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Vol. 68 (1995) (c) Birkhäuser Verlag, Basel

A Relativistic Quantum Equation for N > 2 Bosons
in Two Space-Time Dimensions

By Etienne Frochaux

Département de Mathématiques, Ecole Polytechnique Fédérale,
CH-1015 Lausanne, Switzerland

(5.IX.1994)

Abstract. We give a quantum and relativistic eigenvalue equation for N > 2 bosons in two

space-time dimensions, which generalizes the corresponding Schrödinger equation. More precisely

we find three self-adjoint operators P (momentum), H (Hamiltonian) and L (generator of the
Lorentz transformations), acting on the Hilbert space of JV free bosons in the Schrödinger picture,
which satisfy the commutation rules of the Poincaré algebra. The eigenvalue equation for the mass

operator M2 H2 — P2 leads to the above mentioned A-body equation. The possible existence of
an eigenvalue assures that this model is non trivial.

1 Introduction

Quantum Field Theory (QFT) is until now the best framework to study theoretically the

quantum and relativistic particle phenomena. This theory has been established initially
to reproduce the experimental scattering results, in a relativistic and quantum framework.
The bound states problem has been considered later and has been naturally thought in
terms of scattering amplitudes. This has led to the famous Bethe-Salpeter method for
finding the bound states, which treats the quantum and relativistic two-body problem in
a satisfactory way, both from the physical and mathematical point of view, but which still
carries important drawbacks (the bound state masses appear in a complicated way ; moreover
the calculation is overloaded by the so-called 'relative time variables', which are variables
without physical interpretation). Because of these difficulties, this method has not led to a
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clear and practicable theory of the relativistic corrections to the Schrödinger equation.

The difficulty in studying other particle phenomena than scattering, in QFT, comes
from the difficulty of defining the notion of 'particles'. It is generally admitted that this
notion can be given a clear meaning only in an asymptotic way. This statement, however,
ignores that the particles can also be seen in the spectrum of the mass operator M. In
fact the mass of each particle is an eigenvalue of M. In particular, once a bound state is

known to exist in a given QFT model (by the Bethe-Salpeter method), its eigenspace can be

approached by using a variational and perturbative method. Such a programme has been
carried out for a class of QFT models, the V(<p)2 models [1], which describe a world of
massive, identical bosons in a two-dimensional space-time. This study has the advantage of

stating the quantum relativistic bound state problem in a completely new way. In particular,
because the calculation can be restricted, without loss, to the so-called 'zero-time subspace',
the appearance of the 'relative time variables' can be avoided. However, the main interest of
this method is that it finally leads to an eigenvalue equation for a two-variable function. This
equation, which has to play in QFT the same role as the Schrödinger equation in Quantum
Mechanics (that is to give the discrete structure of the set of the bound states) can naturally
be considered as the relativistic generalization of the two-body Schrödinger equation.

More precisely this method constructs step by step, by minimisation and perturbation
arguments, a subspace which is parametrized by a two-variable function, and which contains
the bound state eigenspace. The investigation of this subspace shows that, at first perturbation

orders, it carries a representation of the Poincaré group. This perturbative result
suggests that our QFT models contain some 'two-particle-like' representations, the bound
states (if there are any) appearing as irreducible sub-representations. All these representations

have the particularity that the time variable is not used (due to the restriction to the
'zero-time subspace'), even if a Lorentz transformation is performed. This mathematically
advantageous property, which characterizes the representation of the physical observables
called the 'Schrödinger picture', may however present difficulties of interpretation in the
relativistic context.

It is natural to ask if such two-particle representations really exist, without using a

perturbation approach, even leaving QFT. What we are looking for is a set of operators, in
the Schrödinger picture, satisfying the commutation rules of the Lie algebra of the Poincaré

group. Surprisingly this problem can be solved easily, and we have even found a general
class of solutions [2]. Moreover, some of these representations appear to be unitary, strongly
continuous and non-trivial [3], In fact we have obtained the simplest quantum relativistic
theory for two interacting particles.

In this paper we generalize this last results to the case of N > 2 (arbitrary large)
number of massive, spinless, not necessary identical particles, moving in a two-dimensional
space-time. Here QFT is no more involved. Three self-adjoint operators are constructed, P
(momentum), H (Hamiltonian) and L (generator of the Lorentz transformations), which act

on the same Hilbert space than the representation describing N free bosons in the Schrödinger
picture. Moreover these operators satisfy the commutation rules of the Poincaré algebra on
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a dense subspace (which is a common core for the three operators). The eigenvalue equation
for the square of the mass operator M2 H2 — P2 can be written down and leads to a

simple A-body eigenvalue equation. The possible existence of eigenvalues assures that these
models are non trivial.

We do not establish here the stronger mathematical statement that P, H, L are the
generators of a unitary and strongly continuous representation of the Poincaré group. Such

a result could be obtained by adaptating the methods of [3] (and by restricting the class of
admissible P, H and L).

This paper is organized as follows. The operators P, H, L are given in Section 2 and are
shown to be self-adjoint (Proposition 1). They satisfy the commutation rules of the Poincaré
algebra (Proposition 2) on a dense subspace (which is a common core) provided the so-called
'interaction kernel' satisfies a 'fundamental equation'. In Section 3 we find a large class

of solutions of this equation (Proposition 3). Then in Section 4 the associated eigenvalue
equation for the bound states is given and is compared with the Schrödinger equation. It is

shown in Proposition 4 that eigenvalues may occur, which proves that these models are non
trivial.

2 The Operators P, H, L and the Fundamental Equa¬
tion

The relativistic or Poincaré group of two space-time dimensions V+ is generated by the

following action of H3 3 (f, r, 7) on (x, t) G IR2 :

«->-(:) - (5S'T)(;)*(î
In other words V\ is (JR3, •) with the group law

(fiTi7) ¦ (C'fT'.Y) (£'cosh 7 + t'sinh 7 + Ç, £' sinh 7 + r' cosh 7 + t, 7' + 7)

for all (£, T, 7), (Ç',r',7') G if?3. Note that V\ is connected (reflexions are not considered

here).

The first representation which interest us is given by the following action on the one-
variable functions /

(C,T,7)-/(p) e*e™W /(pcosh7 + w(p)sinh7)

where u>(p) \/p2 + m2 and m > 0 is a parameter. It consists in a unitary, strongly
continuous and irreducible representation ofV\ in the function space L2(1R, da), the so-called
'invariant-measure' a being given by da(p) dp/2uj(p) (for a proof, see for instance [3]).
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Let us denote this representation by III. We introduce the generators of the one-parameter
groups

P (momentum) defined by Pf — io\(£,0,0) • /|ç=o

H (Hamiltonian) defined by Hf —idT(0,T,0) ¦ f\T=o

L (Lorentz generator) defined by Lf —id7(0, 0,7) • /|T=o

and an elementar calculation gives their action

Pfip) P f(p) Ì
Hf(p) u,(p)f(p) na

Lf(p) -iw(p)f'(p) J

for suitable / (these operators are unbounded). They satisfy the commutation rules of the
Poincaré algebra

[P,H}=0
[P, L] iE
[H, L] iP.

From these rules follows that the square of the mass operator M2 H2 — P2 commutes
with all generators. The representation Hi is characterized by the fact that M2 is just the

identity times m2. So III is called the 'one-particle representation of mass m'.

Let n^v be the tensor product of N copies of Hi. It describes a world of N particles of
mass m without interaction. If the particles are identical, the symmetrical tensor product
must be taken. To treat all cases (symmetrical or not) we neglect henceforth to mention
this question (we could also consider the case of particles of different masses, which would
lengthen all formulas without real interest). The action of the generators in the function

space L2(]RN,do~t<f), where the invariant-measure is an a <g> • • • ® a (N times), are now
given by

Pf(Pi,---,PN) (pi + \-Pn) I(pi,---,Pn) Ì
H0f(pi,...,pN) (w(pi) + ruj(pN))f(pi,...,pN) > UN

Lof(Pi,---,PN) -i(w(pi)£>Pl + ¦ ¦ ¦ + u)(pN)dPN) f(pi,...,pN) J

for suitable / (the operators being unbounded). We have put an index 0 at Hq and at L0

to distinguish these operators from those defined below. It follows from the properties of
the tensor product that n^r is a unitary and strongly continuous representation of V\. In
consequence, according to the Stone theorem, the operators P, H0 and L0 are self-adjoint
and they satisfy the commutation rules of the Poincaré algebra.

Let us perform the change of variables (pi,... ,pjv) —* (P, 9i, ¦ • •, qN-i) given by

P Pl + \- pN
1

4

sign of q, sign of pi - pi+l

1) 7 |(pi-Pj+i)2 - Mpi)-wte+i))2
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for all 1 < j < N — 1 (Appendix A gives all the technical formulas we need about it). In
these variables the invariant-measure is written dp :

i \ j ir, \ r.N-2 dP doN_i(qi,... ,ÇN-l)
daN(Pl,...,pN) dp(P,q1,...,qN^1) 2" ——— r—\l{f,qi,... ,qN-i)

where we have put

Sl(P,qi,...,qN-i)
N-l 4 N-l

N2m2 + p2 + 4 y qì + — E M*) - qM<h))
\J j=l m £<j,=l

(for N 2 the last sum must be removed). Note that £l(P, qlt..., qN-i) w(pi)H \-ui(j>n)
(see Appendix A). In these variables the action of the generators becomes

Pf(P,qi,...,qN-l) P f(P,qi,...,qN-l)
H0f(P,q\,---,qN-i) n(P,qi,...,qN-i) f(P,qi,... ,qN-i) \ ^n

Lof(P,qi,---,qN-i) -iü(P,qi,...,qN-i) dP f(P,q!,...,qN-i) J

for suitable / (the operators being unbounded).

The aim now is to modify the representation n^v by changing slightly the operators H0
and L0, but not P, without leaving L2(RN ,dp) and without breaking the commutation
rules. As in [2] we introduce the interaction operator Ö given by

do-N-i(q') Ifn -v h(P,q,q')°i™~l*£Se™*Çl(P,q') iì(P,q) + n{P,<f)

for all P and q ((ft,..., Çat-i), where h is a kernel satisfying the symmetry condition

h(P,q,q') h(P,q',q)*

and which will be precised later (here * means complex conjugaison). The interaction
representation, denoted by U1^, on the same Hilbert space L2(lRN,dp), is defined by

P as in n^v I
H H0 + {H0,O} UhN

L L0 + {L0,O} J

where we have used the notation {A, B} AB + BA. We have to show that these operators
make sense, by imposing appropriate conditions on h. We need some definitions. We denote

by Dh the function

ii(P,q) + ü(P,q')

and let B be the Banach space made of the bounded and continuous functions h(P, q, q') on
M2N~1 for which Dh(P, q, q1) exist and are also bounded and continuous on ]R2N~l, equipped
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with the norm \h\ \\l

by the following result.
+ H-D/illoo. The mathematical sense of our operators is assured

Proposition 1. There exists K\ G (0,oo), depending only on m > 0 and N > 2, such

that, for all h G B with ||/i||oo < K\, the operators P, H, L are self-adjoint.

Proof. It is clear for P. From the symmetry of h follows that O is a symmetric operator.
Now if A, B are symmetric operators, so is {A,B}. Thus H and L are symmetric. To see

that H is self-adjoint we note that

{H0,O}f(P,q) f^-1^ f(P,q>) h(P,q,q>)
J n(P,q')

defines a bounded operator because

H0,O}f\\2 Jdp(P,q) j "pV f(P,q') h(P,q,q>)
n(P,q')

,Jdp(P,q) J doN^(q') f(P,q>)

daN-i(q')* WW n(Pfa
< (INI- k ii/ii)2

Sl(P,q>) Sl(P,q')

dp(P,q>) \f(P,q>)

where we have used successively the boundedness of the function \h(-)\, the Cauchy-Schwarz
inequality and the Fubini theorem, and put

sup

<

J

Ht
daN-i(q)
Ù(P,q)

l. lui

i c!(7Ar-i(g)

Q(0,q)

i Ml3)J 2^J\\q\\2 + m2 2W"m \J
dq

(l + g2)2^-1)

which gives a well defined constant. We have used the inequality ii(P,q) > £7(0, q) >
2-v/IMI2 + m2 which is easily established. (A similar calculation shows that Ö is a bounded

operator). So H H0 + {Ho, 0} is self-adjoint on the domain of self-adjointness of H0. To

study the domain of L we write the new term (after some simple algebra) as follows

{L0,O}f(P,q) f dJ^l (Lof)(P,i>
J UP. a')

J

dapf-^q')
Ü(Pj)
daN.x(q')

Ü(P,q>)
f(P,q')

-,, h(P,q,g>)

ü(P,q')
Dh(P,q,q>) Ph(P,q,q')

n(P,q>) n(p,q>:

The second term defines a bounded operator (by using the same technics as for {H0,O},
because the factor in brackets is bounded). For the first one we observe that the square of
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his norm can be written as

Jdp(P,q) J daN-liP(Lof)(P,^h{P^')
n(P,q') '

< \Lof\\ - \Nm

Q(P,q>)

\Lof\\

by taking the result for \\{H0, C}/||2 (and by using O > Nm). From the Kato-Rellich
Theorem ([4] Section X.2) follows that L Lo + {L0, O} is self-adjoint on the domain of L0
provided \\hWoo < K^ Nm/k. AA

It remains to check the commutation rules. We will see that the first two rules are
automatically satisfied (for all h). But the last one imposes the following equation for h,

that we call our fundamental equation

0 Dh(P,q,q') + i/^zÄ/V ' 2 3 ÇÏ(P,q")2 1
=-ft(P,£ç7')ft(P,g»,ç?)

Dh(P, q, q!')h(P, <f, q>) + h(P, q, <?')Dh(P, f, q>)}

for all (P, q, q') G 1R2N 1. This is this equation which guarantees the relativistic structure of
the theory, as announced by the following result.

Proposition 2. Let h G B with
suppose moreover that

< K\ satisfying the fundamental equation. Let us

(fi(0,q) + O(0,ç?)) (|MP,q,q')\ + \Dh(P,q,q')\)

is bounded for all (P, q, q') G iR2Ar_1. Then there exists a dense domain in L2(1RN, dp) which
is a common core for P, H, L and on which these operators satisfy the commutation rules

of the Poincaré algebra.

Proof. We have already mentioned that P, Ho, L0 are the generators of a unitary and

strongly continuous representation of the Poincaré group in L2(MN,dp). Then it follows
from Theorem 3 of [5] that there exists a dense invariant domain for the three generators
which is also a common core for them. Because the largest invariant domain is

V {/ | Pe Çi(P, q)n 3™ f(P, q) G L2(RN, dp) for all t, m, n G w}

it must be a common core for P, H0, L0 and then, by the Kato-Rellich Theorem ([4] Section
X.2), a common core for P, H, L.
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Let us show that the products of operators PH, HP, PL, LP, HL, LH are well defined
on T>. Because T> is invariant under P, Ho, L0 and because {H0,O} is bounded we have

only to verify this statement for P{H0,O}, P{L0,O}, {L0,O}P, H0{L0,O}, L0{H0,O},
{Lo, O}H0, {Lo, O}{H0, O}. From the calculation of the proof of Proposition 1 follows that

/ dn(p%] {XYf){p'& (|/l(jP'*^1 + iDh{p'* ^0
where X and Y are any choice of P, H0, L0, defines a vector of L2(1RN, dp) provided / G T>.

This argument suffices for P{H0,0}, P{L0,0}, {L0,0}P and {L0,0}H0. Now H0{L0,0}
introduces a factor £l(P, q) which needs, to be treated as before, that f2(P, q)\h(P, q, q')\ and

ü(P,q)\Dh(P,q,q')\ are bounded, which indeed holds, imposed by our hypothesis. Now

flh do'uiw, - J%m% -<j%r Çldph —
ÜPh
n'2

(in symbolic obvious notation) is well defined because Qh is bounded (note that fldph
is bounded because ÇlDh is bounded). For the last term we have only to consider the
unbounded part of {L0,O} (see the proof of Proposition 1), that we denote by {L0,O}u^,
which gives the contribution

{L0,OU\Ho,0}f j^r(Lof)' J^jj
¦ do" hi« h" «

Ü'

do' do"JPiw^'i^"- Ph" '"

Ci"2

(in symbolic notation again) which is well defined because the factors in brackets [...] are
bounded.

Now the commutation rules can be checked on V without care of validity domain. By
using [O, P] 0 (by construction) we get [P, H) [P, H0] + {[P, H0],O}, which is 0 because

[P, H0] 0. By the same reason [P, L] [P, L0] + {[P, L0], Ö}, which, by using [P, L0] iH0
becomes [P, L] iH0 + i{H0, 0} iH. Thus the two first commutation rules are satisfied,
whatever h is. The third one [H, L] iP holds if and only if

{{Ho, O}, Lo] + [H0,{Lo,0}] + {{Ho,0},{L0,0}} 0.

The linear part A [{H0, O), L0] + [H0, {L0, O}], applied to a function / G V, gives simply

Af(P,q) ^2* / ^# /(P,c?) Dh(P,q,j)
Ü{P,q>)

(see the calculation in Appendix B). Note that A is a bounded operator. The bilinear part
B [{Ho, O}, {Lo, O}} leads to

doN-i(q')B'™ - 'J^rT^J doN^(q")
-h(P,q,q")h(P,q",q')

n(P,q') - •"J ü(P,q")2 { U(P,q")

+ Dh(P,q,q^')h(P,^',q) + h(P,q,f)Dh(P,j',q)}
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(see Appendix B). Note that B is also bounded. The condition A + B 0, which must hold
on all L2(1RN, dp), leads to the fundamental equation. AA

Remark. Proposition 2 does not establish that P, H, L are the generators of a unitary and

strongly continuous representation of the Poincaré group, which would require the existence
of a common invariant domain for these operators (see the counter-examples of Section VIII.5
of [4] and of [5]). Such a result has been obtained in [3] for the case N 2, but with stronger
assumptions on h. However the methods used in [3] could easily be applied to more general
cases.

3 Existence of Solutions of the Fundamental Equa¬
tion

We come now to the cruxial point of the paper, the solution of the fundamental equation in
the Banach space B (introduced just before Proposition 1).

Proposition 3. There exists K2 G (0, co) such that, for all c G C°(]R2N~2) with HcH«, <
K2, there exists one and only one solution h G B of the fundamental equation which satisfies

h(Q,q,q') c{q,qf) for all (q,q') G R2N~2 and \h\ < 2K2.

Moreover, there exists K3 G (0, co) such that, if c satisfies also 0,(0, q)Cl(0, q')\c(q, q')\ <
K3 for all (q, q') G JR2N~2, then the solution h satisfies all the hypothesis of Proposition 2.

Proof. Let us introduce the bilinear operator F given by

F(g,h)(P,q,q')

l rp
2 Jo ç\mo) mq'))J m°")21 ^'^^'^

5(£, q, çf')Dh(Ç, f, j) + T—h-7<7(e, q, J'MÌ, j', q') \ -

fi(C> Q)

By integration the fundamental equation becomes

h(P,q,q') c(q,q') + F(h,h)(P,q,q')

where c(q,q') is an arbitrary function (the integration 'constant'). Note that we have

automatically h(0, q, q') c(q, q'). We will obtain the solution h of this equation, for all suitable

c, by applying the Banach fixed-point Theorem [6, Sec 1.1]. The crucial remark is that F
satisfies the two properties

1) (P,q,q') i—? F(g,h)(P,q,q') is bounded and continuous on ]R2N~l provided g, Dg, h,
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Dh are also bounded and continuous on R2N~l, and we obtain the estimation

\\F[g,h)\U < fcl(llfll|oo+||2?fl||oo)(||A|U + ||I>Ä||oo)

where k\ is the well defined constant given by

ki= sup updi(7-^-+-^-)fd^m.
(P^eW»-. 2 io \Q(t,$ n(Ç,q>))J Ü(^,q")2

2) DF(g, h) is easily calculated and leads to

+ D5(P, g, ç")/i(P, g", c?) + ff(P, g, ^)Z?ft(P, g", ç?)}

It is also continuous and bounded on R2N 1 provided g, Dg, h, Dh are so too, and we get
now the estimation

\\DF(g,h)\\00 < MIMU + ||.Dff|U)(||/i|U + ||ö/*IU)

where k2 supPe7R f do^-i(q)Q,(P,q)~2 < oo.

We resume these inequalities by saying that F is a bilinear operator on B satisfying

\F(g,h)\ < k3\g\\h\

where k3 k\ + k2 is a well defined constant.

The fixed-points of the non-linear operator A(h) c + F(h, h) are the solutions of the
fundamental equation. Let us check the hypothesis of the Banach Theorem. For that we
need a closed ball B\ C B of radius A > 0, which will be delimited later.

First hypothesis: A : B\ —> B\. This imposes c G B\ and leads to the following
condition

\A(h)\ |c+F(M)l < \c\ + \F(h,h)\ < \c\ + k3\h\

IU + h< Iklloo + hx2 < x.

We can choice for instance ||c||oo < A/2 and fc3A2 < A/2, which leads to A < (2fc3) 1 and

||c||oo < (4fcj¦*)l-

Second hypothesis: \A(g) — A(h)\ < k \g — h\ for some 0 < k < 1, for all g, h G B\. In
our situation we find

\A(g)-A(h)\ \F(g,g)-F(h,h)\ \F(g,g - h) - F(h - g,h)\
< k3(\g\ + \h\) \g-h\ < 2k3X\g-h\.
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Let us put k 2k3X. The condition k < 1 leads to the same bound for A as before.

In conclusion, for all 0 < A < (2fc3)"1 and c G C0(R2N~2) satisfying HcH«, < A/2, the
Banach fixed-point Theorem assures the existence of a unique solution h in B\, given by

h lim An(ho)

whatever the initial function h0 G B\ is. Thus we can choice ho 0 and we get

h lim An(0).
n—>oo

(See the first terms of this sequence in the Remark just after the proof.) Note that this limit
is not 0 in general, because it is continuous and satisfies h(0, q, q') c(g, g').

By taking different values of A (such as A 211011«, + e or A (2fc3)_1 + e, for arbitrary
small e) the conclusion of the Banach fixed-point Theorem can be reformulated as follows.
Let K2 (4fc3)-1. For all c G C°(R2N-2) satisfying HcH«, < K2, the limit h lim«.-.«, ,4n(0)

converges in B and satisfies \h\ < 2||c||oo ; moreover h satisfies h A(h) and this equation
admits no other solution in {g G B | \g\ < 2K2}.

It remains to check the hypothesis of Proposition 2 for suitable c. Let

2

/f3 min \ — K2N2m'

Let c G C°(R2N-2) satisfying Çï(0,q)u(0,q')\c(q,q')\ < K3 for all (g,g~>) G iR2jv~2. Then
llclloo < K3(Nm)~2 < K2, as required by the fixed-point Theorem. Moreover we get ||/i||oo <
\h\ < 2||c||oo < 2K3(Nm)~2 < K\, in agreement with Proposition 2.

On the other hand let g G B such that \g(P,q,q')\ + \Dg(P,q,q')\ < Ktl(0, g)_1O(0, q'Y1
for some K G (0, co) for all (P, g, g') G R2N~1. By using this inequality in the integrals
defining F and DF we get the estimation

|P(S,S)(P, ?,<?)! + |DF(s,ff)(P 9,901 < k3 (—\ l
\NmJ f2(0,q) O(0,q1)

Let us take a function c as above. Let us suppose that for some n G IN* we know
that \A(0)n(P,q,q')\ + |DA(0)n(P,g,g"'')| < Cnü(0, q)^n(0, q')-1 for some constant Cn <
N2m2/(2k3) (this is true for n - 1). Then

K+^OXPg-.c?)! + |ZM"+1(0)(P,g-,c?)|

\c(q,q') + F(An(0),An(0))(P,q,q')\ + \DF(An(0), An(0))(P, q, q')\

C„ \ 1 Cn+i
- V^3+ 3N2m2) n(0,g)O(0,ç?) O(0,g) O(0,ç?)

with Cn+i AT3 + k3C2/(Nm)2 < N2m2/(2k3). Thus for such c all terms of the sequence

{An(0)(P, q, g')}^°=1 is bounded by A2m2(2fc3)-1 fo(0, g)O(0, g')] ~\ and so are their limit h.
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Finally we get

v y 2/C3 0(0, g) 0(0, g') «3

which is bounded for all (P,q,q') G R2N~l, as required by Proposition 2. AA

Remark. The proof gives more than what is stated in Proposition 3. It gives how to
compute h from the arbitrary function c. h is given by a sequence which converges in B and
which begins as follows :

A(0) c

42(0) .4(c) c + F(c,c)
A3(0) A(c + F(c,c))

c + F(c,c) +F(F(c,c),c) + F(c,F(c,c)) + F(F(c,c),F(c,c))
etc...

4 The Bound States Equation

The operator M2 H2 — P2 commutes with all generators. Thus any eigenspace of M2 is

a sub-representation of V\. If a sub-representation is irreducible, it decribes a one-particle
world, that is a bound state, the mass of which is given by the square-root of the eigenvalue.

The operator Mg Hg — P2 is just the multiplication operator by the function

M0(q)2 N2m2 + 4^g2 + 4 E UM*) - lM*)f
j=i m i<j,=i

for all g G RN~X (for N — 2 the last sum must be removed). Its spectrum is absolutely
continuous and covers the complete intervalle [N2m2,00).

With our operators H and P, the operator M2 takes the form

M2f(P,q) Mo(q)2f(P,q) + f^^ /(P, q') K(P, q, q')
J 0(P, g')

for suitable /, where the kernel K is given by

dffN_i(g")
0(P,g7'

Thus the bound states are obtained by solving the eigenvalue equation

K(P,q,q') =1 (ii(P,q) + ü(P,q')) h(P,q,q') + j~^ h(P,q,rf') h(P,q^',q').

i/(P,fl M0(q)2f(P,q) + J ^Npl[J} f(P,q') K(P,q,q>)
0(Pg';
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where tub > 0 is the bound state mass. Here rap is expected to be smaller than Nm and / to
belong to D(M%) C L2(RN, dp) where D(M^) is the domain of the multiplication operator
Mq. This equation appears to be the relativistic counterpart of the Schrödinger equation
because it plays the same role : it gives the discrete structure of the set of the bound states.
Note that it has the same general form (made of a 'kinetic term' plus a 'potential term') but
with three important differences:

1) the 'kinetic term' is the multiplication operator by the function Mo(q)2 which is not
a degree-two polynomial in the momenta as soon as N > 3. However it remains 'elliptic' in
the sense that M0(q)2 > M0(0)2, the equality holding only if g 0.

2) the interaction part is non-local which means that k(P, q, q') is not a function of P
and g — g' only. A look at the begining of the sequence for h suffices to convince ourselves
that it is not the case, even if we choose as initial function c(g — g').

3) the interaction part depends on P, the total momentum. In fact the only solution h of
the fundamental equation which is independent on P, i.e. which satisfies Dh 0, is h 0

(which requires c 0). Thus this dependence is necessary to get a non-free theory. Note
that it is not arbitrary, but imposed by the fundamental equation.

In a relativistic description of a bound state, it is not possible to eliminate the variable P
like in the non-relativistic case. A simple argument pleads for it, which is the following: by
a change of inertial frame, the bound state must be subject to the Lorentz contraction. The

simplification due to the centre of mass separation in Classical Mechanics has to be obtained
in the relativistic case by taking the centre of mass frame. By putting P 0 the eigenvalue

equation becomes simply

O(0, q) /(g) + / da"-l{Ì] fUXtà) mzfW
J O(0, g')

(because M2\P=0 H2 we have written the eigenvalue equation for H) where / must
belong to Z)(O(0, ¦)) C L2 (RN~1,daN-i/ïl(0, •)). We recall that c is an arbitrary continuous

function on R2N~2 satisfying U(0,q)ii(0,q')\c(q,q')\ < K3.

The existence of a solution of this equation, for some c, can be considered as a proof that
these models are non-trivial (which means that they describe two particles which effectively
interact). So we conclude by showing that an eigenvalue may effectively occur.

Proposition 4. Let N 2 or 3. Let c(q,q') -AT3O(0,ç)-1O(0, g')-1 for all (g,g') G

R2N~2, where K3 is the constant introduced in Proposition 3. Then the above eigenvalue
equation has a solution.
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Proof. The operator

on L2 (iR^-1, derjv-i/O(0, •)) is compact, its range being one-dimensional. Thus the operator
O(0, ¦) + V is self-adjoint (on the domain of O(0, •)). In particular its essential spectrum
is that one of O(0,-), that is the complete intervalle [Am, co). The discrete spectrum is

obtained by solving the eigenvalue equation. Because of the simple range of V it is easily
solved and gives the only solution

m O(0,g)(O(0,^-Am + f) ^ m* Nm ~ £

where A" is a normalisation constant (note that / belongs to the domain of O(0, •)) and
where £ > 0 is the only solution of the equation

1 K- I dcTAr-i(g) 1

O(0, g)3 tl(0,q)-Nm + £

(For small ||g|| we have O(0, g) — Nm 2||g||2 + 0(||g||3) ; the existence of an unique solution
for N 2 or 3 follows because the function A i—> /daN-i{q) [0(0, g)3(O(0, q) — Nm + A)]
decreases monotonously from oo to 0 when A varies from 0 to co.) AA

Remark. We have not proved here that the operator M2 itself (acting on L2(RN, dp)) has

an eigenvalue. This question is discussed in [3] (for N 2), where it is shown that the
existence of eigenvalues of M2\p=p0 for fixed Po leads to a gap in the spectrum of M2.

Appendix A. The N Free Particles Model

Let us consider N > 2 particles of the same mass m > 0, of momentum pi,..., pjv and

energy u>(pi),..., w(pjv) respectively, where u)(pj) Jp2 + m2.

The change of variables (pi,... ,Pn) —> (P <7i • • •, <5fiv-i) introduced in Section 2 is made

in two steps. First we perform (pi,... ,p^r) —> (a, Xi, ¦ ¦ ¦, Xn-i), given by

Pi m sinh(a + Xi + X2 ~\ 1- Xn-i)
P2 m smh(a - Xi + X2 H 1- Xn-i)

We get immediately

pN msinh(a + XiH \~ Xn-2 ~ Xn-i)-

w(pi) m cosh(a + Xi + X2 ~\ 1- Xn-i)
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w(p2) m cosh(a - Xi + X2 + ¦ ¦ • + Xn-i)

u>(pN) m cosh(a + Xi + \~ Xn-2 - Xn-i)-

Note that dapi uj(pt) and dXip% w(p,-) for all 1 < i < N and 1 < j < N — 1 except for
i j + 1 in which case 9XjpJ+i —w(pJ+i). Thus the Jacobian of the transformation is

J det

^(Pi) w(pi)
w(p2) -w(p2)

w(pl) \
w(p2)

\ u(pN) u)(pN) • - - -w(pjv) /

a)(p1)---w(pAr) j/v

where

3n det

Z1
1 -1

V 1 1

1 \
1

-I J

2JV-1

Thus J 2 1w(pi) • • -ui(pn). The invariant measure becomes

daN(Pl,...,PN) - in^) - do: c?Xi---dXN-i-

The variable a is related to the Lorentz transformation because 9„/(pi,... ,Pn)
J2^(Pi)dPif(pi, ¦ ¦ ¦ ,Pn), thus L0 -ida. The variables Xj, for 1 < j < JV — 1, are related
to the Lorentz-invariants

1

^ I [(Pl " P^+l)2 ~ (W(P1) ~ Wfe+!))2

as follows

4—^ (sinha — sinhò)2 — (cosha — cosho)2 — 2 + 2(sinhasinh6 — coshacosh?
nr

-2 + 2cosh(a-6) -2 + 2cosh(2xj) 4sinh2Xj

where we have put a a + Xi + ¦ ¦ ¦ + Xn-i and b a + Xi+---~ Xj + --- + Xn-i- Now

we perform the second change of variables (a, Xi, ¦ ¦ ¦, Xn-i) —* (P 9i, • • •, qN-i), given by

P pi + + pN

qi m smilzi

for 1 < i < N — 1. The Jacobian of the transformation is

J-1 det

/ U>l + +W/V UJ\ — UJ2 + + UJN ••¦ Ul + - LüN \
0 m cosh xi • • • 0

V 0 0 ¦ ¦ ¦ m cosh xn-i
(w(pi) + + u(pn)) m""1 coshxi ¦ ¦ ¦ cos1ixat_i
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where u>j uj(pj) for all 1 < j < N, and the invariant measure becomes

2"1 dP I"'1 dqj \ N_2 dP ricrjy_i(gi,... ,gjy-i)
ao-N(pi,... ,pN) 1

¦ H 2 —-—— —
wj + + uN y £* y'g2 + m2) n(P> ft, ¦ • •, Çiv-i)

where we have put 0(P, gi,..., gw-i) u>(j>i) +... + i^(pn)- Because daf(P, gi,..., gjv-i)
(daP)dpf(P, gi,. •., gjv-i), the operators of the free theory are now given by

P multiplication by P
Ho multiplication by 0(P, <fi,..., gw-i)
L0 -iO(P,gi,...,g,v_i)óV

It remains to calculate the function 0(P,gi,... ,qN-i) or which is equivalent, the function
M)(<7i) ¦ • • i qN-i)2 0(P, gi,..., gw-i)2 — P2- We consider the Lorentz-invariants

^^^^-P.f-MPi)-^))2]
for 1 < i < j < N (note that g,^ 0 for all i and g2 -+i g2). A dementar calculation
gives M02 A2m2 + 4£^._1 q?j. Let ft, for 1 < i < N, be the hyperbolic angles such that
Pi rasinhft. By a calculation already made (for g^) follows 4g2J/m2 — 2+2cosh(ft — ßj).
In the case AT > 2, for all 2 < i < j < N we have ft — ßj 2(xj-i — Xt-i)i so that
g2 m2sinh(xj-i - X7-1)2 ™~2(qj-iv(qi-i) - gi_iw(g,_i))2. Finally we get

M0(g1,...,gN_1)2 N2m2 + 4 £ g2 + 4 £ q\
7 1 7<j, 2

AT-1 4 JV-1

N
2

J
i=l 7<j,=2

2A2m2 + 4 J] g2 + — £ (g^(9l) - g.-wfe))
7=1 m l<i,=l

Appendix B. The Fundamental Equation

We establish the fundamental equation. It is the condition on h for which the relation
{{H0,0}, L0] + [Po, {Lo, ö}] + [{Ho, O}, {L0,0}} 0 holds. The linear part in O is simplified
as follows

[{/7o,0},Lo] + [#o,{Lo,e>}] 2(H0OLo-L0OHo + iPO)
where we have used {H0, L0] iP and the fact that P and Ö commute. Applying it to a
suitable function / gives, in symbolic obvious notation

A 2(H0OL0 - L0ÖH0 + iPO) f(P, q)

iff O + O' ^^"UJ ff 0 + 0' J O' 0 + 0'
/t p fe

0 + 0' + ff O + O'
2i jdo'f

J N 1W;/V '"j 0(P,g)+0(P,g')
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To compute the bilinear part, we take the expressions for {H0, 0}f(P, q) and {L0, 0}f(P, q)

given in the proof of Proposition 1, for / G V, and we get, in symbolic notation

B {{H0,O},{L0,O}} f(P,q)

do" ,„„„„ fdo'

Dh" •" PK>f«

O' O'2

Dh™ Ph"'i
O" O"2

do'
J Q'J

Dh""'q' Ph""'*'
+ 0"<9

hi"«'
O'

+ [™L _ ™1 hr*0" O"2

/• doN^g1) - /¦ rfajy-^g7')

V 0(P,g"') ;;i 0(P,g")2 I 0(P,g"
^-h(P,q,q")h(P,q~',q>)

+ Dfc(P, g*, g")/i(P, g7', g) + fc(P, g, j')Dh(P, g7', g)}

The condition A + B 0, which must hold for all functions /, leads to the fundamental
equation given at the end of Section 2.
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