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QCD corrections to the W decay width within a new
dimensional regularization scheme

Christoph Greub

Deutsches Elektronen Synchrotron DESY
Notkestrasse 85

D-2000 Hamburg, Fed. Rep. Germany

(22. VII. 1990)

Abstract

A new dimensional regularization scheme for infrared and collinear singularities is worked
out for the example of 0(a,) QCD corrections to the total W decay width. This scheme

can be applied to other similar processes involving the 7s matrix. The QCD corrections
to the W width axe calculated explicitly according to this new scheme for arbitrary quark
masses. Furthermore the same calculations are done in a more traditional scheme, leading
to identical results.
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1 Introduction
We consider first order QCD corrections to the electro-weak process

W+ -» t + b (1)

t denotes a generic up-type quark with mass mt and b stands for a down-type antiquark
with mass mj.
For mt ^ 0 and mi ^ 0 the loop graphs contain ultraviolet and infrared singularities,
whereas the bremsstrahlung graphs only contain infrared singularities. In the case where

mt mt, 0 both, the loop graphs and the bremsstrahlung graphs are afflicted in addition
with collinear singularities. In order to regularize all these types of singularities we work
in d dimensions. For d > 4 we only have ultraviolet singularities whereas for d < 4 we only
have infrared (and collinear) singularities. This implies that there is no dimension d where
all types of singularities are regularized simultaneously. Nevertheless, we are allowed to
regularize all types of singularities with the single parameter d, because on the one-loop
level the ultraviolet singularities can be neatly separated from the infrared and collinear
ones, as explicit calculations show.
However, there are problems how one precisely generalizes the matrix elements from 4 to d

dimensions, in particular when 75 matrices are involved. We present a new method, where
we give prescriptions how to treat 75 in our specific example. As this method explicitly
includes the emission of gluons, which are pseudoscalars under the four-dimensional Lorentz

group, this new scheme is referred to as the pseudoscalar gluon scheme, thereafter. It will
become clear in the following description of the regularization procedure, that our method
is of course not restricted to QCD corrections to the specific process in equation (1). It
can be used for all gluon/photon bremsstrahlung processes, where the gluon/photon is
radiated from a massive or massless external particle, and for the corresponding virtual
corrections. As this scheme is technically easy to handle, we already made use of it in
different applications. One such application was the calculation of inclusive lepton pair
production through virtual W, Z find 7 gauge bosons in proton - antiproton collisions. [See
references [1], [2] and [3]]. If the lepton variables are not completely integrated out, the
75 problem cannot be circumvented any longer and a clear prescription has to be given.
Another application, where this scheme was very useful, is the calculation of the inclusive
photon energy spectrum from the rare 6-quark decay b —» s + g + 7, where s, g and 7
denote a «-quark, a gluon and a photon, respectively. [See ref. [4]].
There are many other papers about dimensional regularization in the literature. In reference

[5] only some of them are mentioned.
Our paper is organized as follows:
In order to fix the notation, we briefly review the Feynman rules which are relevant for our
process. In section 2 we give the regularization prescriptions for the pseudoscalar gluon
scheme without doing the explicit calculations. In section 3 we present the calculation
according to the setup in section 2 for the case where mt m* 0. In section 4 we speak
about the results in the case where mt ^ 0 and 7711, ^ 0. [This case would be important for
the physical tb decay channel of W if mt + mi, turns out to be smaller than mw after all]. In
section 5 we speak about the results one gets in a more traditional regularization scheme,
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in order to convince ourself that the new scheme really leads to the correct physical results.
In section 6 we illustrate the results from section 4 with some plots.

1.1 Feynman rules
We only write down the Feynman rules which are relevant for describing W+ decay
including the first order QCD corrections.
Fields

^o quark field c: colour index
t: flavour index
a: Dirac index (usually suppressed)

A* gluon field A: colour index

\i: vector index

Wp W field p: vector index

Free propagators
Because it will turn out that only the quark masses and the quark wave functions undergo
renormalization it is sufficient to work in the unitary gauge in the electro-weak sector.

d*k
(o|TWM(*)w+(y)|o) TiU*-y) * f tï-ïï e-ik{x~v) KW
(0\TAÎ(x)A?(y)\Q) \ G^(x -y) 8AB \ j^ e-"<-»> G^(k) SAB

(0|r«î(*)*J(y)|0) iS(x-y-,m)ScdStt.=iJ^rie-ik^-^S(k-,rn)SaiSul

k*-ml + iV

n c^^ - I &*" ¦ 1-^ jvjg Ì
&^W - [k2+ir) +

X (k2+ivfj

*»¦-> - {w^Ah}
Gfw(x — y) describes the propagation of a free massless gluon in an arbitrary covariant

gauge; A is the gauge parameter:

• A 1 : Feyman gauge

• A oo : Landau gauge



64 Greub H.P.A.

Vertices

<£7„H* V ih^X''2

W c={ g

g and h denote the SU(2)l and the SU(3)c coupUng constant, respectively, [a. ^].

2 Regularization prescriptions for the pseudoscalar
gluon scheme

Before discussing the virtual correction and the bremsstahlung graphs seperately, we Ust

some basic points which will be used for both types of graphs:

• the gluon remains massless

• the quark (antiquark) masses are denoted with mt and mt

• the four momenta of the external particles in each graph are four-dimensional, i.e.,

î=d-i

• The polarization vector of the W boson as external particle is restricted to 4 dimensions,

i.e.,

4 (*V,eV,0 ,0)

Our calculations are done in the Landau gauge; in this gauge the Feynman integral for
the vertex correction and the residue of the quark propagator are finite in the ultraviolet
region in d 4 on the one-loop level. For m 0 the quark self-energy even vanishes in
this gauge.

2.1 Self-energy contributions
The full propagator for a quark with mass m has the form:

(0\T*°t(x)*dt,(y) |0) iS(x- y;m) Scd Stt. =i J' ^- e-"<-»>Ì(i;m) 6* 6W

tè -j l-^ (2)
y — m — S + vq

The one-loop expression for the self-energy S reads:
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We generalize this expression to d dimensions as usual:

s - !<-">'" / w? -" ¦>+>-..+*T' ó"w (4)

where p, is an arbitrary mass scale. All the gamma matrices are now matrices belonging
to the Dirac algebra in d dimensions. Note, that the indices a and ß run from 0 to d — 1.

The propagator can be rewritten in the form

- t£2(m)
- (j-m)[l + Otf-m)} K)

where mass renormalization has been carried out tacitly. The residue Z2(m) is given by:

Z2(m) 1 + i-gj\t=m

In the Landau gauge we get:

rsi /1 A.1T II" \
(6)*(»)-!-£ /1 47TU3

4 + 3 - - ie + log —Ç-
\ « ITI«

where 2e 4 — d and 7^ 0.577... denotes the Euler constant. Note, that the j -poles in
Zi(m) are of infrared origin. [In the case where m 0 a direct evaluation of integral (4)
yields S 0. Therefore Z2(0) 1 in the Landau gauge.]
The summation of the zeroth order graph and the quark self-energy correction diagrams
is achieved by attaching a factor

\JZ2(mt) ¦ \JZ-i(mt)

to the zeroth order graph.

2.2 W vertex correction
The vertex correction is only calculated on shell. In 4 dimensions the expression for the
W vertex correction reads:

9

y
s C|^.=.(4/B) £!„*.»

W

" * ./ (2*)*7'Jb»+2pfe+ieM 2 J P-2p'Jfc + ie7',fT W (V

p' : four momentum of the outgoing antiquark (p1)2 (mt)2
p : four momentum of the outgoing quark (p)2 (mt)2
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The regularization of the formal expression is done in three steps :

STEP 1

The formal 4-dimensional expression can be rewritten in a way where the chirality structure
of the outgoing (anti)quarks is manifest:

+(4*)#(4a) + (4*)* (4*)
'" - V (27r)<7*P+2pifc + te7''ib» - 2j/Jb + te7' W

n J (2ir)* laW+2pk + ie 7" Jb» - 2p»ib + ie 7" W

" " y (27r)*7<Tfc»+2pfc + ie7'iife»-2p'Jb + ie7''tT W

A y (2i,Yla^+2vk + ic^k^ -2^ + ^" [)n

(8)

Note, that the integrals do not contain a 75 anymore.

STEP 2

In this step we generalize the Dirac algebra and the Dirac spinors to d dimensions:

• Dirac algebra

In d dimensions (d even) we have d (2dl2 X 2dl2) matrices r0, Tlt..., Tj-i satisfying
the algebra

{rV,r„} 2^1 n,v 0,1,2,. ..,d-l
g^ diag(l,-l, ,-1)

Especially we have T^V dl For some aspects it is convenient to decompose the
Dirac algebra into a direct product:

d 4 + d d : extra dimensions

7o,7i,72,73 ; 7i,72,-,7ds v ' V
v '

4 d

{7^,71-} Zg^v 1 P,v 0,1,2,3 (4 x 4) matrices

{7.-,7j} -2«yl i,j 1,2,...,d (2d/2 x 2d/2) matrices

7b Ì7o7i7273

7d+i i^7i'--7d
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To 7o ® 1

ra 7!<8>1

r2 72 91
r3 73 <8> i
r4 75 9 7i
rB 75 9 72

rd_i 7s® 7? (9)

We list some properties of these different gamma matrices :

rd+1 z^ To ¦ • • IVi 7b ® 7.Î+1

râ+i - i r++1 Td+1

7Î =1 7s+ 75

Irf+i 1 7j+1 1i+\

• Spinors
Because the momenta of the external particles are four-dimensional it is also
convenient to decompose the spinors into a direct product. The Dirac equation in d

dimensions for a particle with mass m reads:

iU(jp)=ptiT»V(p)=mU(p)

Because pM is four-dimensional the solution to this equation can be written in the
form:

U(p) u(p) ® x
where we used the notation :

U(p) Dirac spinor in d dimensions

u(p) Dirac spinor in 4 dimensions

X constant spinor in d dimensions:
2d'2 degrees of freedom

A similar decomposition also holds for antiparticle spinors V(p) satisfying

jV(p)=Pj»V(p) -mV(p)

STEP 3

Now we are ready to write down the regularized version for 1^ We do the following
replacements in equations (8) :

• ^^^®1
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• 7c —> ra for all gamma matrices, e.g.

i pa-fa -» Par«

ala. _j. jj*
(2,)« -* (Sp

• tf -» tf • M4-1

Note, that the indices p and <7 vary from 0 to d— 1, whereas the index /i, which couples to
the external W polarization vector only take the values 0,...,3. Now the expression for 1^
is well-defined and can be evaluated. Note, that IM is understood to stand between spinors
in d-dimensional space. Therefore, doing the algebraic manipulations the Dirac equation
is used, e.g.

y(w(p) ® x) m(u(p) ® x)

i.e., we only calculate the vertex correction 1^ on shell.
We do not give the detailed results here, but we mention its structure:

IM fM ® 1 (10)

where IM is

2'.-^{-m*+fa^)B+
•H W (4^) È + "*? (4^) f} (11)

The form factors A, B,..., F depend only on the scalar product 2pp', the quark masses mt
mt and on the mass scale fj, introduced through dimensional regularization. We should
point out that all singularities are contained in the form factor A

2.3 Matrix element and phase space for W decay [Zeroth order
+ loop corrections]

The matrix element M including zeroth order and all one-loop contributions to the W
decay width reads (in d dimensions):

M U ^Z2(mt)Z2(mb) 0{p)T„ (^p- ® l) V(p')Sab +

+ (4/Z)j=Ü(p)IßV(p')6at\-e% (12)

Because of the direct product structure of the different quantities in M it can be written
as

M M (x+x) (13)



Vol. 64, 1991 Greub 69

where

M li ^Z2(mt)Z2(mt) û(p)lti i^~) «(p')*«* +

+ (4/3)^û(p)l^(p')^}-e^ (14)

Taking \M\2 and summing over the extra spinorial degrees of freedom we get

Y, \M\2 2d'2 \M\2
extraspins

On this level, the ultraviolet divergences have cancelled and we are left with infrared
singularities They are regularized by the dimension parameter d, i.e., we have to stay in
d dimensions. However we are allowed to omit the factor 2dl2 due to its universality: The
factor 2dl2 tends to 1 as d —> 0 It will also be present in the bremsstrahlung contributions.
Therefore we leave it out, i.e., what we really calculate is |M|2
The phase space integrals will be worked out in d dimensions.

2.4 Summary concerning the loop-corrections
The matrix element M involving the zeroth order graph and the loop-corrections has

been regularized in such a way that the four-dimensional chirality structure is maintained.
In particular, for massless (anti)quarks this means that only quarks with helicity -1 and

antiquarks with helicity +1 appear in the final state.

2.5 Gluon bremsstrahlung
For W+ decay there are two bremsstrahlung diagrams:

(1) 2

Again all four momenta of the external particles are taken to be four-dimensional;
this is no loss of generality as long as the number of particles involved is < 5. The
polarization vector of the W+ boson also lies in four dimensions. However, we are not
allowed to consider only four-dimensional gluon polarizations, i.e., we also have to include
the additional d d — 4 gluon polarization vectors:

è« (0,0,0,051, ,o)

if (0,0,0,0;0, ,1)
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Under the four-dimensional Poincaré group these vectors transform as pseudoscalars.
Therefore we denotes these extra degrees of freedom as pseudoscalar gluons.
The reason, why we have to include these pseudoscalars, can be seen in the discussion of
the virtual corrections, because the regularization we did there includes the propagation
of pseudoscalar degrees of freedom: This is most easily seen in the gluon propagator:

Gprr(k) t~~~.—I" other terms
k2 + it

Of course p and <r are not restricted to 4 dimensions, because otherwise we would have
been forced to put

ìyvj" 4

instead of

vp.gr d

as we did.
Next we want to give the regularized version of sum of the two matrix elements (1) and
(2) : In a first step we write down the matrix elements in four dimensions. In a second

step we do exactly the same replacements in the four dimensinal expression as we did in
STEP 3 when discussing the vertex correction. These two steps lead to:

M Mi + M2

ghp.*-dxjb
y/2 2

M {Up)[tw (^91)1

2p>k fa+

^ **£=«, (4*.»)M
(15)

Keeping in mind that the W+ polarizations are restricted to d 4, M can be split into
two terms:

Mv, 9 hp4-d*t f- J» (\+T*\ 4-f+mb
2p>k fg

«PÌ^C¥)\*))v*
(16)

M.t
ghp*~d Xj f [ /l + 75\ 4 - f+ mb

2p>k
75+

%+j + mt /1+75^1 ,xi + x
+76

2pk ^(~2~Jj^)/ (* 7iX)

(17)

where Mvcct. stands for the emission of a vector gluons with polarization vector e*(fc) and
M,cai, stands for the emission of a pseudoscalar gluon.
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In a next step one has to take the square of M. We sum over the pseudoscalar gluons and
also over the additional spinorial (x) degrees of freedom.

EIX+X|3 2^
spins

spras,scal.

The factor 2dl2 tends to 1 as d —* 0. Furthermore it is universal, i.e., it appears also in the
vertex correction graph and in the 0th order graph. Therefore we omit this factor.
We now introduce new equivalent matrix elements Mvcet. and Mtcai., in which only four-
dimensional objects appear:

m.„. - £^S {«*,[* (Lu!) =!=£=«+

(18)

M.ca, Vd=î__ ^ |fia(p) \JW —_j 2ptfe
t7s+

(19)

Af«ect. and M.co!. are equivalent to Mvect. and to MJcai. in the following sense :

\Mvect.\2 St E \M«a.\2
extra spins

iM.cad2 e i^«i. r
extra spins,seal, gluons

where means equal up to the factor 2dfa We mention that Mtcai. can be interpreted to
be generated through the Lagrangian

^pseudoscalar gluon h ^^4 #.(«) i75 A^0 *»(¦) $A(x) (20)

where $¦* denotes one real pseudoscalar gluon field with colour A.

2.6 Summary concering the bremsstrahlung graphs
The regularization has been done in such a way that the (anti)quarks have the same

chirality structure as in four dimensions when a vector gluon is emitted. However, if a
pseudoscalar gluon is emitted by a (anti)quark its chirality is flipped. (We should point
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out, that because of the extra factor \Jd — 4 in equation (19) a pseudoscalar gluon does

not contribute if it is not emitted collinearly). In particular, for massless (anti)quarks
this means that in the final state a quark with the 'wrong' helicity +1 together with a
collinear pseudoscalar gluon can appear (or, equivalently an antiquark with the helicity
-1 together with a collinear pseudoscalar gluon). However, these states cannot be
distinguished experimentally from the corresponding (anti)quark states with the 'right' helicity.
It may be conjectured, that in the case where a massive quark emits a collinear
pseudoscalar gluon, the latter could be separated from the quark because of the different speed
of the two particles. However, in this case the contribution of Macai. vanishes, which proves
the intrinsic consistency of the scheme.

3 W decay into a massless quark and antiquark
We present the explicit calculation for the QCD corrections to the total decay width of the
W+ boson into a massless quark and antiquark according to the pseudoscalar gluon scheme

described in section 2. The decay of the W+ boson is considered in its rest frame. In the
following discussion q,p,p' and k stand for the momenta of the W+ boson, the quark, the
antiquark and the gluon, respectively.

3.1 Zeroth order and loop corrections
As the self-energy vanishes in the Landau gauge, we have Z2(0) — 1. For the regularized
version of the vertex correction JM (see equation (7)) we get:

'l-7s Ä„\ Wal fi+76'-fa^®fafa4M ith

ddkV W/&' # + y 9-f
(2w)d " k1 +2pk + ie M k1 - 2p>k + ie

-TpG'xr(k) (21)

This integral yields:

167T»r'iA

A k mi
V(l-e)

As mentioned above 1^ is of the form

with

/M JM i

2 3 '

-Ï + - + 8
e2 e

J" 16*'7" V 2
A

The matrix element M in equation (14) can then be written as:

M — ew
9 -

y/2
w(p)7m (—y^J w(p') «a6

167r33

(22)

(23)

(24)
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From M we calculate TmTt, which contains the zeroth order contribution and the loop-
corrections to the total decay width for W+ decaying at rest:

<*T*r' ^ Sd(p + p'-q) \X\M\2 dp.(p)dp.(p') (25)

<"W * (^v p° +^ (26)

The sum runs over the spins of the quarks and their colour and over the polarizations of
the W+ boson. The factor (1/3) stems from averaging over the W+ polarizations. The
calculation of Imr* / dTmrt is now straightforward. We get:

¦vnrt _
92™w g2h2mw \^J f 2 3 a\

16tt 96tt3 r(2-2e) l e2 e J
V '

3.2 Gluon bremsstrahlung contributions
We start from the matrix elements Mvect. and M,cai. in equations (18) and (19), respectively.
In a first step we calculate the square of these matrix elements where we immediately sum
over spins and colours of the quarks and gluons and average over the W+ polarizations:

sEIä-J' SV)4-'/«*.
a jj ómw

\Y\M.ca,\2 2-f^(d-A)(ß2y-d f.cal.
ó jj ómw

Using energy momentum conservation

q p + p' + k

fvect. and f,Cai. can be written in the form

_ 8(pq)(p'q) - A(p'q)2 - A(p'q)(kq) + 4(kq)(pq) + 2m2w(kq)
Jvect. — i

p'k

|
S(pq)(p'q) - 4(pq)2 - 4(pq)(kq) + 4(kq)(p'q) + 2m2w(kq)

|

pk
4(pq)(p'q)(2rn2w-(kq)) 2

(pk)(p>k)
- - 8mw1 ^PgAg 9) \*™w - ^q;; _ g^2 ._

/.«I. - -2mw + (*5) |—py— + ^ | (29)

In a second step we write down the partial decay width dT^/J^' and dT^X' ^or a ^+
decaying at rest:

<nt£" ~^-sd(p + p' + k-q) l£¥Sp- /—.**(p)W )«W*) (30)
2m.jy v,r ' *~ ' "'' 3 m2



74 Greub H.P.A.

and the corresponding expression for dT^J^'. The measures dß(p),dß(p') and dp(k) are
defined in the same way as in the virtual contributions. Working out the phase space
integrals, we get:

F6r«m. 92h2mw (ffij /23 17 ,1
"ect- "

967T3 r(2-2e) U2 +
e 2 J

2,2 (Vf2 »

V-* - ~96^~r(2-2e) {1> { J

and

pfrrem» _i. y\brema pi1 — L »ect. T Afr«. i rifcrem. pfcrtm. _ 9*^ "»ff \^V / f 2_ 3 19
"'<*• "* ~'¦ 96tt3 T(2 - 2e) U2 e

+ 2

f 2 3 19 jib + ; + T-w} (32>

3.3 Total decay width of PF+

The total decay width T of a W+ boson decaying into a massless quark and antiquark
including first order QCD corrections yields:

p pinrt r\trem»

Using a. £ and GF 4v|^, we get:

_
2\/2 GFmfr

¦K
(33)

8tt

4 W decay width into a massive quark and antiquark
We consider QCD corrections to the process

W+ -»to

where the masses mt and mt are arbitrary. The calculations are done according to the
pseudoscalar gluon scheme. As the principle steps in this calculation are the same as in
the massless case, we immediately give the final results. As in section 3 we give the results
for TmTt and Th"m' seperately. Furthermore the result for r*"1' is presented as a function
of the individual form factors present in equation (11). Their explicit form is given in the
appendix. As far as we know, these form factors are not given explicitly in the literature
for two arbitrary,different masses mt and m&; however, the final result including both, the
gluon bremsstrahlung and the virtual corrections can also be found in reference [6]].
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4.1 Zeroth order and loop-corrections
As before, the zeroth order contribution and the one-loop corrections are contained in TmTt.

For I"*« we get:

ptnrt Pf (*)"
with

Using

f can be written as

with

1 + elog lw
lÔTrm^r r(2 - 2e)

P sj&rf)2 - 4m?m?

™2mw
4GFV2 and

p*mtmt

_tf_
16tt2

+ 0(e2)

f 2y/2GFV1 +
ieV2GFK

[Vi (kÄ + 4+J)+V2ÄB+

-- mtV3 KC - - mbVt KD +

+ - mt V5 »Ë + - mfcV« KF

(34)

(35)

Vj 2tti^ — mj — mt + 2mtmb — m^mb — m^ymt
V2 6mtmbmyy

V3 m%f + m\ + m\ — 2m2m2 + lOm^m2 — 2m2ym2

V* bm^y — m* — ml — 4m2m^ + 2m2m2 — 4m2mjp

Vs Vt

V6 m^y +ml+m* — 2ra£m^. + 10ro2m^ — 2m\m\ (36)

In equation (35) the symbol SÄ denotes the real part of the form factor Ä, present in
equation (11). The explicit result for the form factors is given in the appendix.
In order to see the cancellation of the infrared singularities when adding the bremsstrahlung
contributions we split Tvtrt into an infrared finite and an infrared singular part.

pvtrt
sing

pinrt1 finite

2V2GFK 1

3-Km.yf e

x l (mir -m\-
Twirt -pvirt

sing

énfi2

mw r(2 - 2«)

ml)l^(m2w-m2-ml) + p

2mtmt

(37)
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4.2 Gluon bremsstrahlung contributions
We give the final result for Ttrm'. As in section 3.2 rirem* consists of two parts:

r brems jibrems pbremj
— X veci. + l seal.

In the massive case the contribution V^gf' vanishes, i.e, the emission of pseudoscalar
gluons does not contribute to the total decay width.
For Tbrm" we get:

nbremê 2<j2GF

3irmw r(2 - 2e)

x { -4m2 Vi Li + 4(m2w -m\- m\) Vi L2 - 4m2 Vi L3+

+ — 10mw + ßm^rrij — 2my^mt — Ambmt + AmA £4 +

+ |8m^ + Amwm2 + 4mw"i2] Ls +

+ [4m^ + 8rrmrm2] L6 +

+ 4m6 — 2myy — 2myfm^ + ßmwmt — Amt mb Lj +

+ \8mwmt — 12mjy L% +

+ 12mjp7Ti2 — Am^ + 4miyTO2 Lq > (38)

Vi 2m.yf — 77lj — 77lj + 2777.J mb — JTljjrTTlj — 771^777/j

The functions L\,L2 and L3 contain the infrared singularities. We have worked out them
explicitly:

L =,-
1 El ib {Êt+p)(mw-Êt+p) Èt

lo
Êt+p

\ 2mw 2mwm2 J mtmt 2mwm2 mt
P

Amwrn2
1+2-2log. W
e mwmtmt

,_, 2-Bt+P JSt+p. mw mw — Et + V "»w
31og" 41og log 4log log Y

Am^j I mt mt mt mt mt

+31og2 "»—*+* + u (h±ï) _ Li (*LZ±)
mt \ mw / \ mw /

+Li fmw-Êt + p\ _L. /mw-Êt-p\
+

V mw / \ mw J

- È, - p\
-Êt + p/

+3Li l^ï) + 3Li fmw"?~^ 1 - 7T2 +
Et+P/ \mw

1 (Êt + p) (mw - Et
log

e mtmb

¦t+P)\
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(1 _ mw — Ët\
2m.w 2mwmb I

mw — Et\ (Et + p) (mw — Et+p)
log^ ^ h

2m.w

mw — Et. mw — Et+ p
2mwm2 mt

T7lj77lJ

P

Amwm2
l+1_lk|I_!Sff_-
e mwmtmt

(39)

where

Et
™2 i »„2 .„2mw + mt — mb

2mw

yß,2 _,2
¦t -"»*

y(T77^r - ro? - ml)2 - Amlm\
2mw

(40)

Li(x) denotes the Spence function

Li(x) -f ^log(l-t)
Jo t

Many useful properties of this function are given in [7].
The functions Li,..., L$ are given in terms of one-dimensional finite integrals:

Li j dEt

Lt \jdEt
L9 J dEt

L7

Lb

L9

rriw — 2mwEt + ro2

(Af2 - 2mwEt)p(mw - Et)
(mw — 2mwEt + ro2)

Etp
mw — 2mwEt + m2

L-JdEtl2log?i±l+logmw ~E>

mt mw — Et

j dEtEt {2log^±P+logTO-

2mw
1

2mw J I mt _ mw
1 t dE

(2mwp(M2 -2mwEt)
Amw J \ mw — 2mwEt + m2

+(M2 - 2mwEt)

t + pi
t-p J

-Et+p 1

-Et-p J

Et + p mw — Et + p
2log + log -mt mw — Hit — p

(41)

where
sfih and M2 — mw + m2 — ml

The integration variable Et is restricted to the interval

Et G [mt, Et]

Again,
nbrems reme y\bremg

ing ' finite
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The singular part Tjj^" reads:

pfcrem. 2^2 GFK (ffi) 1
J-sùmi „ a ï^ iTT - Vl X¦ sxng 37rro^ r(2-2e) e

(t71^ — rot — mb) log — 2rowP
771(777,1

(42)

itnrt i -pfrremj

4.3 Total decay width
We perform the sum

p pwirt pi

When doing this sum the infrared singular contributions T^g and Tjj™* just cancel. Our
result for T coincides with the one given in reference [6].

5 On the results in a more traditional scheme

We consider again the QCD corrections to the total decay width of a W+ boson into a
massless quark and antiquark.
One way to regularize the collinear singularities is to give (small) masses mt and mb to the
quark and the antiquark, respectively. In order to regularize the infrared singularities one
gives a small mass to the gluon. The bremsstrahlung corrections can then be worked out
in 4 dimensions from the beginning to the end. In the loop graphs we have to regularize
the ultraviolet divergences in addition. This we did dimensionally. When summing all
the loop graphs the ultraviolet singularities vanish. At this point the limit d —> 4 can be
done. The subsequent phase space integrals can then be worked out in d=4. All these
calculations are done in detail in my doctoral thesis [8].
When adding the virtual - and bremsstrahlung contributions, the infrared singularities
cancel, i.e., the gluon mass can be sent to zero. After this step the results turns out to be
identical with the one we got in section 4.

In a last step we can do the limits

mt —t 0 and roi, —> 0

This step precisely reproduces the final result in section 3.

6 Numerical results
In this section we illustrate the results of section 4 with two plots. In the following
discussion I1*0) denotes the W+ decay width for the tb channel without QCD corrections,
whereas V includes first order QCD corrections.
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• Figure 1
IH5) and r are plotted as a function of mt. The other parameters axeimw —

82 GeV,ro5 5 GeV and a, 0.1.

• Figure 2
We can write T as

p r<°> jl + ^ • factor}

This 'factor', which only depends on the masses mw,mt and rot, is plotted as a
function of mt ; two curves are plotted:
- mw 82 GeV mb 5 GeV
- mw 82 GeV mb 0.1 GeV
Note, that in the massless case [rot mb 0] we have:

r« r(o) |l + ^}
i.e., the 'factor' defined above is 1. This is represented by the dashed line in figure 2.
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Figure 1: Total decay width of W+ as a function of mt ; mw 82 GeV mb — 5 GeV,
a. 0.1
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Figure 2: T T^ {l + ^ factor}
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Appendix: The form factors Ä,...,F
We give the expHcit results for the form factors appearing in equation (35) :

Ä 1 + i [3(2pp')î3 + P2 B2] J +

+M. [_371 + 6J2 - 2JB] - ro2 J6 - m2bI7 +

-Ç(K2-3Ë2)
B 2rot mb (2Ï3 + 274 - I2 - 2I5)

C 4rot I3 - 2rot76

D -2mbI-,
E 2771t la
F -Amb h + 2mbIs

(43)

where

P ^pf)2 - 4ro?ro62

Note that the scalar product 2pp' on which these functions depend, is

2pp mw — mt — mb

The functions Îi.,...,Ït,B2,K2 read:

j dx—y
J a(s

/ dx 't \J a(x)

(x)
X

1-x
(x)

2

Ii fdx-
J a

It fdxX-^lJ a(x)

'> - l*i
J a(x)

J a(x) mt mb

B2 fd**-£f£J a(x)2
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*2 Id*Xj^l0*£lJ ayxy mt mt
a(x) m]x2 + rojj(l - x)2 - 2pp' x(l - x) (44)

We list the real parts and the imaginary parts of these functions :

tfl - _! log M±i
p Zmtmt

- -2m2 - 2pp' 2pp' + p 1 ro2
K73 ~OV~l0g^m7 + 2Q^l0gm|

-2m2 - 2pp' 2pp' + p 1 ro]
Q2p ö 2rotroi, 2Q2 ro

f 1 4ro2ro2 + 2pp'(ro2 + mj) 2pp' + pKJb "ô? pTq^ logl^T +
77T,2 — 7712 7712

+^(Q^~l0g^2

f 1 2mt + 2ml(2pp') + (2pp')2-2m2m2b 2pp'+ pUh
-Q2 TW)2 l0glro^T +

2m2b + W m?

2(Q2)2 10gm2

f 1 2m4 + 2m2(2pp') + (2pp')2 - 2m2roj| 2pp' + p** Q2 TW)2 l0glm^T +

2ro2 + 2pp' m2

2(0^ gro|

a/i - -1 2iog ± log ^'+2™? ym.+ 2ml+el+
P { Q2 4Q2m2b

2pp' + 2ro2 + p 2pp' + 2ro2 + p+ l0g
2m>

l0g
2roj +

_1
2Q2 2rot2Q2

°g
2pp* + 2m2 + p

°g
(2PP* + 2m2 + p)m\

2pp' + 2ro2 + p 2m\q2
+2l0g

2p
l0g

(2pp< + 2ro?+p)p
+

p3 [ p 2rotro6 J

H#a ft52-^3?I1 +
/>2

1 f 8rot2ro3 + 2mg(2pp') + 2mt2(2pp')

pX+p I QV
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where

xlog
4Q2ro2

(2pp- + 2m2b + p) (2yp> + 2ro? + p)
+

-2 log
p + 2pp'

+ ¦

2pp>

Q2 [(2pp> + 2ro2 + p)p (2ppl + 2m2t-p)p
+

+2 log
2mbQ2

(2pp> + 2m2b + p)mt [Q
2pp' + p

-2 log

+

2pp' + 2m2 + p
2m,tmb

4ro2(2pp') + 8ro2rog

"p2(2pp' + 2ro2-p)
4ro2(2pp') + 8ro?roj|

(2ppf + 2m2b + P)P.

P - 2pp'

+

1

Q2

2pp' + p + 2ml
log 1

(2pp> + 2ro? - p)p
+

log;

2p

2Q2m2

»Ja

9/«

3Ï8

9fJ7

9f52

3tf2

p2(2pp' + 2ro?-|-p) 6(2pp' + 2rot2-|-p)p

2tt

P

(2ml + 2PP'\

2m2r

{ q2p r/2ro? + 2pp'\

/4ro£ro2 + 2pp'(ro? + m2b)\

V MQ2)2 / "
/2ro4 + 2ro2(2pp') + (2pp')2 - nl
V p(Q2)2

(2m* + 2m\(2pp') + (2pp'f - 2t77,27712

\ P(Q2)2
27T P2
— log
p Q2mtmb

2n 2pp'
~~AÎ

P

2(2pp') 2(2pp')
log

Q2mtmb
+

8m2ml + 2m2t(2pp') + 2m2(2pp')

+ -
1

Ö2

p3Q2

P - typ'
(2pp> + 2m\ - p)p

+

+
4ro2(2pp') + 8ro;

p3(2pp' + 2ro
ro]ro|1
l + P Ì

Q2 m\ +m\ + 2pp'

(45)

(46)
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Li(x) denotes the Spence function:

Li(x) -/oX^log(l-t)
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