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The Geometrie Schwinger Model on the Torus I

By Hans Joos
Deutsches Elektronen-Synchrotron DESY, Hamburg.

1 INTRODUCTION

The Schwinger Model [1] has a long history of illustrating various phenomena

appearing in quantum field theory. Breakdown of global chiral symmetry by an axial anomaly

[2], charge screening [3], vacuum structure and the realization of gauge transformations [4]

are examples. In this note we analyze the Euclidean version of the geometric Schwinger

Model on the torus.

1.1 The action of the geometric Schwinger Model (gSM) on the 2-dimensional

torus T is

S=l-j^F,F)0+j^,(d-S)A$)0. (1)

It leads to the Dirac-Kähler equation (DKE):

(d - 8)A§ dx" V (dß - ieAß)$ (d-6)$-ieAV$ 0 (2)

In this paper we use the well-known calculus of differential forms extended by a Clifford

product as introduced by E.Kahler [5i. The relation of the Clifford product to the wedge

product is described by: dx" V dx" ~ dx" A dx" Ag"", gß" is a metric tensor. We introduce

on T the Euclidean standard metric gß" f". and give the large and small circumference

Medicated to my friend Gerard Wanders on the occasion of his 60 th birthday.
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the length Z] and L2. $,$ are inhomogeneous complex forms:

* 4>(x,%) + <j>(x,p,)dx>1 +<t>(x,l2)dx12 Y.H4>(x,H)dxH, etc. These Dirac Kahler forms

(DK- forms) describe the fermions. For this reason we call the model 'geometric' [6].

(4>,$)o denotes the 2-form of the scalar product: (#,$)o (*,$)dx12 T.H 4>{X,H)4>{X,H)

dx12. Exterior derivative and coderivative are denoted by d, 6. F — dA is the 2-form of

the field strength of the 2-dimensional abelian gauge potential A Aß(x)dxß.

The geometry of gauge fields on a manifold like a torus requires certain contin¬

uum conditions for the gauge fields. We consider A as a connection 1-form in an Ï7(l)-

bundle with base space T. Its topological structure might be described by the periodicity

conditions (1 (Li,0)), etc.) :

A(x+p) A(x)~-A-1(x)dA1.(x), *(x + v) A„(z)$(z), (3)

where the transition functions A„(x) exp(iea„(a:)) satisfy the cocycle condition

Ai(x)A2(x + 1) A2(x)A.i(x + 2). It is well-known [7], that under these requirements

the set of gauge fields is distributed into classes C7v ' ('topological sectors' which are

characterized by the Chern index k ¦— f F, k 0, ±1, ±2,

The calculation of the quantum mechanical vacuum expectation values (VEV) of

observables $7($,$,.4) is performed with help of the path integral formula

(fi) ^ J V\A]V[i,^]fl[A,^,i]e-s^'*-*K (4)

This expression is purely formal:

-it needs regularization,

- for the gauge field integration we have to give meaning to the 'measure' V[A] ('gauge

fixing'), and describe the space of gauge field configurations ('topological sectors'),

- the 'fermion integration' must take care of the appearence of 'zero modes' related to the

topologically non-trivial gauge field configurations. Thus we get after fermion integration

[8]

(#(i,)*(yi)...f («„)*(»„))

*E>/*w*"«fetm.] x s_ 1 ^1)^)-^)^*)-^) 1(5)

Ô(k)(xil+1,yjl+1;A)...GW(xln,yin;A). j
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Y,k denotes summation over the different topological sectors.

Xi{x), \j(y). i-j 1,...,/ is an orthogonal set of zero mode wave functions. We have

I 2k. (Consider the 'Index Theorem' for DK fermions [7]).

det'[Da'., and G^k>(x.y;A) denote the determinant and the Green's function of the DK

operator Da (<^ — S)A with the zero modes omitted.

In the following we want to treat all these problems with appropriate exactness.

1.2. After this short description of the scope of our investigation, we want to

add some remarks on our motivations. The discussions on the Schwinger model are so

numerous, that we can not refer to them all. Our treatment is special in two aspects: We

consider the geometric version, and we treat the gSM on a torus with Euclidean metric.

Both choices originate in the interest in a systematic analysis of the lattice approximation

of the model in the future.

There is a systematic lattice approximation for DK-forms provided geometrically

by DeRham mapping [91. This procedure avoids additional spectrum doubling. Therefore

a comparison of the lattice approximation of geometric models with the continuum theory

is not hindered by this lattice phenomen. DK-forms can be expressed by Dirac fields

#(*)¦
,ÄW) i>(«,*)(7»)t.,.(; ;).,-.(; :)—•=(; °) e»

a 1.2 Dirac index. 6=1,2 isospin index : It follows from this description of DK forms

by Dirac components that the gSM contains formally an isospin doublet of fermions. Such

kind of models were treated before [10].

Most of the mathematical problems of quantum field theory mentioned above can

be treated more exactly in a compactified version of Euclidean space time. Under these

circumstances the spectrum of (d— 8)A becomes discrete. This allows e.g. a precise calculation

of the regularized determinant of (d — 6)a appearing as a result of the fermion integration.

Furthermore, compactification leads to a precise definition of topological sectors together

with its related zero modes. A particular transparent treatment of the Schwinger model

on a compact space was given recently by C.Jayewardena: 'Schwinger Model on S2' [11].

Our investigations were inspired by this paper.



Vol. 63, 1990 Joos 673

However, compactification on T is much better suited for lattice approximation

than compactification on the sphere. It is a torus which is most naturally approximated

by the finite cubical lattices on which the numerical calculations are preformed [12]. The

symmetry groups of the gSM on the torus and on the finite lattice are closely related [13].

Furthermore, there is a first study of the lattice approximation of the topological zero

modes for the Schwinger model [14].

Here we do not treat the chiral Schwinger model which recently did rise so must

interest [15].The study of a geometric version of this model along the lines of this note will

be of great interest for the important problem of the lattice approximation of chiral gauge

theories like the standard model [17] [16].

1.3. We add some short remarks on the organization of the two papers: 'The

gMS on the Torus' I + II. As seen from Eq. (5) the zero mode wave functions associated

with the different toplogical sectors play an important role in the calculation of VEV of

fermions. Section 2. in Part I is devoted to the calculation of these wave functions. It

turns out that for constant field strength F these wave functions can be expressed by 0-

functions defined on T. One may say without exaggeration that our problem is a physical

illustration of the algebraic theory of ^-functions [18] [19]. In Section 3. Part II, we

determine the regularized effective action TTeg, exp |T ~ det' DA by standard methods

120], and we discuss the propagator related to it. Here the theory of ö-functions appears in

the form of 'Kronecker's Double Series' as discussed in the book by A.Weil [21]. Because

of limited space, we have to use without further comments the formulas on 0-functions

as given in the different references. In the final Section 4. we study applications to the

standard questions like the particle spectrum, the screening of the static potential, and

the appearence of the anomaly. The treatment of the SM on the torus allows a systematic

study of finite size effects in the limit of a large torus. In this limit we only study the

Euclidean version of the geometric model. It would be particularly interesting to analyze

the relation to the geometric model in Minkowsky space, e.g. the effective action calculated

along the line of G.Wanders [22].
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2 SPECTRUM AND EIGENFUNCTIONS OF THE DK OPERATOR

The solubility of the Schwinger model follows essentially from the fact that for

gauge potentials of the form Aß(x) —e^d^b(x), the spinor i/>(x) exp(—ey5b(x))ip0(x)

is a solution of the 2-dimensional Dirac equation yß(dß — ieAß(x))ip(x) 0 iff il>o(x) is a

solution of the free equation. Our first task is now to find the solutions of the massless

DKE for the gauge fields in the different topological sectors which satisfy the appropriate

boundary conditions on the torus.

2.1. The U(l)-gauge fields on T decompose in Chern classes. We may choose

as a representative of each class a gauge potential C^ with constant field strength:

C« E-tfdJ - ^dx1), F« dC^ Bdx1 A dx2

'fafa"' <-b=£l7 <7>

The transition functions A„(i), Eq. (3), are in this case the gauge transformations:

Ai(x) exp(-eBLiX2), A2(x) exp(— eBL2xi) (8)

These describe the continuation of C^ in the non-trivial principle U(l) bundles along a

cycle in X

A general gauge potential of a given Chern class has the form

A(k) A + C(k) da + t-6b + Cw (d-6)a+t + C(fa (9)

Here A is single valued 'continuous' on T. Thus we may apply the Hodge decomposition

theorem [7], and represent A by a 'pure gauge': da dßa(x)dx", a 'toron field': t

tßdx", tß constant, restricted to 0 < tß < 2Tr/eLß. and a coderivative of a 2-form:

6 b(x)dx1 A dx2, 6b -e^dvb(x)dx"

2.2. There is a local solution of the DKE, Eq. (2), with this external potential:

$ e^'Vj0 v *o. (10)

Here c% denotes the formal Clifford power series eXj 1 + V' + hifi> v V + ffa V tfr V ip +

$o is a solution of the free DKE. The statement Eq. (10) follows immediately from the

product differentiation formula:
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(d - 8)[(X(x,<t)) + X(x,12)dx12) V $}

[id-6)(x(x,9) + x(xA2)dx12)} V $ + l(x(x,%) - x(x,12)dx12)} V (d - 6)*

Of course, the Dirac components of $ are the solutions of the ordinary Dirac

equation in which we mentioned at the beginning of this Section. Further we shall see that

the expression Eq. (10) provides also a guideline for the calculation of global solutions on

the torus which describe the zero modes of the DK operator.

2.3 First we calculate the spectrum and the eigenfunctions of the DK operator

with a pure toron field as representative of the trivial gauge sector. The eigenvalue

equation of the anti-Hermitean Euclidean DK operator with toron field

dx»V(d„-iet„)$ E*. (11)

is invariant under Clifford right multiplication by a constant form ('flavour transformation'[9]).

As a special case, right multiplication by dx12 induces Hodge duality: *$ $ V dx12 with

a certain phase convention: *dx" t^dx", *dx12 — —1, ** —1. The invariance of the

DKE under this duality allows a separation of the eigenfunctions into dual: *d3> id$

and anti-dual *a$ —ia$ forms. With such an ansatz it is a straightforward calculation

of the standard type to find the eigenfunctions:

d#±
1

WWZ(dx1-idx2)z:s/fÇ(l~idx12)}e2wi{n'^+"2^)
\/4\n_\LiL2

"$±
1

{An + (dx1ridx2)±%/fiA(l+idx12)}e2*i{ni?fi+n2%) (12)
yJ4\n~\LiL2

The eigenfunctions are normalized according to /(4>4>)0 1. The square root must be

taken in the complex plane cut along the negative axis such that (\fa)* V" )¦ These

belong to the eigenvalues with multiplicity 2:

En ±iy/n + fi-, n± 27r(fa ± i^-) - e(U ±it2), n,¦ 0, ±1, ±2,.... (13)
Li L2

In the trivial sector the transition functions A„(x) 1 lead to simple periodic boundary

condtions, Eq. (3). This results in the usual discretization of the momenta p; ((2ix)/(Li)-

n,. It is important to remark that there are no zero eigenvalues for non-exceptional toron
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fields: tß f/f (2w)l(eLß)-n'ii, n'ß is an integer. Thus there is no necessity to avoid such states

by partly anti-periodic boundary conditions. These have the same effect on the eigenvalues

as toron fields with half integer n'ß.

2.4. Next we consider the solutions of the DKE, Eq. (2), with the gauge field

C' ' + t, the representatives of the non-trivial gauge sectors. The massless DKE is

invariant under Hodge duality, and does not mix even and odd forms. Therefore we can

make an ansatz of the type Eq. (10):

$ eiet»x*'e^-fci F(x)u> (14)

with ui dx1 — idx2, 1 — idx12; dx1 + idx2, 1 + idx12 denoting odd and even, dual and

anti-dual forms. Since C^k\x) — j8x2, i.e. exp(iea(x))$0 exp(^p7rfc/2)(x2/LiL2)$0,

and it follows that $ is a solution of the DKE if 3?0 F(x)to is a free solution. This means

(I) (di + id2)F(x) 0 for w dx1 + idx2, 1 - idx12,

(II) (di - id2)F(x) 0 for w dx1 - idx2, 1 + idx12. (15)

The to of 'type I' are odd anti-dual and even dual, those of 'type II' are odd dual and even

anti-dual. The signs in Eq. (14) refer to the cases (I) and (II). These equations have the

form of the Cauchy Riemann differential equations. Therefore it is natural to introduce

complex coordinates:

z j-y + zx2), z j-(xi -tx2), j- ^(di - id2) A h{di + ld2) (ie)

F(x) is an analytic function of z in case (I), and conjugate analytic in case (II).

The main problem is now to determine F(x) in such a way that $ satisfies the

periodicity conditions Eqs. (3), (8). A short calculation shows that this means for the two

cases:

(I) F(z + 1) e^f+^~ieLlhF(z) F(z + T) c-™'"+'ïkÎTi-ieL>Wit2F(z)

(II) F(z + 1) efar-JR-"1"''^) F(z + f) e-iTk!-îkA-ieLiWt2F(Sj (17)

t iL2/Li.
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Analytic functions which are double periodic up to an exponentional factor can

be expressed by ö-functions [18] [19]:

+ 00

0ab(z\r) Yl exp{wi(n +a)2T+ 2ni(n +a)(z+ b)} (18)
ri— — oo

(a,b 0, f; in the notation of [23]: 0, -0i i 92 6Lo, 63 600, 04 0oi.)£ 2 2 2U v 2

These functions are analytic and satisfy the 'periodicity conditions'

m2r
6a,b(z + rriT + n\r) exp[—2iri(mz -I h bm — an)]0aj,(z|T) (19)

They are related by

Oah(z\r) exp[27ri(ö2T/2 + a(z + b)}ô00(z + b + ar\r) (20)

2.5. We first construct by this procedure the solutions for k — 1 without

torons: f 0. As a special case of Eq. (19 we have

03(z + 1\t) 63(z\t), 03(z + T\T) e'^2^Ao3{z\r)_ (2i)

Then one sees that F(z) exp7rz2/2JTJ • 63(z) satisfies the conditions Eq. (17) for k — 1.

Thus we get the two orthonormal solutions of the DKE

#=^j e*R(z2-|2|2)03(zfa w dx1+idx2. 1-idx12. (22)
Li

We have normalized this solution as /($,$)0 1. In Fig.l. we show phase and absolute

value of e?'! ~>z '93(z) for Li L2 1 The characteristic feature is the zero together

with the singularity of the section in the associated ?7(l)-bundle of the phase. This feature

follows from the extended Hopf index theorem [24].

2.6. The set of'periodicity conditions' Eq. (17) describes an interesting algebraic

structure which allows to find the general solutions. We put t — 0, consider k > 1, and

transform Eq. (17) by F(z) exp(Trkz2/2\r\)Tk(z) into :

Tk(z + 1) Tk(z), Tk(z + t) e-lfc"'22+T»T,(z). (23)

One sees immediately that if Tk(z), Tki(z) satisfy Eq. (23), then Tk+ki(z) Tk(z)Tk>(z) is a

solution for k + k'. Since the conditions (23) are linear, one may say that these periodicity

conditions define a k-graded ring of analytic functions over C It is a simple consequence

of Eq. (19) that
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i.o »

\ \ \ / A"V

\ \ / / /
\ / / ^

- V\ \\ / \ \ \ \ \
0.5

-*. X
/ / / / /

s / / / /
y y y' y

0 X 0.5

Figure 1: Phase and absolute value of the zero mode wave function F(z)

(9i(z\r))2"(d3(z\r))2^2A (9i(z\r))2m+1(e3(z\T))2"-2"'-3(62(z\T))(0i(z\T)),

n 0,... ,p, m 0,... ,p — 2 for k 2p;

and

(0i(z\t))2"(03(z\t))2p-2n+l (01(z|r))2m+1(03(^|r))2p-2m-2(02(Z|r))(04(Z|r)),

n — 0,... ,p, m 0,... ,p — 2 for k 2p + 1; (24)

satisfy Eq. (23). It is a result of the theory of 0- functions [19] that these k different

monomials of 0's form a linear independent base of analytic functions satisfying condition

Eq. (23). Thus we have finally the complete set of 2k linear independent solutions of the

DKE with C{k\ k > 1 as backgrond field:

$ emiz2A^)H(k,i)ry w dxi + ldx2 l _ idxll_ (25)

where H^k'l(z), i 1,..., k form a possibly orthonormalized base of the functions spanned

by the 0-monomials defined in Eq.(24).

The index theorem for the DKE states [25] that the number of solutions with w

of type I minus the number of solutions with ui of type II is equal to 2k. There are no
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solutions of type II. The 2k solutions of type I we have explicitly constructed above. It

can be seen easily that one gets the solutions for k < — 1 by complex conjugation. This

transforms solutions of type I into such of type II.

For the solutions with arbitrary A £ Chy1 it remains to include the toron field

and the periodic part (d — 8)a, Eq. (9) of the gauge potential. A direct calculation shows

that we can include the toron field by a translation z' z+ e2^.[T (t2 — Hi). The modification

required by the periodic part follows from the local solution, Eq. (10). Thus we get as the

main result of this Section the solutions of the DKE on the torus with general potential,

Eq. (9), for Jb > 1:

$ e«W«)+ib(.)eU(Ml,e^(2»-i'^5(M(z)W) w dx1 + idx2, I-idx12. (26)

The solutions for k < 1 follow essentially from complex conjugation.

2.7. We shall complete our consideration of the DK-operator with the gauge

potential C'fc' + t by the calculation of its spectrum. Like in paragraph 2.3 we make the

ansatz

$ FAx^dx1 zf idx2) + F2(x)(l T idx12) (27)

for the solution of the equation

D$ [(d - 8) - ie(C(k) + r.)V]§ £$ (28)

A short calculation shows that with help of the differential operators

D+ M d irk
7\-7i ;—;z D3 A~ O — ''

jr] 9 7rfc
-z

\*\k\Kdz 2|t! " '""'

\w\k\Kdz 2|t| ;'

Eq. (28) gets the form

±D±F2(x)(dxi ± idx2) =F D*Fi(x)(\ ± idx12)

ILXL2

(29)

47r|fc|
{F^x^dx1 ± idx2) + F2(x)(l ± idx12)} (30)

For the solution of this equation it is essential that the operators D satisfy the the

commutation relations:
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[*-.*+] £ (3D

As differential operators they are adjoint operators: (D+Y D~. Thus we may consider

for k > 1, (k < 1) D~, (£>") as creation (annihilation) operator, and Z)~, (D+) as

annihilation (creation) operator. The functions H{kA(x) e*FT(2'2~*'*'H^%z') of the 2k

zero modes Eq. (26) describe the corresponding 'vacuum states'.

Now we solve first the eigenvalue problem for the 'iterated' DKE: DcDc$

\E\2$. It follows from Eq. (28) that DpD^ has the form

DcD[.F(x)lo T-—D^D-F(x)^ foro; of type 7
LiL2

DcD]cF(x)uj Ap-fiD~D+F(x)w for w of type II (32)
LiL2

Therefore the spectrum of DcDc follows from the standard calculations with creation and

annihilation operators:

4"7r I k
\En\2 -z-yfin, n 0,1,..., with multiplicity 2|fc| for n 0, 4|Jb| for n > 0,. (33)

LiL2

with eigendifferentials for it > 0 of the form

^(D+)nÈik'li«>. u of type I, n >0. —(D+^H^u, w of type II, n > 1.(34)
A A

In the case k < 0, the types of the u>'s according to Eq. (15) have to be exchanged, and

D+ must be substituted by D~.

Since we have Dc — — Dc, the eigen differentials of Dc can be easily constructed

from those of DcDc, Eq. (34). The non-zero eigenvalues of D are

/4/T Ì k '

E ±i\/ —j-n. n 1,2 with multiplicity 2|fc|. (35)
V LiL2

with the dual eigendifferentials for k > 0:

d$ —{(D+^H^ixildx1 - idx2) ± ^{(D+)"-1Hik-1Hx)(l - idx12)}. (36)
A

The anti-dual solution has the form °4> =d $ V dx1. For k < 1 one has to make similar

substitutions as discussed above.
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