. for any atom px e 2j
there exists an atom p2 e 22 such that cp~1SPl SP2. In fact p2 Tp^ in this case.
Moreover, for cp just defined we have

(Fcp)Pl= A "2= A a2 Tpx
t*2'-Pl<(Pa2 aï.Tp\<ai

Proof of assertion 2. If 2 € ObK?, then if(2) is an object of KA. Indeed, it
is a complete lattice, with the partial ordering given by set-theoretical inclusion
and Ai Af/ f\ Mt, M, e if(2). Since by definition singletons belongs to it, it is
atomistic. The orthogonality is defined by

M 1 NO [(p e M, q e N) => p 1 q]

It is also clear, that Fif(2) 2.

Proof of assertion 3. Let us assume that Fcp Fv, where cp, ve
Mor(f£2, ifj). From the Lemma 2, we have (Fcp)~1p,a2 p.(tpa2), (Fcp)~1ua2
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p,(va2), for any a2e£ß2, and by the assumption pt(cpa2) ju(va2) what by the
injectivity of the mapping p. implies that cp v.

As a matter of fact as it can be seen from the proof of the assertion 2 of the
theorem, we have more than this. For any object 2 € ObK^ there exists

if e ObKA such that Fif 2.

Corollary 3. The contravariant functor F:KA^>K^, defines correspondence
between these categories such that:

(1) For any object 2 e ObKx there exists a unique (up to an isomorphism)
object X e ObKA such that Fif 2.

(2) The mapping F-.Mor^, ifj)-» Mor(FXly Fifj) is bijective for any if1;
^eObK,.

The inverse functor G F-1 has the form : G2 if(2) for 2 e ObK^ and if
T e Mor(21; 22) then

(GT)M2= V Px (9)
TlM2

where Af2eif(22) and VPi denotes the lattice join in if(2x) over all singletons
{px} such that Tpx e M2.

From the point of view of physics, the situation of particular interest is, when
orthogonality on a lattice is defined by an orthocomplementation. That is on
if e ObKA there is a mapping' : if-* if such that:

a" a, a<b^b'<a', a' aa 0

aLb<$a<b' (10)

Let K°A denote a category, such that ObK°A are orthocomplemented, complete,
atomistic lattices, and if ifa, i^e ObK°A, then morphisms are mappings cp:££x—*

ifz satisfying:

(i) ç>(A«i) A?wi>Ç>li!

(ii) cp(a[) (cpax)' (11)
(iii) for any atomp2eX2 there exists an atom

Px e if2 such that <p_1SP2 S^

Obviously, K°A is a subcategory of KA, i.e. every object if e ObK°A with 1
defined by (10) and if çp : if,—* if2 is a morphism in K", then it is also a morphism
in ifA. Indeed, if cpa[ (tpax)', then ax 1 bx^cpai 1 cpbx. The converse is not
true in general, i.e. if if1; X2eObK°A and cp:^-*^ is a morphism in the
category KA, then it need not be a morphism in the category K°A.

Let us denote by K±x the category, which objects are sets with a symmetric
and irreflexive relation 1 such that p±±=p for any /?e2, where px {q e

I.\q±p}. Let 21; 22e0ò#2X. Morphisms are defined to be the mappings
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!T : 2.,—» 2X such that for any M2cz22 satisfying M2 x M2:

T^MÏ (T~lM2y, (12)

where M2 {g2 e 22 | q21 p2 Vp2 e Af2}.

Lemma 3. // the mapping T satisfies (12) then

Tpx±Tqx^Px-Lqx. (13)

Proof. Tpx 1 r«7i is equivalent to px e (T~1(Tq1))± by (12). Since qx e

T-\Tqx), (T~\Tqx)Yczqt, i.e. Pleqt.

Theorem 6. (i) K^x is a subcategory of K^.
(ii) the functor F maps the subcategory K°A into the subcategory K£±.
(iii) for any object 2 e ObK^x there exists a unique (up to an isomorphism)

object if e ObK°A such that Fif 2.
(iv) the mapping F:Mor(L2, i£x)^>Mor(FXx, Fif2), where Mor(, denotes

morphisms in K°A and K£± respectively, is bijective for any J%, ifj e ObK°A.

Proof, (i) If 2 € ObK^, then defining

if(2, 1) - {M cz 2 | M^ M} (14)

we immediately see that with this family of subsets 2 satisfies the conditions (4)
and therefore 2 € ObKY. If F^j—*^x is a morphism in K^x, then for M2 M2±
we obtain from (12)

T~lM2 T~\M^) (T~lM2)^ (12a)

and the condition (5) (i) is satisfied. By the Lemma 3 also (5) (ii) is satisfied, such
that T is a morphism in K^.

(ii) Let XeObK"A. From the definition of F, we have Fif 2, 2 being the
set of atoms of if with the family of subsets if(2) {Af c 2 | Af pia, a e if}. But
if is orthocomplemented, so that for any Af c2 we have Af juaOAf±i Af.
Consequently, if(2) if(2, 1) and FXeObK^. Let cp-.^-^X be a

morphism of K°A. Since Fcp is a morphism in KA, then (5) (i) is satisfied, what
means in this case that for any a2eif2, (Fcp)~1p,a2 p.cpa2. Let Af2c=22 be
such that M2L± A/2. Since if(22, 1) if(22), (F(p)_1M^ (F<p)_1(^a2)-L
(Fcp)-1p:(cpa') p:(cpa)' (p.cpa)x ((Fcp)-1fm2)± ((Fcp)-1M2)±, where we
have denoted pa2 M2.

(iii) If 2,eObK£±, then obviously if(2, 1) is a complete, atomistic,
orthocomplemented lattice and Fif(2, ±) 2.

(iv) Proceeding in the same way as in the proof of the assertion 3 of the
theorem 5 we can show that F:Afor(if2, if,)-» Mo^Fi^, Fif^) is 1-1. If
T-.FXx^FXi is a morphism in K^±, then defining cp in the same way as in the
proof of the assertion 1 of the Theorem 5 we can easily see that Fcp T.

Let us pass now to the discussion of products and coproducts in the
introduced categories.
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Theorem 7. (i) In the category KA there exists a product, i.e. by definition,
for any indexed family if, of objects of KA there is an object denoted by II, %i ond a

family of morphisms nk : II, if;•.—*¦ Xk, such that for any object if and any family of
morphisms cpt : if—» f£t there exists a unique morphism cp : if—=> II, % which makes
the following diagram commutative:

if-^n^
*\ X (15)

(ii) If iÇ € ObK°A is a family of objects of the subcategory K°A, then
YVi^i^ObK°A. Moreover, if iÇ are weakly modular andIor satisfy the covering
law, so does II, S£t.

Proof, (i) Define the set:

n^-{(fl,)|fl,eifVi},
i

where (a,) denotes an indexed family of elements, equipped with the following
relations:

(a,)<(6/)Oa,<6,Vi
(ad ± (!>,)<>a,± b, Vi

II, i? is a complete, atomistic lattice with orthogonality relation, such that

A(a?) (A<4 Y(af) (Vû0

and with

2 {(0/>l#fc, pk) | pk e 2*}

as its set of atoms. Mappings

Rk '¦ û %,-> if*, xk(at) ak
i

are morphisms. Now, if cpt : if-» if, is any family of morphisms, then the mapping

4>:2^Y[2» epa (fra) (16)

is a morphism in KA which makes (15) commutative.
(ii)-see [4, p. 34].

Theorem 8. In the category KA there exists a coproduct, i.e. by definition, for
any family of objects ££L e ObKA, there is an object denoted by II, if, and a family
of morphisms ik:i£k—* II,i^ such that for any object if and any family of
morphisms cpt : if —» if there exists a unique morphism rj> : II,-X-,—*¦ if which makes
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for any k the following diagram commutative:

\ A
'

<17)

f£k

Proof. Let us define:

LJif-{(fl,)|a,6if,a,¥=0,}U{0}

(a,) < (bi) Oa, < &,Vi (17a)

(a,)l(fe,)o3i0:a,0 lbh
Uf&i is a complete, atomistic lattice with orthogonality relation, such that

0, if 3i0: A* «?„ »/„;

(A*af)> otherwise.

v(«?)=(Y«0

and 2 {(p,) | p, e 2,} is the set of atoms in LI, 2,. The mappings

ik '¦ ift-* Li if, ikak — (l|,<*fc> Ö*)

are morphisms. Now, if if is an object and (p,:if—»if is a family of morphisms
then the mapping xp : LI -,,X,r —> if defined by

V(fl/)-AViûi (18)
j

is a morphism which makes the diagram (16) commutative.

Contrary to the case of product, the coproduct defined above is not a

coproduct for the subcategory K°A.

Lemma 4. Let if1; if2e ObKA. If XU^ is an orthocomplemental lattice,
then either on ifx or on J% the orthogonality relation is empty, i.e. no two elements

are orthogonal, except 0 and 1.

Proof. Let us suppose that ifiLLÜ^ is orthocomplemented. Then
(fli, a2) 1 (bx, b2)<?>(a1, a2) < (bx, b2)'. Let us suppose, that there are ax, bx ^Oj,
a2, b2¥=02 and such that ax 1 bu a21 b2. It follows, that (11;a2) 1 (bx, b2) and
(ai, 12) 1 (61( b2). Hence

(lx,a2)<(bx,b2y, (ax,l2)<(bx,b2)'
and

(i1,fl2)v(a1,i2) (i1,i2) <(b1,b2y.

Therefore, either bx Ox or fe2 02.
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This lemma is a reformulation of an argument given originally by Aerts, cf
[5]. The following two theorems are generalizations of the theorems also given by
Aerts, [5].

Theorem 9. Let XteObKA. If II, if, satisfies the covering law, then all if,
with the except of at least one are the lattices containing only two elements 0 and 1.

Proof. Let II,i^ satisfy the covering law and let us suppose that in the
lattice if*, there exist two different atoms pk ¥= qk. Let pt, qt e 2„ i =£k, be atoms
in the lattices if,. Let us denote: (a,, ak) (a,,,**, ak). Since pk¥=qk, (Pi,pk)=£
(qi, qk), i.e. (p„ pk) and (q(, qk) are two different atoms of TJ, if. From the
covering law we have:

(Pi> Pk) < (Pt, Pk) v (qt, qk). *

But

(Pi, Pk) < (p, v qt, pk) < (pt v qh pk v qk) < (p„ pk) v (qt, qk)

so, from (*)

(Ph Pk) (P, v qt, pk) or (pt v q„ pk) (p, v qh pk v qk)

i.e. p, =p, v q{ Vi¥=k or pk=pkw qk. The second possibility is excluded by the
assumption pk^qk. Consequently, p, qt Vi ¥= k, what implies that each lattice
SSh i =£ k, is of the form {0,1}.

Theorem 10. The coproduct II, if is a weakly modular lattice iff each if is.

Proof. Suppose, that each if, is weakly modular, i.e. if a, < bt then there is c,
such that c, 1 a, and c, v a, bh ah bh e, e if,. Now, if (a,), (&,) e II, if, and
(a,) < (bi), then V, a, < 6, and it follows that (c,) v (a,) (6,) where (c,) ± (a,). On
the other hand, if II,if is weakly modular, then ak, bke££k, ak<bk, implies
(h,t*k, ak) > ihi*k, bk) and (l,,,#ife, bk) (c,) v (1,,,**, afc), where (c,) 1 (1„ a*,). It
follows, that ck 1 ak and bk ckv ak.

The following theorems give an account of product and coproduct in the
category K^.

Theorem 11. In the category K% there exists a product, i.e. for any family of
objects 2, e ObKs there is an object Ü, 2, and a family of morphisms nk : II, 2,—»
2fc, such that for any 2 e ObK^ and any family of morphisms TJ:2—»2, there
exists a morphism T:2^ 11,2, which makes the following diagram commutative
for every k:

2-^ru
r\ // (19)

2,
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Proof. Let us define:

r[2,-{(p,)|p,e2,Vi}
i

(Pi)±(qi)&3i0:pi0±qi0 (20)

We distinguish the family of subsets if(II, 2,) of II, 2, in the following way. Let
Jr,:11,2,—»2, be the following mappings: Jr,(p,)—p,. We define

^(n 2,) - [m cz JI 2, | M Pi xr1^, Mi e if(2,)}. (21)

It is now easy to check that mappings jr, are morphisms, that II, 2, with the family
of subsets distinguished above satisfies the conditions (4), and that the morphism
which makes the diagram (18) commutative is:

Tp (Tip). (22)

For the sake of completeness we shall also state the following theorem:

Theorem 12. In the category K% there exists a coproduct, i.e. for any family
of objects 2, e ObK^ there exists on object denoted by II, 2, and a family of
morphisms ik : ~Lk —» LI, 2, such that for any family of morphisms Tt : 2, —» 2 there
exists a morphism F : LI, 2,—»2 which makes the following diagram commutative:

2^- Liz
Tt

2k

Obviously, by applying the functor F (6) to the diagrams (15) and (17) one
can pass to the diagrams (23) and (19) respectively. From the Lemma 4, we
know, that the product of orthocomplemented lattices cannot be an orthocomplemented

lattice. The same can be expressed in terms of coproduct of respective
atom spaces.

Lemma 5. Let nk : II, 2, —* 2*. be the same as defined in the proof of the
Theorem 11 and let Mk cz Hk. Then,

nklMi (x-klMk)Y

Proof. Let pkel.k and let (r,)ell,2„ be such that (rt)e Jtk1pkL. Then
(r,) 1 (qi) for every (q,) e II, 2, and 7tk(q~)=pk i.e. (r,) € (nk lpk)x. On the other
hand, if (r,) e (jtk1p)± then (r,) 1 (qt) for every (qi) such that nk(qs) =pk whereas
all the other components of (qt) are arbitrary. If rk was not orthogonal to pk, then
it would follow that in particular (rU¥,k, rk) ± (r,,,#t, pk) what is impossible.
Therefore for any pkeHk, iz~xpk (jtk 1pk)±. Since for M,c2, we have

Mf r)/UtPi~> the conclusion follows.
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Theorem 13. Let 2, e ObK^, and let if(II, 2,) be the family of subsets of
II, 2, defined as in (20) and let if(II, 2„ 1) be a family of subsets defined by (14).
Then i?(II, 2,) cz if(ü, 2,, 1) and this is a proper subset.

Proof. Let Afeif(II,2,). By definition Af fi,^r1M, where Af, e

if(2,) if(2,, 1), and Mfx Mt. From the previous lemma it follows that
M±± (niJtr1Mi)±± ni^r1Mi, i.e. Meif(n,2,,-L). if(II2„±) is an
orthocomplemented lattice with M—*M± as an orthcomplementation, what implies
that in particular ((~),:Jtr1Mi)± e if(II,;2„ 1). However, from the definition of
orthogonality in Ü, 2, (20) it immediately follows, that

(n^M,)"=VJnTlMf (24)

what shows that (Hf1 M)x is not an element of if(II, 2,).

Corollary 4. The product defined in the Theorem 12 is not a product for the

subcategory K£±, i.e. 2, e ObK^x Vi does not imply FL 2, e ObK^.

However, it is still possible to define a product for the subcategory K£±.

Theorem 14. Let 2, e ObK^Vi, and let II,'2, denote the set with the

orthogonality relation (20) as defined in (20) but with the distinguished family of
subsets

~ M±X Mif(ri2,, ±) {m<=]12j

II,' 2, is a product in the category K^.
Proof. By definition FU 2, e ObK£±. We have to check the same condition

as in the Theorem 11, with the only difference that all the morphisms involved
instead of (5) should now satisfy the condition (12). Let Jtk be the same as in the
proof of Theorem 12 and let for a family of morphisms 7^:2—»2*., the mapping
T:2—»n,'2, be defined as in (22). From the Lemma 4 it follows that nk are
morphisms of K? x. We shall show that T is also a morphism. From definitions
and (12) we have: T~\q,)x [f\ T^q^ for any (p,) e Ul 2,, Therefore for any
Meif(n,2„±) we have: T~1M± =Hm [fi T^q^ [Um0,77V^
[T 1M]±, i.e. F satisfies the condition (12). Obviously, F makes the diagram (19)
commutative.

The lattice if(II,2„ -L) is complete, atomistic and orthocomplemented. The
following theorem, being the generalization of theorem stated originally by Aerts,
[2], gives more insight into its structure.

Theorem 15. If the lattice if(II, 2,1) is weakly modular or satisfy the

covering law, then the orthogonality relation in at least one of 2, is trivial, i.e.

every two different elements of 2, are orthogonal.
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For the proof the following two lemmas are needed.

Lemma 6. Let 2 e ObK^±. If the lattice if(2, 1) is weakly modular or satisfy
the covering law then for any two elements p, q el,

(p *<7, {p, q}±L {p, q}) =>P -L q

Proof. The condition {p, q}x± {p, q) reads: p v q =p\Jq. If follows

0<pxn(p v q)=pxDq<q.
Hence, either p±(~)q 0 or p±q. Let us suppose that the lattice is weakly
modular. Then

P v q [px n (p v ?)] vp (px n «?) vp.
The case px D o 0 is excluded, since we would have p v q=p, i.e. p — q what is

impossible by the assumption. Let us suppose that the lattice satisfies the covering
law. Then again the case px n q 0 is excluded. Indeed, if px n (p U q) 0 then
pv(pxn<7x) l and since pn(pxfl^x) 0 it follows from the covering law,
that

p±Hq±<p v(p±r\q±) l.
However, since px fi q± <p± < 1 it follows that px D qx =px, i.e. p q, what
by the assumption is impossible.

Lemma 7. // (p,), (#,) e II,' 2, and p, =£ <jr, V„ tfien

{(p,),(<7,)}±x {(P,), (<?,)}

Proof.

{(pd, (.id)=n *r7»j u n ^V,=n (^rV, u ^1^)=n (*rV.- u x-1^),

where we have used the formula (2') from [6, p. 119]. But nYPi U njxqj e

if(n, 2,1), intersections belongs to if(II, 2„ 1) and consequently {(p,), (qi)} e

if(a 2,, 1).

Proof of Theorem 15. Let us suppose that in all 2„ i # A:, there are p„ ^,
such that Pi ¥= ^,, and p, is not orthogonal to qt. Let pk, qk e 1.k and let pk #= ^^.
From the Lemma 7 it follows that {(p,), (<7,)}±x {(p,), (?,)}> what by the
Lemma 6 implies (p,) ± (q,), hence by the assumption it follows that pk 1 qk.

Let us end this section with a short summary of the results. We have studied
a category of complete, atomistic lattices with the relation 1. Within this category
there exist product and coproduct for any family of lattices.

If the lattices are in addition orthocomplemented, weakly modular and
satisfy the covering law, so does their product. This is not the case for the
coproduct. In the considered category the coproduct of nontrivial orthocomplemented

lattices is neither orthocomplemented nor does satisfy the covering law.
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These facts can be stated dually for the category of atom spaces, i.e. sets with
distinguished family of subsets and endowed with symmetric and irreflexive
relation 1.

Obviously, via the respective functor, the coproduct of lattices can be
transformed into the product of their atom spaces. An orthocomplemented lattice
corresponds to the set with the set with the family of all its biorthogonal subsets.

Although the product of such atom spaces corresponding to the coproduct of
respective lattices, does not have the structure of biorthogonal subsets of a set,
one can still study the lattice of biorthogonal subsets of this set. The lattice of
these subsets being naturally orthocomplemented is neither weakly modular nor
does satisfy the covering law, except the case when at least in one of the factors in
the coproduct the orthogonality relation is trivial. Clearly, this lattice is not a

coproduct of lattices. It is in fact bigger then the coproduct. Indeed, one can
consider the morphism

A:IJif(2„ l)-»if(ri2„ l) (25)

(M,)~A(M,) (M,).

Of course, A is injective, but due to the Theorem 13 it is not surjective. The
coproduct of lattices has been introduced on a physical ground for the two lattices
by Aerts in [5], where it was called a 'tensor product'. In [2] he has also
introduced in the connection with the description of two separated physical
entities the lattice, which has the structure if^ x 22, 1) and called it a

'separated product' of the lattices if(21; 1) and if(22, ±). This is a particular
case of our if(II, 2„ 1).

4. The mathematical model of an evolution of a physical system

Using the mathematical framework exhibited in the preceding section, we
shall make now the description of a deterministic evolution as put forward in the
Section 2 more complete and precize. In what follows we shall be considering
property lattices if, which describe the physical system under consideration
mainly as objects of the category KA and the respective state spaces 2, mainly as

objects of the category K?, where for every 2„ if(2,) {pa, \ a, e if,}, where p is
a Cartan mapping. From the Theorem 2 we see, that mappings cpts, t<s, which
define the evolution are morphisms in the category KA. Therefore, from the
Corollaries 2 and 3, we obtain immediately:

Corollary 5. To give a deterministic evolution of a physical system in terms of
the family of mappings cpts:J£S—>J£„ t<s is equivalent to give it in terms of the
(unique) family of bijective mappings rs,,:2,—»2^, t<s, which satisfy:

(i) T~]ptas p,(cptsas) for any as e ifs, or equivalently:
Pi < <P,,sas *> Ts,tPt < aa
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where p, e2(;
(ii) Tstpt 1 Tstq, => p, 1 qt
(iii) TSit,T,,t=Ts,t,t<f<s
In the case when the property lattices if, of the system are of the form

if, if(2„ 1), which is e.q. the case of a quantum entity, according to the
Theorem 6 (cf. (12a)), the condition (i) takes the form:

(i)' for any Ms e if(2s, 1), Tj}Ms (F",1M,)XX

The interpretation of the mappings Ts<t follows directly from (i): the system is
at the moment t in the state p, iff it will be in the sate Tstpt at the moment s > t. It
is the functor F(cf. (6)) or the functor G (cf (9)) which enables one to pass from
the property lattice description of an evolution to the state space description and
vice versa.

Lemma 8. Let p„ q, e 2,. Then p, lq,<=> there exists s0>t such that
Ts0,tPt 1 TSotqt.

Proof. ^> is trivial; <= is (ii) of the Corollary 4.

This lemma clearly indicates, that the orthogonality relation is strictly related
to the dynamical properties of a system. In fact any conceivable evolution defines
certain orthogonality relation. In particular, one can consider an orthogonality
relation on a property lattice of the system defined by the evolution satisfying:

pt±qt€>TstptlTSitqt.
As we shall see, (Section 5) this is the case of a reversible evolution. Such an
evolution had been postulated to be described by symmetries of the property
lattice, [4]. When the orthogonality relation for a given system once has been
defined by presupposing such type of evolution, that is all the states-spaces 2, has

a fixed orthogonality relation, then of course any other evolution given by Tsl
need not satisfy longer the condition (ii) of the Corollary 4.

Let us consider certain moment of time t and the morphisms rs,:2,—»2S,
t<s. Since Tst are morphisms in the category K?, according to the Theorem 11

the morphism 5",:2,—»11^,2,, given by

&,P,-{T,.,P,)
is a unique morphism which makes the following diagram commutative:

sai

2r
The interpretation of rLa<2s is natural: it is the set of all a priori possible
trajectories at the moment t for the system under consideration. Let us denote:

2", - 3-,-L, {(Ts,,pt) | p, e 2,} c fl 2,.
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Since the morphism ST, is manifestly injective, 2, is itself an object of Kx
(subobject of 11,=., 2S) such that

if(%) Mn2,|Meif(n2i)]. (26)

Obviously, the morphism 3~, defines an isomorphism between 2, and 2,.
Thus, every deterministic dynamics determines an object-subset of the set of all a

priori possible trajectories of the system-which, when considered within the
respective category, is isomorphic with the state space of the system. It turns out,
that the converse is also true.

Theorem 16. Let 2, be a subobject of FL^, 2, isomorphic with 2,. There exists
a unique family of morphisms Fs,:2,—»2,,, s>t such that for any p,e2, the
injection 5",:2,—» 11^,2,, may be written as

STtpt (Tstpt).

Proof. Let us define Ts,,:2,—»2.,

Ts,tpt Jts2Ttpt.

Since this is a composition of morphisms it is a morphism. According to the
definition of product, there exists a unique morphism £T,':2,—»rL»,2s such that
for every s>t, nsTt TSi„ cf. (22). It follows that for any p, e 2, : izs(TSJ)
JtsST,pt and the conclusion follows.

The following definition is therefore natural.

Definition 4. A subobject 2, or n,a«2s is called a trajectory space of a

physical system at the moment t iff it is isomorphic with the state space 2, of the
system.

Since a trajectory space 2, itself is not an element of if(ILra,2s), if(2,) is not
a sublattice of it. The following theorem gives some insight into the nature of the
lattice if(2,).

Theorem 17. The lattice if(2,) is isomorphic with a certain sublattice f£t of
Ll S>1 °&S'

Proof. According to the (ii) of the Corollary 2, mappings cpts;£s-^ f£t are
bijective. It follows that the inverse mappings cpj} preserve 1 and lattice join and
meet for any family of elements. Moreover, from the Corollary 5 (i) we
immediately see that q>7,}\^, Tst. Let us define:

% - {(?.>«) I a, e if,} cz U ifs. (27)

Obviously, St is a sublattice of ]lSS:lXs. Taking into account (26) we see that
(i(cpt~} n 2,) e i?(2,) for any a, e 2,. On the other hand, if Af € if(ILa,2s) then
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according to (21) M p.(as), where (as) e LL=,,ifs, and if Af D2, =£0 then for
every s, pMs Fs,,/xfl, {Tstp, | p, e fia,). Consequently, for every s, as cp7ja,.

Therefore,

if(2,) {pi(cp7ìat) n 2, | a, e if,} (28)

Clearly, the mapping:

ät b (çtf) ~»{<P7,}at) n 2, e if(2,) (29)

is an isomorphism.

From the preceding section (cf. Lemma 4) we know that there is no
orthocomplementation on the coproduct of orthocomplemented lattices which
would be compatible with the orthogonality (17a) defined on it, i.e. such that (10)
would be satisfied. This is however possible for the sublattice Sßt.

Theorem 18. Let the lattices ifs, j>/, be orthocomplemented. The sublattice
Ê, (27) is orthocomplemented such that the relation (10) is satisfied if and only if
the morphisms cp7f} preserve orthocomplementation.

Proof. => Let (cp7s^t)'-^(<P7sat)' he an orthocomplementation on É,. Using
the Cartan mapping and definitions we have:

i«(<PmV)' [/'(«Pm"')]' {{Ts.tPi) e 2, | Ts>tp,< cp7ja'tVs) p.(cp7)a',).

On the other hand we have also:

H{<P7lat)' n((cp7sla,)')

where ((cp7}a,)') e LL=>,ifs. The last equality follows from the definition of
orthogonality in US>,J£S and from the fact that for any s, [|Ua,]x T7Jp.[cp7jat]'.
Thus, n(cp7}a't) p.((cp7}a,)'), i.e. for every s and any a, e if, cp7ja't [q>7,}a,\.

<^ If the mappings «p,",1 preserve orthocomplementation, then obviously
£, b ((p7sft)'~*((P7jot)' — (<P7sa't) 6 &t is an orthocomplementation. Moreover,
(cp7,}at) 1 (cp7Jbt) iff there exists s0 such that <j»,7/0a, 1 (p7s0b„ what by the
assumptions is equivalent to a,<b't and consequently to cp7Ja, < cp7Jb't for every
s, i.e. (cp7la,)<(cp7}bt)'.

5. The reversible evolution

The notion of reversibility which we shall adopt here is suggested by
thermodynamics. In thermodynamics an evolution of a system from the state A to
the state B is said to be reversible if the system can evolve also from the state B
to the state A following exactly all the intermediary states but in the reversed
order. This notion of reversibility rests on two presuppositions. The first is that it
presupposes the very possibility of meaningful speaking about "the same" state of
the physical system at different moments of time. We shall accomplish this by
adopting the following assumption.
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Assumption 2. For each t e R, 2, 2.

It should be therefore kept in mind that from now the product of state spaces
is a product of the copies of the same object.

The second presupposition is connected with the notion of the "reversed
evolution". It is assumed that states of the system when evolving "backward"
from B to A are in some sense "the same" as respective states of this system
evolving from A to B. Such identification is carried out by a certain symmetry R
of the state space 2. That is, if the system evolves from the state p e 2 to the state
q e 2 along certain trajectory, then the evolution from the state Rq to the state
Rp along the image of this trajectory under the symmetry R, is conceived as the
'reversed evolution'. The 'velocity reversal' transformation in classical mechanics,
i.e. the transformation which changes the sign of all generalized momenta,
leaving generalized coordinates invariant is an example of such symmetry, cf [7].

Assumption 3. There is an automorphism R : 2 —* 2 satisfying the condition
RR id which enables to define the 'reversed evolution'.

The notion of such a symmetry is prior to the notion of reversibility. It
expresses our idea of what the 'reversed evolution' could be, but the question
whether such a reversed evolution can occur or not is a question of dynamics of
the system under consideration.

It is also clear, that in order to discuss the reversibility one has to assume
that the evolution under consideration is not bounded in time, that is together
with the set 11,=., 2S of all a priori possible trajectories which has the origin at the
moment t, we have to take into account the set FU which is interpreted as the set
of all a priori possible trajectories for the evolution which extends in time from
—oo to +00.

Let

û 2S 3 (ps) .-> c,(ps) (ps)s^t e [12S.
R SSsI

Clearly, c, is a morphism of the category K?.

Definition 5. An element (ps) e UR 2S is called a dynamically admissible
trajectory iff for every t, c,(ps) e 2„ where 2, is a trajectory space for the given
physical system at the moment t (cf. Definition 3).

Let 2°° cz UR 2S be the set of all dynamically admissible trajectories and let us
put for any s<t, T3>,^ F~/. It follows that

2" n c7% {(Ts,top) e fl 2, | p € 2}

for any t0. The mapping:

*,:2->2%*,p«(7» (30)
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is not a morphism (in the sense of the category Ks) in general. The reason is that
the condition (5)(i) need not be satisfied in a general case. It is however, when
the evolution preserves orthogonality of states.

Theorem 19. The mappings $, (30) are isomorphisms of 2 onto 2°° iff for
any s

p ±q^> TSitp ± Ts_,q. (31)

Proof. From (30) it follows that <I>, is bijective and manifestly it satisfies the
condition (5)(i). Therefore the necessary and sufficient condition for it to be a

morphism (in fact an isomorphism, since obviously p ±q^><$>,p 1 <&,«*) is

fyplVsq^plq. (32)

It is clear from the definitions that if (31) is satisfied for any s, then (32) holds.
Let us assume that (32) holds and let p ±q. For s < t (31) holds by the definition
(30). From the assumptions it follows that <&,p ±<&,q. But for any s, ®,p
(Trtp) (TrsTstp) ®sTstp and similarity <b,q ®sTstq. Thus for any s,

O,Ts,tp 1 $sTs,,q and by (32) TstP 1 T,,,q.

There is a natural interpretation of <&,: to every state p € 2 of the system it
attaches a trajectory along which the system would evolve if it was in the state p
at the moment t.

Let R be the following mapping:

Uzs3(Ps)"R(Ps) (P-s)eT\Zs (33)
R R

Therefore R reverses the order of a given sequence of states. From the
Assumption 3 it follows that for a given trajectory (ps) the 'reversed' trajectory is

(qs), where qs Rps. Thus, a reversed trajectory is obtained by applying first the

symmetry R to every state on the trajectory and then by applying the mapping R.
For any trajectory (ps) let us denote:

&(p,)-R(Rp,)

Definition 6. The deterministic evolution of a physical system is called
reversible if whenever (ps) e FU 2S is a dynamically admissible trajectory, then
also &t(ps) is a dynamically admissible trajectory.

We can formulate now the main theorem of this section.

Theorem 20. If the evolution described by a family of morphisms Fs,:2—»2,
s ^ t, describes is reversible, then for any p, q e 2 and every s^t:

(i) RT,,t=T-lt-,R
(Ü) p±q^Ts,,p±Ts,,q (34)

Proof, (i) For any state p e 2, (Ts ,p)seR is a dynamically admissible
trajectory such that n,(Ts,,pt)=P- According to the definition 6, the trajectory
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(qs) where q_s Rps RTS ,p is also a dynamically admissible trajectory, i.e.
(qs) (Ts,,qt), what implies: <7_s F_s_,g_,. Hence: RTstp F_S> _,<?_,=
T_s_,RTttp F_s_,i?p.

(ii) From (i) it follows that Tst RT_s_tR. Since by definition for«su we
have Tu>v F~i and from the Corollary 5 (ii) we know that for u^v mappings
Tu>v preserve orthogonality, the conclusion follows.

Corollary 6. When the evolution is reversible, then any mapping <ï>, (30)
defines an isomorphism of 2 onto 2°°.

If a property lattice of a physical system under consideration is the lattice of
all biorthogonal subsets of its state space, i.e. is of the form if(2, 1 then-in
view of the above corollary -2°° e ObK^ and consequently it may be considered
as the set of atoms of an orthocomplemented lattice. In a particular case of the
property lattice of a system being a Hilbert space lattice, i.e. lattice of closed
subspaces of a complex Hilbert space $f, 2°° may be considered also as the set of
rays of some Hilbert space ft. Although the family of automorphisms Ts>, on 2
(being the set of rays of 3€) which describes a reversible evolution is not a group,
one can still describe this evolution by a one parameter group of automorphisms
of 2°° (being in this particular case the set of rays of ft). We shall construct such a

description in a general case of deterministic evolution of any physical system
satisfying only the Axiom 1.

Theorem 21. For a reversible evolution there exists a one parameter group
{K}ieR of automorphisms o/FIr2s such that for any r, VT maps 2°° onto itself and
for any t, r e R the following diagram is commutative:

n^-^ni.
(35)I"

where Jt,(ps) =p,. Moreover, 3ft is an automorphism o/LIr2s which maps 2°° onto
itself and such that £%£% id and:

¦mA^=V^M. (36)

Proof. For any x e R let us define:

K(ps) (Ts+ZiSps)

Clearly it is an automorphism of IIr2ì, it makes (35) commutative, maps 2°° onto
itself and all the VT form a one parameter group. Also, the asserted features of dt
are immediate consequences of definitions and reversibility. Let us check (36). If
(ps)e2~ then we have: V_MPs) (Ts_T,sRT_s,tPt) (Ts_r,sTs,_tRpt)
(Ts-T,-tRPt) (RTs+TitPt). On the other hand: 9Wx{p,) 9t{Tl+x,tp,)
(RT_S+Titpt).
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Since Vt map 2°° onto itself their restrictions to 2°° form a one parameter
group of orthogonality preserving automorphisms of 2°°. The interpretation of
these automorphisms follows directly from (35): VT shift the state of the system
along the trajectory.

In the particular case mentioned just before the Theorem 21, when 2°° is a
set of rays of some Hilbert space ft, by applying the theorem of Wigner one can
find a group of unitary transformations of ft together with its generator which
induce automorphisms VT. Therefore a non-homogeneous, reversible evolution
can be described by means of a one parameter group of unitary operators on the
Hilbert space H or- owing to the Stone theorem - by its generator. Such
construction had been described in details by Piron in [4, pp. 110-112]. The
Hilbert space ft called by Piron 'a large Hilbert space' is of course not the Hilbert
space of the system. As it was made clear in [4], and as it follows from our
present discussion, it is another Hilbert space related to the trajectories of the
system.

When looking at the definition (30) of <I>, and their interpretation, one can
easily understand that in general there is no cannonical isomorphism between the
trajectory space 2°° and the state space 2 of the system. The point is that in a

general case of a reversible evolution each of the isomorphisms <ï>„ teR,
attaches to a given state p e2 a different trajectory (Ts,p) e2°°, for the law of
evolution given by the family of morphisms {Ts,,}S6R depends on the moment t,
i.e. is time dependent. This is however no longer the case when the evolution is

homogeneous.

Definition 7. The evolution of a physical system defined by the family of
morphisms {Tst}steR is called homogeneous if whenever s — t s' — t' then
Ts.tP Ts-.iP for any p e 2.

Corollary 7. A reversible, homogeneous evolution is described by a one
parameter group {Fr}reR of orthogonality preserving automorphisms o/2.

Explicitly, this group is defined by:

T T =TLr 1s—t *s,f

Moreover, in this case

2" {(Frp)reR|pe2}

and for any t, 4>,p Op (Frp)reR. Therefore, whatever is the moment of time,
the trajectory along which the system being in a given initial state will evolve, is
the same. Obviously, <P defines a cannonical isomorphism between 2 and 2°°, and
instead of (35) we can write the following commutative diagram showing the
connection (which in this case is in fact trivial) between shifts on the trajectory
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space and dynamics defined on the state space:

v2"^-+ 2'
?j J* (37)

2 -A» 2

For a homogeneous evolution the first relation (34) reads:

RTr T_rR (38)

for any r e R.
In the particular case of quantum entity, i.e. when 2 is a set of rays of the

Hilbert space, from the Corollary 7, by applying again Wigner and Stone
theorems one can obtain the description of an evolution by means of a one
parameter group of unitary operators on the Hilbert space of the entity and its
generator and thus recover an abstract Schrödinger equation.

As we have already mentioned the symmetry R postulated by the assumption
3 is an abstract counterpart of 'velocity reversal' in classical mechanics. In [7] such

mapping satisfying the condition (38) had been postulated in order to define
reversibility of a dynamical system. In quantum mechanics the same role is played
by Wigner's time reversal operator. Let us stress however, that in the present
framework the condition (38) is not postulated but appears as a consquence of
reversibility of the system.

6. Concluding remarks

In view of above discussion it is clear that from the axiomatic point of view,
it is the notion of a deterministic, irreversible evolution which is mort
fundamental. As we he have shown, such general, deterministic evolution is

characterized (within the state space description) by two conditions: 1) property is

mapped onto the property; 2) two states orthogonal at the given moment of time
was orthogonal before (Corollary 5). A homogeneous evolution of a quantum
entity satisfying these two conditions has been first defined in [8]. We have shown
there, that an example of such evolution is provided by a certain non-linear
equation proposed by Gisin [9]. In a general form this equation reads:

x -iHx + k((B)x-B)x
where H is a hamiltonian of the system, B is a self-adjoint operator and
(B)x (x, Bx)l(x, x). Setting B H one obtains a model for the deterministic
evolution during which the energy of a system decreases, (see [9], [10] for
applications). In [11] Gisin proved that starting with the condition 1) mentioned
above, by a suitable generalization of the Wigner theorem, one can recover the
above equation.



968 W. Daniel H. P. A.

Acknowledgements

I am greatly indebted to Professor Constantin Piron for many illuminating
discussions on the subject and for his kind hospitality during my visits to Geneva.
For the later I would like to thank also the Departement de Physique Théorique,
Université de Genève.

REFERENCES

[1] A. Einstein, B. Podolsky, N. Rosen, Phys. Rev. 47, 111 (1935)
[2] D. Aerts, Found. Phys. 12, 1131 (1982)
[3] C. Piron, Cours de Mécanique Quantique, Genève 1985
[4] C. Piron, Foundations of Quantum Physics, Benjamin, Reading, Mass, 1976
[5] D. Aerts, J. Math. Phys. 25, 1434 (1984)
[6] G. Birkhoff, Lattice Theory, American Mathematical Society, 1973
[7] M. Courbage, Physica 122A, 449 (1983)
[8] W. Daniel, Helv. Phys. Acta 52, 330 (1982)
[9] N. Gisin, Journ. Phys. AU, 2259 (1981)

[10] N. Gisin, C. Piron, Lett. Math. Phys. 5, 379 (1981)
[11] N. Gisin, Journ. Math. Phys. 24, 1779 (1983)


	Axiomatic description of irreversible and reversible evolution of a physical system

