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Abstract

By searching for the largest numbers of one-parameter Lie algebras for one-

dimensional supersymmetric harmonic oscillators, we study the impact of fermionic

variables associated with fundamental Clifford algebras such as Cl^ and CCA

Amongst the sets of associated generators we point out the largest closed

superstructures identified as invariance or spectrum generating superalgebras. The

additional supersymmetries which do not close under the generalized Lie product

lead to new constants of motion. Direct connections with other recent contributions

are also singled out.

PACS : 02.20.+b - 03.65.Fd - 11.30.Pb.
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I. INTRODUCTION

The group-theoretical analysis of arbitrary differential equations has been

originally proposed and developed a long time ago by Lie.1'2 More recently, specific

textbooks like those of Miller3, Ovsiannikov4 and Olver5 deal with the developments

of such a subject and contain a lot of interesting references.

Here we will mainly be concerned with the so-called "non classical Lie

approach" as referred and described by Fushchich and Nikitin67 when the accent is

put on ali the one-parameter Lie algebras and their collection leading to closed or

open structures of symmetries admitted by systems of differential equations. Such

considerations have to deal with Lie extended symmetries : they have already been

applied to classical and quantum (wave) equations including the nonrelativistic as

well as relativistic contexts. Specific equations such as the ones describing the

nonrelativistic quantum free system and (isotropic) harmonic oscillator8 as well as the

relativistic Dirac, Weyl or Maxwell systems have particularly been studied6'7'9'10

following some of the above mentioned works. In particular we have just extended11

similar considerations to supersymmetric quantum physics12 by taking the explicit

example of the 1-dimensional harmonic oscillator and its supersymmetric wave

equation12'13 admitting very well known kinematical and dynamical

supersymmetries.14'15'16'17

Let us come back on the concept of invariance of a wave equation under

space-time transformations and search for the more general operator X ensuring that

the concerned equation

A(p 0 (1.1)

is invariant under the (infinitesimal) transformation 1 + i e X This corresponds to the

study of the associated kinematical symmetries. The resulting condition is cp-

independent and writes

[A,X] XA (1.2)
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where X is an arbitrary function. The problem of the general form for X can then be

expressed in two ways :

- (i) either we ask for its general form by requiring that the one-parameter Lie

substructures do altogether form a closed Lie structure as it is the case in the so-

called classical Lie context (containing in particular amongst the above mentioned

references those of Niederer8, Rudra9'10and Durand14) ;

- (ii) or we do not ask for a closed structure as it is the case in the non classical

Lie approach (as presented by Fushchich and Nikitin6-7).

The last context contains the preceding one and it leads to supplementary

results connected with constants of motion for example.6'7 In order to characterize

such an approach, let us consider the equation (1.1) as describing a physical system

through the wave function q>= q>(t,x) where we referto &= (x-|,x2 xn) as the position

of the system in a n-dimensional space. We then define the operators A and X

respectively by

A ^ a(t£) + aR(t£)^ + a^Ctjöa^ (1.3)

and

x-cM + b^ (1.4)

where summations on repeated indices are understood and where we refer for brevity

to the whole set of partial derivatives by

The condition (1.2) leads to the following system constraining the known

functions a a^, aHV in terms of the unknowns b^ and c and of the arbitrary X(\,x) :

[a,o] - bj^a) + a^c) + aJa^c) Xa (1.6a)



(1.6b)

(1.6c)
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[a-bJ + [Ve] + avKbJ - bK%) + avJôvC) +

+ auvM + avMbJ ^-Vn,

J[a,'bp]+i[aP'bJ+[a,p-c]+av,Kbp)+

+ apvKbJ-bv(avaJ^a(ip Vn.p

[a,v.bp] + [avp.bJ + [ap^bv] °'V^v-P- (1-6d)

Such a system is directly obtained by equating the corresponding orders in

derivatives in both sides of Eq. (1.2). It shows that if the wave equation (1.1) is not

scalar all the unknowns have to be developed in the corresponding matrix basis

leading in such a case to complicated equations in general containing a very

important number of unknown scalar functions.

We intend to exploit such an approach in connection with supersymmetric

quantum mechanics12 following the second way (ii) mentioned above after equation

(1.2). This approach is more general than the one developed by Durand14'17 and

permits us to study the impact of different dimensions in the matrix realizations.

Moreover it can be compared with another recent approach11 also applied to

supersymmetric quantum mechanics.

We take the 1-dimensional supersymmetric harmonic oscillator as Ihs. example

which permits us to illustrate our developments. The corresponding results have

evidently to deal with the so-called extended supersymmetries which will be here

subtended by matrix equations and theories in the case of the simplest Clifford

algebra18 CC^ of order 4. In fact, in Sec. II, we consider the supersymmetric wave

equation of the 1-dimensional harmonic oscillator (a matrix equation expressed in

terms of 2X2-Pauli matrices) and find twenty-four (super)symmetries. They are

interpreted in a specific way (clearly apparent in the following) as four times the six

initial bosonic symmetries8 of the usual 1-dimensional harmonic oscillator. The

corresponding closed superalgebra contains only thirteen (super)symmetries as
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already known15'16'17 and the further eleven ones can be discussed in connection

with constants of motion. Other supersymmetric wave equations17 which are also

subtended by this simplest Clifford algebra can be studied in a complete parallel way.

In Sec. Ill, we address ourselves to the same problem but by choosing a 4X4-

realization so that the Clifford algebra now is CC4 of order 16. We correspondingly

get 96 16X6) supersymmetries and can draw parallel conclusions to the preceding

case. If both Sec. II and III deal with the nonclassical Lie approach by treating

explicit matrix equations, we come back in Sec. IV on the classical Lie approach

applied to supersymmetric quantum mechanics by grading the generator X (1.4)

and the arbitrary function X included in eq. (1.2). This method11 enlightens the

results of Sec. II and III in what concerns the respective closed superstructures. Sec.

V is then devoted to comments and conclusions.

The units are chosen so that m=1, fï=1 but we maintain the angular frequency co

when harmonic oscillators are concerned. As nonrelativistic examples are only

considered here we do not distinguish between co- and contravariant indices as it

should be necessary if relativistic applications were studied with pseudo-euclidean

metric tensors.
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II. N=2-EXTENDED SUPERSYMMETRIES AND THE CLIFFORD

ALGEBRA C^

Let us consider the N=2-s.upers.ymmetric quantum mechanical context

described by the Hamiltonian

HSS JQ,Qt| (2.1)

where the two Q-type supercharges are such that12

ÌQ,QÌ (Qt,Qt) 0 [HSS,o] [HSS,Qt] 0 (2.2)

In terms of the superpotential W(x) these conserved supercharges take the

following forms

Q=(p + i^)a Q+ (P-^K (2-3)

where, for 1-dimensional systems, we insist on the bo sonic (p and x) and fermionic

(o+ and a.) operators associated with the corresponding degrees of freedom

according to

[p,x] -i {g+,o.} I2. (2.4)

We evidently get by remembering the Lie algebra su(2)-relation

[ o+ a. ] g3 (2.5)

that

HSS l(p2 + |W|2) + lW"o3 (2.6)

so that the equation (1.1) takes here the form
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Acp4at-HSS)(p(t,x) 0 (2-7)

and is subtended by matrix considerations associated with the simplest Clifford

algebra18 Ck of order 4 22) :

C/gS l2 o, ct2 o3 s o0 a+ a., a3 (2.8)

As an explicit example let us consider the 1-dimensional harmonic g_scillator.12 Its

supersymmetric version corresponds to the superpotential

Wh.0.(x)=±-cûx2 (2.9)

so that

HhSo. W + «M+ J û«3 HB + HF (2-1 °)

where we recognize the kosonic and fermionic Hamiltonians as expected.12'13'19'20

Eq. (2.7) explicitly becomes

Acp (t,x) S (ia, +1 d[ -1 co2x2 -1 oxj3) cp(t,x) 0 (2.11

and the operator (1.3) is here characterized by the only nonzero matrix quantities

a -J»2x2^0-2ÛXJ3 ¦ at ioo -axx ^Go- (2-12)

Then the system (1.6) reduces to the only five following equations :

— cola, à - bvco x - i3,c - Ì- âc X M- co x2 an + J- œo,pLa'Tx '2 12 °2'
ico[bx,a3] +iatbx + axc+ia'bx o,
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(2.13)

ico[bt,a3J +iatbt+iaxb, 2X,

3xbx=| - 3xb, °-

We then expand the unknowns bx, bt and c in the basis (2.8) and we solve

the system (2.13). Some tedious calculations lead to twenty-four supersymmetries

which fall after rearrangements into four classes written as follows when, for

simplicity, we limit ourselves to the t=0-context :

|HB,C±)l,P±)a0 jHB,C±)l,P±ja3 (2.14a)

(HB,C±,l,P±jc+ |Hb,C±,I,P±)g (2.14b)

These results show the main role of the four independent elements of the C^-basis

multiplying the six Niederer (bosonic) symmetries.8 In eqs. (2.14), let us recall8,15 that

the generators C± and P± read for t*0

C± ± A [exp 2icot)] (p ± icoxf P± ± i [exp (* icot)] (p ± icox) (2.14c)

Amongst these twenty-four operators, only thirteen of them close under commutation

and anticommutation and form the semi-direct sum osp(2/2) sh(2/2) already

obtained by Beckers and Hussin.15 Indeed we notice (at t=0) the identifications

HB,C±,HF^c3,Q±^P± ,S±-o±P± (2.15)

leading to the orthosymplectic Lie algebra osp(2/2) (including the odd

supercharges12'21 Q± and S± while the five operators

I.P±,T±«<j± (2.16)
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generate the Heisenberg superalgebra sh(2/2) (including the odd operators g±).

The eleven supplementary operators can then be completely specified as

follows : the five even ones write as

Hbct3 ¦ p±°3 - c±°3 (217)

and the six odd ones take the explicit forms combined in the following three pairs :

[exp (± icot)] OjHB [exp (± icot)] C±cj [exp (± icot)] C?o, (2.18)

All the operators XA contained in eqs. (2.15)-(2.18) lead to constants of motion CA

given by

CA |(Pt(t,x)XA(p(t,x)dx A=1 24 (2.19)

where the two-component wavefunction cp(t,x) can be developed in an energy

basis15'16 in correspondence with both the oyeigenvalues (e ±1).

Let us point out that similar considerations can evidently be developed for other

supersymmetric wave equations subtended by the Clifford algebra C^ ¦ For

example, as described in connection with spectrum generating superalgebras, we

refer to some cases collected in D'Hoker-Vinet-Kostelecky17 corresponding to other

superpotentials. Let us mention the form

W(x) (i In x (2.20)

and the superposition of the expressions (2.9) and (2.20), i.e. the so-called Calogero

potential

W(x) ^lnx + J- cox2 (2.21)

As shown hereafter (see Sec. IV), the corresponding results do contain those

mentioned by D'Hoker et al.17 but also additional ones.
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III. N=2-EXTENDED SUPERSYMMETRIES AND THE CLIFFORD

ALGEBRA C(A

Let us now come back on the study of the equation (2.11) but when we

introduce 4 by 4 matrices generating the Clifford algebra CCA with sixteen

fundamental elements given, for example, through the following construction

a.x9\2sa.y9oQ G.Q \2®<5. a09a oQ.

(3.1)

°o®°osaoo s|4 • °j®<*jsoij ij-1.2,3

This doubling corresponds to a system of four equations written in a compact form as

ASX.t.x) h (i3t +1 ax -1 co2x2 -1 cog30) 0(t,x) 0 (3.2)

allowing the corresponding unknowns bx b, and c in the generator X (1.4) to be

expanded in the CCA-bas\s :

^4s{°oo'0oi-<VCTij}- (3-3)

New tedious calculations associated with the resolution of the adapted system

corresponding to Eqs. (2.13) lead us to ninety-six supersymmetries. As in Sec. II we

have understood that the twenty-four supersymmetries can be seen as 6 times 4 with

an explicit meaning of these numbers (6 for bosonic results8 and 4 for the order of

CC^j, we get here that 96 6X16, keeping the same meaning for the six symmetries

while 16 is the order of CCA Indeed we can write these ninety-six supersymmetries

as all the products between the members of the following two sets

(HB,C±,l,P±}and {oQO,ooi,ol0,°x-l. (3-4)
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Let us notice that if we associate as usual the even (odd) character to the

matrices c0 l2,a3 a., ,a2 or a± in Cl^ correspondingly we get in CCA the

following eight even matrices {£} {CT00,o03,G30,a33,o-11,o-12,cJ21,o22} anc' the

following eight odd ones {0} {a01,o02,a10,CT20,o23,G32,a31,o13}. We thus have

trivially constructed 48 6X8) even generators as well as 48 6X8) odd ones.

With the help of the Pauli algebraic properties

°i aj ' eijk °k + 8ij - (3-5)

it is easy to determine the structure relations according to a graded Lie product

ensuring as usual that

[£,£] -> £ {0,Q -> £ [£,Ö] -> O (3.6)

We evidently recover the superalgebra osp (2/2) sh(2/2) generated by the thirteen

operators (2.15) and (2.16) when the substitution a± -» a±®a0 is effectively

realized. Moreover it is possible to find eleven additional generators which form with

the thirteen previous ones a closed superstructure. These eleven generators are the

five even matrices

°03 ¦ [exP (icût)l o.9a±, [exp (-icot)] a± 9 o± (3.7)

and the six odd ones

c3 9 a± P+ g3 ® g± P. a3 €> o± (3.8)

We thus get a 24-dimensional superalgebra which can be identified as the semi-

direct sum osp(4/2) sh(4/2). Without loss of generality, let us once again take t=0

and mention that this semi-direct sum corresponds to the following set of 17

generators for osp(4/2) :
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osp(4/2) ¦ {HB C± HF Q± S± o± 9 ct± a3 ® ct± P±} (3.9)

and to the following set of 7 generators for sh(4/2) :

sh(4/2) S {P± T± ct00 o3 ® ct±} (3.10)

In fact we recognize the Lie algebra so(4) © sp(2,R) as the even part of osp(4/2) by

identifying sp(2,R)~ so(2,1) with the three generators (HB,C±) while the compact

so(4)-subalgebra is directly obtained through the superposition of Iwq. commuting

su(2)-subalgebras. The latter are generated by the respective combinations

{ct. ® o+ o+ ® ct.
±- (ct03 - ct30)} (3.11 a)

and

{ct+ ® ct+ ct. ® ct. 1 (ct03 + ct30)} (3.11b)

by remembering that in the present context :

HF lcoo30. (3.12)

With respect to sh(4/2) given by the set (3.10) we evidently identify the even Lie

algebra h(2) as generated by

h(2) ee {P± a00 y (3.13)

The (96-24)=seventy-two other supersymmetries lead to a corresponding set of

constants of motion in the sense described by Fushchich and Nikitin.6'7 They

evidently contain the corresponding eleven constants of motion obtained from the

operators (2.17) and (2.18).
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IV. ON THE CLASSICAL LIE SUPERSYMMETRIES

The superstructures osp(2/2) sh(2/2) and osp(4/2) D sh(4/2) obtained as

closed superalgebras in Sect. II and III respectively can also be recovered through

other developments11 applied to 1-dimensional supersymmetric harmonic oscillators.

Indeed, we have obtained parallel results by reconsidering the determination of the

largest superalgebras of supersymmetries for the equation (2.7) but by grading the

construction of the generator X ee (1.4) and the arbitrary function A.(t,x) in the

condition (1.2).

Let us recall11 that we can see the fermionic Hamiltonian as expressed in terms

of the odd variables (¥,¥) in such a way that

HF |ri7F] (4.1)

with

PF/P} I {¥,¥} {¥,¥} 0 (4.2)

Moreover by requiring that

x x5 + xT x Xö+Xj[v + v) • (4-3)

we have proposed to generalize (1.4) in the 1-dimensional context through the

expressions

Xg= c(t,x) +b,(t,x)9t + bx(t,x)3x + b(t,x)4"F

(4.4)

+ c/t.x)^ + a,(t,x)¥a^ + d^t.x)^ + d2(t,x)^ + e(l,x)d^
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and

(4.5)

XT= o^(t,xf¥ + <x2(t,x)¥ + ß^t.x)^ + ß2(t,x)Tax

+ Y^t.xja,, + ^(t,x)3- + 81(t,x)alj;ax + s2(t,x)a-ax.

In fact, by rewriting the equations (2.11 and (3.2) on the single form

a (t,x,py,i) x(t,x)=(iat +1 ax -1 co2x2 -1 ofci]) %(t,x) (4.6)

we can solve the system issued from the condition (1.2) with the expressions (4.3)-

(4.5). By requiring explicitly that

(y^) (Ï3ç) I (VAFJ (^3V) 0 (4.7)

ensuring a correct effect of the corresponding operators on the wavefunction % we

get twentv-four generators of one parameter-structures, twelve even and twelve odd

operators which can be arranged and denoted as follows. The first twelve even

generators absorb the six Niederer ones8 (which are, let say, purely bosonic)

HB C± I and P± (4.8)

already defined in eqs. (2.10) and (2.14c) and contain the six following ones11 (which

are purely fermionic) written as

HF (4.1)=|>Ki] X1 [exp (icot)] ia^ X2^[exp(-icot)]*Pa^

(4.9)

XgS^-^ + a^ X4 [exp (-icot)](Wy-vi) X5 [exp(icot)](*Fa^-w)

The second series of the twelve odd generators absorbs the sjx odd operators



38 Beckers and Debergh H.P.A.

referred in eqs. (2.15) and (2.16) but here given on the forms

Q+ee (p - icox)T Q. (p + kux)«?

S+ a [exp (- 2icot)] (p + icox)¥ S ee [exp(2icot)] (p - icot) ¥ (4.10)

T+ [exp (- icot)] *F T. ee exp (icot) *F

It also contains six additional (odd) generators given by the explicit expressions

X6 3y - W

x7 a--¥

X8 -L [exp (icot)] (p - icox) X6

X9 j= [exp (-icot)] (p + icox) X7 (4.11)

X10 -L [exp (-icot)] (p + icox) X6 X„ ¦ -L [exp (icot)] (p - icox) X7

Amongst these twenty-four operators (4.8)-(4.11), thirteen of them were

expected15'17 in connection with the superalgebra osp(2/2) sh(2/2) also

recovered in Sec. II while the other eleven ones Xv ,XU (five even X, X5 and

six odd X6 X1t are new if they can be realized in a nontrivial way.

Let us now discuss the possible choices for the fermionic variables *P and *¥

entering in these eleven generators X1 Xir It is easy to show that, inside the Clf

algebra (4.2), the possible realizations of *F and *P lead immediately to trivial or

redundant XB for B=1 11 so that we are left with the only closed superalgebra

osp(2/2) sh(2/2) as already noticed. One of the (two) possible choices is the

realization

«P ct+ ¥so 3^ 0. a^sCT+ (4.12)
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according to the constraints (4.2) and (4.7) leading moreover to the properties

(3^,^ 1 ja4,,alI/) ja^,a-j o (4.13)

To such a choice correspond the expected expressions (4.10) in connection with the

generators (2.15) and (2.16) given in the C/^-context.

If we want to find a realization which does not trivialize the generators X1 X1V

we have to go to a C^-algebra completely consistent with the constraints (4.2), (4.7)

and (4.13) included in our developments. In fact, we have associated four

commuting C/^-algebras to the set of fermionic operators {*F ¥ 3^,, 3^;} which lead

to the construction22

1 2 1,2 3 4 3,4
CC2®CC2 CCZ C(2®CC2 CC3 (4.14)

and

1,2 3,4
C(3 ®CC3 =CCA (4.15)

This clearly appears in our recent developments11 through the necessary

introduction of the operators 3T and 3^; besides the initial ¥ and Y-ones in the

general expression of the graded generator X. Moreover with such a point of view, it

is straightforward to understand that the doubling proposed in Sec. Ill has no meaning

in the C/^-context but presents an interest in the C^-context. An elegant way to

superpose both contexts is to rewrite the Clifford relations (4.13) as

K-a^Hf1 javp,34/j (ay,a^) o (4.16)

where d is the dimension of the matrices. If d=2, we are led to choices such as the

one given in eq. (4.12) and the eleven generators become trivial since we are

playing with the only irreducible representation of the Clifford algebra Cl?. If d=4, we
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thus go to the only irreducible representation of the Clifford algebra CCA constructed

in eq. (4.15) and our eleven additional operators X, X^ become nontrivial. An

explicit realization of the last context is given for example by

"¥ 0^9 0^ W o_9a0 (4.17a)

and

3y s a <E> ctq + o3 ® o a^EE^ ® ct0 + ct3 ® o+ (4.17b)

With such a realization, eqs. (4.2), (4.7) and (4.16) are verified and the generators

X, X^ given in (4.9) and (4.11) are easily constructed. We immediately recover

the eleven explicit forms (3.7) and (3.8) and realize in that way the connection

between all these developments. The closed superstructure generated by the

twenty-four operators (4.8)-(4.11) is consequently the superalgebra osp(4/2)

sh(4/2) when the matrices display an effective Clifford algebra CCA The structure

relations are evidently those15 of osp(2/2) sh(2/2) supplemented by the following

nonzero ones where we have maintained the parameter d introduced in (4.16). In

terms of evident (complex conjugate) considerations and for compactification in the

structure relations, let us introduce the following notations in connection with eqs.

(4.9) and (4.11) :

X1SM+ X2 M. X4 N. X5 N+ X6 U+ X7 U.

(4.18)

X8eeV+ X9^V. X10eeW+ X11SW.

The supplementary structure relations are then

[HF,M±] + coM± [HF,N±]=+coN±

[X3.M±] ±g-2JM± [X3,N±] *|N±
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[M+,M.] -X3+i(lHF + l|),

[N+.N.] -X3 + (i-2)(lHF+l|), (4.19a)

{U+,U.}=(i-l)l {V±,W±} ±i|-l)C?

{U±,W±} ±fa,(|-l)p, {U±,W?}

{Q;,V±}=+coM± -{S,,W±}

{S±,V±} +coN, -{Q±,W±}

{V+,V.}=(i-l)HB + coX3-^l-HF,

{W+,W.}=(|-l)HB-coX3-^-l + HF

and

(4.19b)

[M±,T±] -U± [N,,T,] [M±,Q±] -V± [N,,S,]

[M±,S±] -W± [N,,Q?] [M±>U,] g-l)T, [N±,U±]

[M±,W,] (ä-ljS, [N±,V±] [M±,V,] g-l)Q, [N±,W±]

[X3,T±] ±T± [X3,Q±] ±T± [X3,SJ ±S±

[x3.u±]=±(|-i)u± [x3lv±] ±g-i)v± [X3,W±] ±(|-1)W±

[HB,V±]=+coV± [HB,W±]=±coW± [P±,V±] -i |2coU±
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[P±>W?] -iV2coU; [C±,V±] -2icoW± [C±,W;] 2icoV; (4.19c)

where we have distinguished the three blocks (4.19a-c) according to eqs. (3.6)

respectively. As it has already been noticed that, when d=2, all the operators M±

N± U± V± W± become trivial and X3 is redundant (X3 J- HF + J- l2 we

immediately see that all the relations (4.19) disappear and that we are left with the

structure osp(2/2) sh(2/2) as expected. When d=4, all these relations survive and

we have the largest superalgebra osp(4/2) sh(4/2) associated with the only

irreducible representation of the Clifford algebra CCA Due to the N=2-

supersymmetric context and the two fermionic variables *P and *P we get here the

maximal superposition of four C^-algebras leading to the algebra CCA as mentioned in

eqs. (4.14) and (4.15).
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V. COMMENTS AND CONCLUSIONS

From Sec. II, III and IV, we learn that, in connection with the Clifford algebra C^

it is possible to get 24 - 13 11 extra (super)symmetries with respect to the closed

superstructure osp(2/2) sh(2/2) and that, in connection with the Clifford algebra

CCA it is possible to get 96 - 24 72 extra (super)symmetries with respect to the

closed superstructure osp(4/2) sh(4/2) when 1-dimensional harmonic oscillators

are concerned. These extra (super)symmetries lead to constants of motion according

to eq. (2.19) for example while the closed superstructures were confirmed through

nonclassical (see Sec. II and III) as well as classical Lie (see Sec. IV) approaches.

This completes the results obtained by Durand14 and by Beckers-Hussin15 in the

particular application we are concerned with.

The extension to n-dimensional supersymmetric harmonic oscillators is rather

straightforward but tedious in both approaches. Let us only mention that the largest

invariance superalgebra appearing in connection with the Clifford algebra CCAti

(dimension d 22n) is the superstructure

[osp(4/2) e so(n)] sh(4n/2n) (5.1

reducing to

[osp(2/2) e so(n)] sh(2n/2n) (5.2)

according to recent results on largest kinematical superalgebras16 when the Clifford

algebra coming into the game is C^n (d 2n). In both contexts, we are dealing with

4n fermionic quantities {¥,, *F., dw fc j 1 ,...,n} and all the results of Sec. IV can

be extended for arbitrary n. The operators corresponding to the superalgebra (5.1)

are realized as follows :

2
i'HB \ (pf + »xf) ' C+

2
[eXP (" 2 M)] (P' + iC0X

C. - - i [exp (- 2icot)] (p, + icoxj)2 HF 1 co \V,, «F, ]
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S+ -J=[exp (- 2icot)](Pj + Umff] S. -Jfaexp (2icot)] (p.j - icox^ (5.3a)

and

Xi [exp (icot)] (ifyj X2 [exp (-icot)] fp^J

X3 Ify - ^3- + 3^ X4 [exp (-icot)] (ify - «F,?,)

X5 [exp (icot)] fpja^ - ijYj) (5.3b)

XS ^[eXP (ÌCOt)] (Pi ¦ i(0Xi) ^J ' X9 ^teXP (- ^ (Pj + iCÛXj) *7J ¦

X10 ^exP (-io*>] (Pj + iwxj) *bj • X11 ^exP (iü*>] (Pj - ifflXj) \\ -

generate the osp(4/2)-superalgebra, while

Jij xiPj-xjPi - '*] (53c)

generate the orthogonal subalgebra so(n) and

P+J i [exp(-icot)] (Pj + icoXj) P - i [exp(-icot)] (Pj - icoXj)

T+j [exp (-icot)] ¥, T.J (exp(icot)] ij I (5.3d)

x6j. avi. .x^a^
generate the sh(4n/2n)-superalgebra. All the operators X., X2 X4 X5 X6j, X7j,

X8 Xg X10 Xn become trivial and X3 redundant when the C^n-context is

required leading to the structure (5.2). Let us notice that for n=1,2,3, the



Vol. 64, 1991 Beckers and Debergh 45

superalgebra (5.1) has respectively the dimension 24, 31 or 39.

The present developments can also be applied to other supersymmetric systems

besides the harmonic oscillator. If, after D'Hoker et al.17, we consider the

superpotentials (2.20) and (2.21) in the 1-dimensional context, we can show that the

corresponding supersymmetric wave equations lead to new supersymmetries. In

fact, in both cases, we can apply our method presented in Sec. IV and get the

(closed) superalgebra osp(2/2) © su(1/1). Here the nonsimple superalgebra su(1/1)

is generated by the operators X3 X6 and X7 characterized by the structure relations

{X6.X7} (f-l)l [X3,X6]=(|-1)X6 [X3,X7] -(Ì-1)X7 (5.4)

Once again if they are realized in terms of 2 by 2 matrices they are trivial or

redundant and we are left with the previous resuls17 corresponding to osp(2/2) alone

while realized in terms of 4X4 matrices the whole superalgebra works. These results

can also be extended for arbitrary n.

One of us (J.B.) wants to dedicate this article to the memory of Professor Léon Van

Hove.
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